

Aerospace

Systems Division

ALSEP Flight System A2 System Level Failure Mode Effects and Criticality Analysis

NO.			REV. NO.	
	ATM	857	<u> </u>	
	PAGE .	1	OF	
	DATE	8-31	-70	

This ATM fulfills the contractual requirements for an ALSEP system level Failure Mode and Effects and Criticality Analysis (FMECA) for Array A2 in accordance with the Array A2 Documentation Schedule.

Supporting and reference documents are listed to aid the reader in assessing the overall ALSEP system.

Prepared by $\mathcal{T} \mathcal{O}$, \mathcal{V} L. S. Moskowitz ALSEP Reliability

Prepared by R. J. Dallaire ALSEP Reliability

Reviewed by

R. C. Roukas Group Engineer ALSEP Reliability

Approved by

S. J. Ellison Manager ALSEP Reliability

Bendix
Charles and the second second

Effects and Criticality Analysis
Aerospace
Systems Division

NO.	REV. NO.
ATM 857	
PAGE	of <u>12</u>
DATE 8-31	-70

INTRODUCTION

This Failure Mode Effects and Criticality Analysis (FMECA) identifies those potential failure modes constituting single point failures or critical failures peculiar to ALSEP Flight System A2.

ALSEP Flight System A2 System Level Failure Mode

The major design changes that have been made to ALSEP since Array A have been made to the Central Station Electronics. Consequently, the FMECA found in Table III concentrates on the Central Station. The reader is referred to ATM 501B for the complete detailed FMECA for ALSEP.

A single point failure mode summary is shown in Table I; it includes all single point failures existing in ALSEP Flight System A2.

The Reliability of the Central Station Data Subsystem has increased from 87% to more than 92% through redesign of some critical assemblies. This has been achieved by the addition of redundancy and the use of integrated circuits which have a higher reliability than their equivalent discrete counterparts.

SYSTEM FMECA AND SPFS

All system single point failure modes are listed in Table I for easy identification. Due to redundancy, many assemblies contain no system single point failure modes. Assemblies which contain no such modes include the 90 Channel Multiplexer, and the Timer. All are units which have been completely redesigned since Array A. See below for definition of a critical failure mode.

The probability of occurrence of a system single point failure is only 0.0072 and the probability of occurrence of a critical failure is only 0.0058.

Table III lists the most significant failure mode effects and criticality analysis data for the Array A2 Central Station. The FMECA lists failure modes on a subsystem-black box level. More detailed FMECA information may be obtained by referring to the appropriate subsystem's individual FMECA. Appendix A lists the respective ATM numbers for each subsystem.

Aerospace Systems Division ALSEP Flight System A2 System Level Failure Mode Effects and Criticality Analysis

NO.	REV. NO.
ATM 857	
PAGE	of <u>12</u>
DATE 8-31-	70

Failure modes listed in the FMECA summary are limited only to modes which would:

1. Cause the loss of all scientific data (Criticality Rank = I)

- 2. Cause the loss of uplink or control of the System (Criticality Rank = II)
- 3. Cause the loss of some scientific data (Criticality Rank = III)
- 4. Cause the loss of housekeeping data. (Criticality Rank = IV)

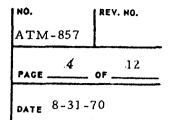
Failure modes with a criticality rank of "I" are termed "System Single Point Failure Modes." Those with a ranking of "II" are termed "Critical Failure modes." Criticality ranks III & IV are less serious since scientific data is being returned. Failures in which functionality may be restored by switching to a redundant unit are of second order importance and are not included in the system FMECA.

Although each of the subassembly failure modes listed in Table I constitutes a potential shut-down of ALSEP Flight System A2, it has been established by stringent qualification and acceptance testing of ALSEP systems that the design safety margins and redundancy utilized have achieved a reliable design and operation for one year on the lunar surface can be confidently expected.

The Diplexer Filter and Switch have never failed in their expected worst case modes of the switch failing shorted or the filter failing open or shorted. The Antenna assembly has also not failed open.

The RTG has never failed to have an output; in fact after the APOLLO 12 deployment the RTG met and exceeded its required output.

The ACA cask has been subjected to qualification design limits testing without failure and performed its containment function during the APOLLO 13 return to earth.


Astronaut contingency operational procedures (as proven during deployment exercises) have been developed to preclude the astronaut not being able to recover the Flight Handling Tool from the lunar surface and the possibility of the tool breaking is negligible.

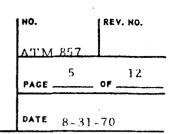
Aerospace Systems Division

34 2020 20

ALSEP Flight System A2 System Level Failure Mode Effects and Criticality Analysis

TABLE I

CENTRAL STATION SINGLE POINT FAILURE SUMMARY


Assembly		Failure Mode	Failure Probability Q x 10 ⁻⁵
Antenna Assembly	1.	Open or short in impedance matching transformer	46.00
Sincl ² discussion	2.	Mechanical binding or cold welding of antenna aiming mechanism	
	3.	Mechanical damage to antenna elements prior to ALSEP deployment	
an ann an Arrainn an Arrainn Ataine agus an Arrainn Ar	4.	Defective connectors or coaxial cabling problem:	
Diplexer Circulator	1.	Connector failures	0.14
	2.	Mechanical damage to construction of either circulator	• • •
Diplexer Filter	1.	Open in band pass filter coaxial elements	54.00
	2.	Mechanical damage to cavity elements - pick-offs and tuning stubs	
	3.	Connector or internal junction failures	
Command Decoder	1.	Shorted output decode gate causing promotive Transmitter "off" command	1.05
PCU	1.	Defective cabling or connectors between PCU and RTG	613.35
	2.	Open RTG input filer choke	

Ľ

Bendix

Aerospace Systems Division

ALSEP Flight System A2 System Level Failure Mode Effects and Criticality Analysis

Failure

TABLE I (CONT.)

	Assembly		Failure Mode	Probability <u>Q x 10⁻⁵</u>
	PCU Cont.	3.	Open primary on input current monitor transformers	• •
	-	4.	Shorted capacitor across astronaut start switch and ground	
		5.	Shorted capacitor across input to DC-DC converter transformer and ground	
		6.	Shorted capacitor across Regulator #1 resistor feed line and ground	•
		7.	Open contacts on regulator select relay	
-		8.	Any component failure causing DC-DC converter #1 not to start	
	• • •	9.	Open in output filter chokes	•
	Power Dissipation Module	1.	Short in the dissipation module will cause the loss of +29 V line and the system	. 14
	PDU	1.	Spurious ground on either transmitter turn off line, due to possible wiring short, or shorted transistor in PDU.	3.40
		2.	Open input resistor on "Transmitter Off" relay driver	

	Bendix Aerospace Systems Division	ALSEP Flight System A2 System Level Failure Mode Effects and Criticality Analysis	но. <u>ATM 857</u> <u>Раде 6 ог 12</u> рате 8-31-70
	· · · · · · · · · · · · · · · · · · ·	TABLE I (CONT.)	· · ·
· · · · · · · · · · · · · · · · · · ·	Assembly PDU Cont.	Failure Mode 3. Either transistor shorted in the "Transmitter Off" relay driver	Failure Probability Q x 10 ⁻⁵
		4. Reversed or shorted "flywheel" diode on "Transmitter On" relay coil	
÷.		5. Resistor short in either Power Dis- sipation Module or Transmitter heater causing loss of +29 volt line	
		TOTAL	718.08

- Probability of single point failure = 0.0071808

	1	NO.	REV. NO.
Bendix A	ALSEP Flight System A2	ATM 857	
	System Level Failure Mode Effects and Criticality Analysis	PAGE 77	0F
Aerospace Systems Division		DATE 8-31	-70

TABLE II

Carrier Sa

a auto at at a far for a second and a

and the state of the state of the

R.

er sta

CENTRA	L STATION CRITICAL FAILURE MODE SUMM	ARY
Assembly	Failure Mode	$\frac{Q \times 10^{-5}}{2}$
Receiver	Failure of receiver would cause the loss of uplink command capability	54.38
Command • Decoder	Failure of demodulator would cause the loss of uplink command capability	1.52
Data Processor	Loss of Frame Counter will impact real-time monitoring capability.	531.70
	TOTAL	587.60

Probability of occurrence of critical failure = 0.0058760

5.5

TABLE III

.

			TABLE (II	SYSTEM	Ac U. 275-124		1557
					EREPARED BY		REV.
	FAILURE MODE, EFFE			Central Station	DWE NO.	PAGE 7	of 12
	TAILORL MODE, EFFE	CT & CRITICALITY AN		Downlink	LANC INC.		1-70
CIRCUIT CR	ASSUMED FAILURE MODE	CAUSE OF FAILURE		CF FAILURE		FAILURE PROBABILITY	CRITIC-
FUNCTION		·	END ITEM	SYSTEM	Source	PROBABILITY Q x 10 ⁻⁵	ALITY
1. Antenna	No Signal	A. Mechanical Open or Short	Loss of Transmitted Data	Loss of All Data	в	46.00	I
		B. Loss of Aiming Ability					
2. Diplexer Filter	No Signal	A. Open or Short	Loss of Transmitted Data	Loss of All Data	В	59.00	I
* ⁻		B. Mechanical Failure					
		C. Connector & Resonator Failure					
3. Diplexer- Circuit Switch	No Signal	A. Open or Short	Loss of Transmitted Data	Loss of All Da'a	в	. 1416	I
4. Transmitter	Failure such as to also cause to fail the Redundant Unit	A. None	None	None	В	-	-
5. Data Pro- cessor	Failure such as to also cause to fail the Redundant Unit	A. Frame Counter Failure	Loss of Frame Mark	Ground Station Data Processing Require Restore Data		25.432	III
5. 90 Ch. Mux	Failure such as to also cause to fail the Redundant Unit	A. None, removed since Array C	None	None	н		-
7. A'D Con- verter	Failure such as to also cause to fail the Redundant Unit	A. Zener Diode fails open or short	Loss of -90 channels of multiplexer	Loss of redundancy	В	.0309	IV
		B. Either card Cl or C2 fails open or short					
							ļ
					Total	130.60	Į

		Т	ABLE III	SYSTEM	PARED BY	NOM 85	- 🏝
·	FAILURE MODE, EFFE	ECT & CRITICALITY AN	NALYSIS	 entral Station 	ve no.	PAGE 8-	<u>-07</u> -31-7
CROUT CR FUNCTION	ASSUMED FAILURE MODE	CAUSE OF FAILURE		F FAILURE SYSTEM		FAILURE PROBABILITY Q x 10 ⁵	CR
1. Receiver	Degraded Output	Greater than 9 db loss in , sensitivity	Loss of ability to transmit a uplink commands	Loss of Command Upl	Source link B	52.17	II II
	Increased Power Requirements	Current drain increase more than 10 ma	Possible loss of one experiment. Power down sequencing permits higher priority experiments to stay on.	Loss of Some Scientif Data	ic B	. 697	I
		Chassis grounding of negative power supply lead	Increased EMI	Degradation or possib loss of command uplin		. 168	I
	Improper Receiver Output	Rapid switching or loss of switching decision ability or two oscillators operating simultaneously	Inability to transmit uplink command	Loss of command upli	ink B	. 975	I
•		Ripple on output. Wrong level	Increased command error	Possible loss of an experiment or comma uplink	B	. 366	1
2. Demodulator	Loss of Command Data	 A. Loss of Output B. Loss of Threshold Gate C. Loss of Clock Pulses 	Loss of Received Commands	Unable to Modify Dela Command Sequence of Timer	yed B	531.70	I
3. Command Decoder	Loss of Both Sides	A. Loss of Memory Address Inhibit	Loss of Both Command Decoders	Unable to Modify Dela Command Sequence	yed B	1.515	1
4. Command Decoding Gates & Drivers	Loss of a Command Function	A. Open or Short Digital Logic	Loss of a Command Function	Possible Loss of An Experiment or Comm	B and	1202.71	:
5. RSST	Early Time Out	A. Electronic Failure .	Temporary Loss of Transmitter, may be regained by Ground Command	None	J	-	
· · ·							
· · · · · · · · · · · · · · · · · · ·					Total	1790. 30	

.

.

.

•

TABLE III

 \bigcirc \bigcirc

,

		·	TABLE III	SYSTEM PSEPAPED BY ALSEP L. Moskowit.	ATM 857
	FAILURE MODE, EFFE	CT & CRITICALITY AN	NALYSIS	END MEM Central Station ASS'Y Power System	PAGE 9 of 12 DATE 8-31-70
CIRCUIT CR FUNCTION	ASSUMED FAILURE MODE	CAUSE OF FAILURE	EFFECT	CF FAILURE	FAILURE CRITIC-
1. PCU	A. Loss of + 5V, + 29V	A. Electrical Failure	END ITEM A. Loss of Transmitter or Data	SYSTEM Source	Q × 10 ⁻⁵ ALITY 613.35 I
	B. Loss of Other Supplies	B. Electrical Failure	Processor		
			B. Loss of Some Experiments and Uplink	B. Loss of Major Portion B of Data or Uplink	613.35 II
2. PDU	Loss of Supply to Receiver either transistor Q 2(A) or Q 5(A) shorts.	A. Electrical Failure	Loss of Receiver	Loss of Uplink B	. 659 II
÷					
					•.
				Total	1227.54

1

é

Aerospace

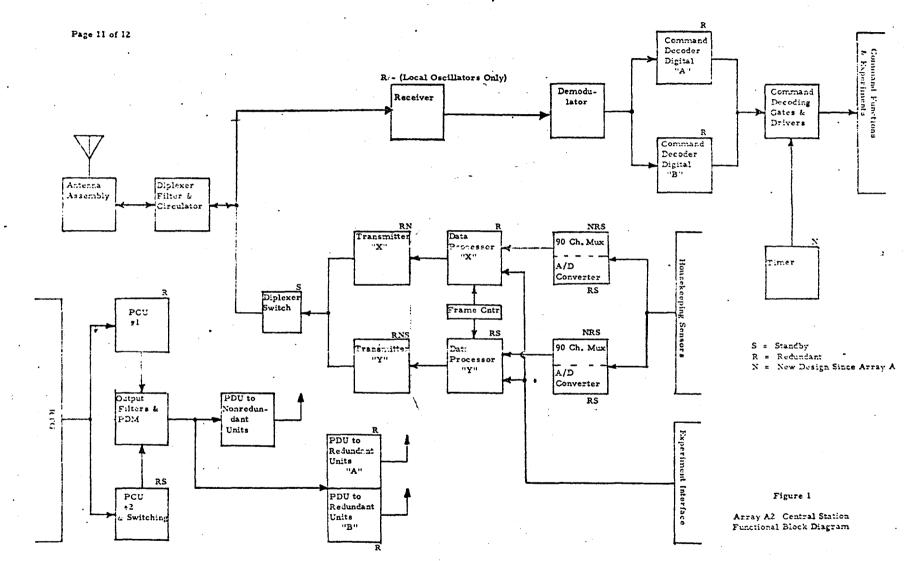
Systems Division

ALSEP Flight System A2 System Level Failure Mode Effects and Criticality Analysis

NO.	÷.	REV. NO.	<i>,</i> •
ATM	857		_
PAGE _	10	of <u>12</u>	-
DATE	8-31	-70	

RELIABILITY PREDICTION

The reliability math model is shown in Figure 1. The functional block diagram is drawn in such a manner that redundant subsystems having circuits in common are drawn with the common function's block is in series rather than parallel. This includes switching.


The reliability prediction for the Central Station data and power subsystems may be found in Table IV, the Reliability Comparison Table. Reliability for the data subsystem has increased from 0.86921 to 0.92147 due to design improvements such as including redundancy and the use of integrated circuits in the redesigned assemblies. The redesigned assemblies are denoted by asterisks in Table IV.

RELIABILITY COMPARISON

The design of the Array A2 Central Station has improved since Array A. The probability and quantity of single point failures has been reduced significantly. Table IV lists some reliability comparisons between Array A and Array D. It is to be remembered that Array A Central Station is operating reliably on the moon. Any improvement in reliability is an improvement on a unit of demonstrated reliability.

CONCLUSION

Design improvements of ALSEP hardware since Array A has increased the reliability of the overall ALSEP System. It is therefore concluded that ALSEP Flight System A2 will satisfactorily perform its intended function after lunar deployment. With higher probability of full system success and reduced risk of single point failure occurrence.

Ţ.

m	1	NO.	REV. NO.
Bendix	ALSEP Flight System A2	ATM 857	,
Contraction of the second s	System Level Failure Mode	12	125
Aerospace	Effects and Criticality Analysis	PAGE	OF
Systems Division		DATE 8-3	1-70

TABLE IV

CENTRAL STATION SUBSYSTEMS RELIABILITY PREDICTION AND COMPARISON

System	Array A2 R	Array A R	Differences ∆R	•
Power	.93315	. 93315		
PDU	.98773	. 98773		
PCU PDM	.94484 .99990	.94484 .99990		
Data	. 92147	. 86921	0.05226	
- Antenna Assy	. 99746	. 99746		
D.P. Filter	.99898	.99898		
Receiver	.98882	. 98882		
Transmitter*	. 99988	.99923	+0.00065	;
Comm. Decoder	.98304	.08304		1
*Timer	.99450	.99208	+0.00422	
*MUX & A/D	.99810	. 94608	+0.05246	
Data Processor	. 95863	.95863	· · · · · · · · · · · · · · · · ·	
TOTAL R	. 85986	. 81110	0.04876	

*Redesigned units since Array A. The 90 channel MUX redesigned, but A/D Converters still same.

Aerospace **Systems** Division ALSEP Flight System A2 System Level Failure Mode Effects and Criticality Analysis

NO.	REV. NO.
ATM 857	
	_ OF1
DATE 8-31	-70

「「「」」の

APPENDIX A

References

Below is a list of references the reader is referred to for the purpose of more detailed information. Note that ATM 501B and ATM 274G contain the Failure Mode Effects and Criticality Analysis and System Prediction Analysis, respectively, for the entire system except where circuit modifications or redesigns have necessitated the issuance of new ATM's. The letter to the left corresponds to the source letter referenced in the system FMECA included in this ATM.

A	ATM 501B		ALSEP Failure Mode Effects and Criticality Analysis	
B	ATM 274G		ALSEP Reliability Math Model, Prediction, and Assessment	
С	ATM 262		Evaluation Data Subsystem Failure Modes	
D	ATM 841A 🍾		Transmitter PAA	
E	ATM 852		Fuel Handling Tool, Fuel Capsule/Cask Assembly Interface FMECA	
F	ATM 854 _		Transmitter FMECA	, .
G	ATM 860A		90 CH. Multiplexer PAA	
н	ATM 863	/	90 CH. Multiplexer FMECA	
I	ATM 878		RSST (Timer) FMECA	
J	ATM 879		RSST PAA	