| NO.
 A TM 905 REV. NO.
 PAGE 1 OF 13
 DATE $7 / 23 / 70$ |
| :--- | :--- | :--- |

This ATM documents the Reliability Prediction and Failure Modes Effects \& Criticality Analysis of the Bendix designed Dual A/D Converter. The analysis reflects the final flight configuration for the Array D ALSEP System.

Prepared by
 Rodney J. Dallaire ALSEP Reliability Dept.

ALSEP Reliability Manager

1.0 INTRODUCTION

The results of the Reliability Prediction and the Failure Mode, Effects, \& Criticality Analysis for the ALSEP Array D A/D Converter portion of the 90 Channel Multiplexer are documented in this report. This A/D Converter represents the Bendix Designed unit which makes extensive use of SSI and MSI integrated circuits. The A/D Converter was integrated with the Bendix Designed Dual 90 Channel Multiplexer.

The reliability prediction for a Single A/D Converter is 0.99622 , which exceeds the specified goal of 0.9450 . The resulting reliability prediction for the combined Dual 90 Channel Multiplexer and A / D Converter is 0.9987 for one year of lunar operation. which exceeds the specified design goal of 9956.
2.0 CIRCUIT DESCRIPTION

Figure 1 presents a Functional Block Diagram of the A/D Converter. This diagram is included to clarify the terms and discriptions given in the Failure Mode, Effects, \& Criticality Analysis portion of this ATM (Tables II \& III). The numbers in each box correspond to the Circuit/Function Item Number listed in the FMECA. Thus a clear picture may be obtained of the inter-relationships between Circuit Functions and Failure Mode Effects.

Briefly, the A/D Converter receives one of the 90 Housekeeping Data Channels from the 90 Channel Multiplexer in the form of an analog voltage. The buffer (Block 2) acts as a high impedance input for the purposes of non-loading the channel source and minimizing channel cross-talk. At the "Start of Conversion" signal, which is supplied by the data processor, a voltage ramp (Block 4) and a binary counter (Block 2, digital board) is started simultaneously by the counter control (Block 1 , digital board). When the ramp voltage equals the analog input voltage, the comparator (Block 3, analog board) sends two signals, one to the counter control to stop the clock puslses to the counter, and the other to discharge the ramp. The binary output of the counters, then, is the digtial equivalent of the forsekeeping Channel voltage. This process is repeated for each now channel selected by the multiplexer.

3.0 RELIABILITY PREDICTION

The reliability prediction for the Dual 90 Channel Multiplexer and A/D Converter, operating in standby redundant configuration is calculated to be 0.9987183 for launch, deployment, and one year of lunar operation. The predicted reliability exceeds the specified goal of 0.9956 .

Figure 2 defines the Reliability Block Diagram and Mathematical Model for the Multiplexer and A/D Converter. The standby elements are activated by earth command. Functionally, the system operates in conjunction with the Data Processor. However, the Data Processor is was not included as part of this analysis.

The failure rates for each functional component identified in Figure 2 are tabulated in Table I. The failure rates shown represent composite totals derived from the part application siress ratios of each electronic picce part. The application reflects the anticipated "use" environment.
| $\mathbf{~ m o .}$
| REv. no.
Dual A/D Converter Relia y Prediction And Failure Mode, Effects \& Criticality Analysis

$\frac{\text { Analog Board }}{2345516}$

A/D Converter Block Diagram

Dual A/D Converter Reliabilit ediction
mo. And Failure Mode, Effects \& Criticality Analysis

PAGE 5 OF 13

Active System

$\mathrm{R}_{\text {MUX }}=\varepsilon^{-(\lambda 1+\lambda 2) t}$
$R_{A / D}=\varepsilon^{-\left(\lambda_{3}+\lambda_{4}\right) t}$
$R_{A}=R_{M U X} \cdot R_{A / D}$

Complete System

$$
R_{T}=1-\frac{\lambda a \lambda s^{t^{2}}}{2}-\frac{\lambda a \lambda t^{2}}{2}
$$

jo.
f REV. NO.
ATM 905
Dual A/D Converter Reliability Prediction And Failure Mode, Effects \& Criticality Analysis

TABLEI

FAILURE RATE SUMMARY
Failure
ai (\%/1000 Hrs.) si (\%/1000 Hrs.) Rate
Assembly
λ_{i}
Operating
Standby
90 Ch . Multiplexer

90 Ch. MOS FET's	1	0.144500	0.0001445	ATM 860A
Sequencer	2	0.387611	0.0003876	ATM 860A

A/D Converter

Analog Board	3	0.041753	0.0048953	ATM 904
Digital Board	4	0.001342	0.0000013	ATM 904

Cotals
$\sum \lambda_{i}$
0.575206
0.0054287

Reliability Calculation

$R_{\text {MUX }}=\epsilon^{-\left(0.53211 \times 10^{-5}\right)(8760.52)}=\epsilon^{-0.046616}=0.9544691$
$R_{A / D}=\epsilon^{-\left(0.043905 \times 10^{-5}\right)(8760.52)}=\epsilon^{-0.037753}=0.9962202$
$\mathrm{R}_{\mathrm{A}} \quad=\mathrm{R}_{\mathrm{MUX}} \cdot \mathrm{R}_{\mathrm{A} / \mathrm{D}}=(0.9544691(0.9962202)=0.950861$ (Active System)
$\mathrm{R}_{\mathrm{T}}=1-\frac{(0.575206)(0.0054287)(0.0876052)^{2}}{2}-\frac{[(0.575206)(0.0876052)]^{2}}{2}$
$\mathrm{R}_{\mathrm{T}}=1-\frac{(0.00002397)}{2}-\frac{(0.0025393)}{2}=1-0.001198-0.0012697$
$R_{T}=0.9987183=$ Total MUX-Converter System Reliability Prediction

Dual A/D Converter Reliability Prediction And Failure Mode, Effects \& Criticality Analysis

ATM 905
page $\quad 7$ of 13

DATE $7 / 23 / 70$

4.0 FAILURE MODES, EFFECTS \& CRITICA LITY ANALYSIS

The failure mode and effects analysis for the A/D Converter are documented in Tables II and III. Table II describes the functional failure modes and the resultant effects on the end item and system level. Table II delineates the failure modes at the piece part level. Each identified failure is numerically itemized for cross reference between Tables II and III, and Figure 1.

The failure probabilities reflect the identified line item. The criticality ranking lists by order of magnitude, the highest down to the lowest failure probabilities. Table II lists criticalities by circuit/ function, while Table III lists the criticality sub-ranking within each circuit/function item. With this method, the highest order criticalities are easily identified both by circuit/function levels and by discrete part levels.

The format of Tables II and III is designed to provide the reader with a narrative description of the varying types of failures that could occur, combined with the resultant performance characteristics. This information is useful to system support in performing fault isolation should any anomally occur.

There are no ALSEP single point failures in either the 90 Channel Multiplexer or the A/D Converter. Careful parts selection and circuit design coupled with the switching of most supply voltages in the redundant units has enabled the Bendix design to have zero single point failures. Two single point failures were identified early in the design stage of the A / D Converter. These consisted of +12 V noise suppression capacitors which, if failed shorted, would take the ALSEP +12 Volt supply down. These single point failures were eliminated in the finial design by removing one of the capacitors, and substituting a paix in series for the other.

There are also no single thread failure modes in the A/D Converter design. Complete functional ability may be restored by switching to the redundant unit. The two A/D Converters are completely independent.

Dual A/D Converter Reliability Prediction And Failure Mode, Effects \& Criticality Analysis

| NO. nev. No.
 ATM 905
 PAGE 8 8
 OF 13
 DATE $7 / 23 / 70$ |
| :--- | :--- | :--- | :--- |

The failure probability figures were derived using the data contained in ATM 904, the A/D Converter Parts Application Analysis. ATM 243 was used to derive the component α 's (open, short, dirft, etc. apportionments). Some failure modes, such as drift of a resistor in a digital circuit, do not affect the operation. The failure modes which do not affect the operation are not included in the FMECA. For this reason the sum of α 's for some circuit/function items do not equal one. However, all A/D Converter piece-part failure modes which do affect the operation of the A/D Converter or any other unit in ALSEP are included in the FMECA (Tables II and III).

Not all failure modes are serious. Where the effect of failure on the system is termed "outputslightly erroneous", the digital value received on the ground can be adjusted to the correct value. This can be done by observing how the failure or drift has affected the calibration signals.
5.0 RELIABILITY ASSESSMENT

The purpose of performing a reliability prediction and failure modes analysis is to identify inherent design weaknesses. From the results of these analyses it has been concluded the reliability and design objectives have been fully satisfied.

FAILURE MODE, EFFECT \& CRITICALITY ANALYSIS

FAILURE MODE, EFFECT \& CRITICALITY ANALYSIS

FAILURE MODE, EFFECT \& CRITICALITY ANALYSIS

STSTEM ALSEP	R. J. Daliaire	ATM 905 EV.
EDTHM $90 \mathrm{Ch} . \mathrm{Mux}-\mathrm{A} / \mathrm{D}$ Conv	WWENC 2338900	Pase 11 cf
RSS'Y Conv. - Hgital $\mathrm{Br} \dot{\mathrm{c}}$	P46NO. $23.552!$	Dute ${ }^{\text {Ti2 }}$

FARURE MODE, EFFECT \& CRITICALITY ANALYSIS WORKSHEET

STSTEM ALSEP	P. Say inf	ATM $0_{05}{ }^{\text {PEV. }}$
$\text { WOTHM } 90 \text { Ch. MX-ADConv }$	DWK KR. 2338900	PAGE 12 of 13
ASSTY ADonv, Analog Brt	DWS NO. TW_{235516}	$\text { वate } 7 / 23 / 70$

PART/COMPONENTSMABL.	FALURE MODE, EFFECT \& CRITICALITY ANALYSIS WORKSHEE				OATE $1 / 23 / 70$
		Effect of	farlure	FAILURE	CRITIC-
	FAILURE MODE (α)	ASSEMPLY	END ITEM	$\begin{aligned} & \text { ROSAB } 1 L^{1} \\ & 2 \times 10^{-1} \end{aligned}$	
1.0 Oscillator Clock: R1, R2, R3, R4, R5, C1, C2, Y1, NGIA, NGIB, NGIC	$\begin{aligned} & \text { 1. } \begin{array}{l} \text { Short or Open R1, R2, R3, R4, R5, } \\ \text { C1, C2, Y1, or Failure of NG1A, } \\ \text { NG1B, NG1C } \\ \text { 1.2 Crystal (Y1) Drift } \end{array}(.533) \\ & \text { (.371) } \end{aligned}$	1.1 Oscilaltor Will Fail to Provide Output 1.2 Oscillator Frequency Drift	1.1 Loss of Clock to Counters 1.2 Counters Will Count at Wrong Speed	$.00 \div 313$ $.003000$	2
2.0 Input Buffer: LM102, C4	$\begin{cases}\text { 2. } 1 \text { Short C4, Output LM102 } & \text { (.776) } \\ \text { 2.2 Input Offset Drift } & (.193) \\ 2.3 \text { Open C4 } & (.030)\end{cases}$	2.1 Loss of Input to Comparator 2.2 Offset Input to Comparator 2.3 Noise to Input of Comparator	2.1 Analog Input Appears High or Low 2.2 Offset Input Voltage 2.3 Chance of Small Errors in Conversion	.003503 .000870 .000134	1
3. 0 Comparator: R12, R13, C5, LM1!1, X5	$\begin{cases}\text { 3.1 Open R12, R13, Short R13, C5; } \\ \text { Failure of LM111, X5 } & \text { (.798) } \\ 3.2 \text { LM111 Input Offset Drift } & \text { (.140) } \\ 3.3 \text { Open C5, Short R12 } & \text { (.002) }\end{cases}$	3.1 Loss of Command Latch Signal 3.2 Comparator Will Switch too Soon or too Late 3.3 Noise in Comparator	3. 1 Counters Will Count Erroneously 3.2 Count Will be Slightly too High or too Low 3.3 Chance Count Will be Low	$\begin{aligned} & .004020 \\ & .000310 \\ & .000003 \end{aligned}$	1 2 3
4. 0 Ramp Genera:pr: R7, R8, R9, RIO R11, R14, R15, C3, C12, O1, LM107	4. 1 Open or Short R8, R9, R10, R11, R14, R15, C3, CR2, Q1, Open R7, or Output Failure of LM107 (.442) 4. 2 Drift of CR2, R8, R9, R10, R1 \|. 413) 4. 3 Short R7 (.001)	4.1 Ramp Generator Will Cease to Function 4. 2 Incorrect Ramp Slope 4.3 Excess Current in Zener CR1	4.1 Counter Will Not Turn Off 4.2 Counter Turned Off too Soon or too Late 4.3-12V Supply May Be Shorted	$.009248$.008631 .00003	1 2 3
5.0 Supply Noise Suppression C6, C7, C8, C9	5.1 Short C8, C9 (.070) 5.2 Open C6, C7, C8, C9 (1.798) 5.3 Short C6, or C7 (1.070)	5.1 Loss of -12 V or +5 V 5. 2 Noise on $+12,-12, \&+5 \mathrm{~V}$ Lines 5.3 No Effect Due to Redundant Capacitor	5.1 Loss of One MUX-A/D Converter 5.2 Chance of Erroneous Count 5.3 No Effect	.000060 .000684 .000060	2
6.0 Thermistor Network: R16, R17	6.1 Open or Short R16, R17 $(.817)$ 6.2 Drift R16, R17 $(.183)$	6.1 Thermistors Not Supplied Proper Voltages 6.2 Thermistors Not Supplied Exact Voltages	6. 1 Incorrect Thermistor Outputs 6.2 Slight Error in Thermistor Outputs	.000274 .000061	1 2

FARURE MODE, EFFECT \& CRITICALITY ANALYSIS WORKSHEET

PART/COMPONENT	FARURE MODE, EFFECT \& CRITfallure mOde	TICALITY ANALYSIS WORKSHEET A A DCons. Dgital Brd.			
		EFFECT 0	fature		Critie-
		ASSEMBLY	END ITEM	Q $\times 10^{3}$	
1.0 Counter Control Circuitry: NG1, NG2, H1A, H2B, HC, X2	1.1 Any Failure of Digital Circuitry 0.00	1.1 Loss of Control to Counters	1. I Counters Will Not Change State	. $005 \div 00$;
2. 0 Counter Circuitry and Output Buffers H2, HIE, H1F. X4, X5, X6	2.1 Failure of Any Stage in Counters 6631 2.2 Failure of X 6 High 1.095 2. 3 Failure of X6 Low $(.063$ 2.4 Failure of Output Buffer Gate (.211	2. 1 Higher Order Stages will Not Change States 2.2 Overvoltage Analog Input Will Allow Counters to Overcount 2.3 Counters Will Stop Counting 2. 4 One Bit Will Always Be High or Low	2. 1 Higher Order Bits Erroneous 2. 2 All Analog Inputs Over 5V will Digitally Read Less Than 5V All Others Are OK 2. 3 Counters Will Stay At Zero After Reset 2. 4 One Bit Will Be Erroneons All Others Will Be OK	$\begin{aligned} & .004800 \\ & .000720 \\ & .000480 \\ & .001600 \end{aligned}$	3 4
3.0 Supply Decoupling R1, C!	3.1 Open R1, Short C1 3.2 Open C1, Short RI $(.267)$	3.1 Loss of +5 V to Board 3. 2 Noise on - 15 V Line	3. 1 Outputs Will Appear to be All Ones 3. 2 Chance Erroneous Count	.000381 .000140	1 \qquad

