Bendby	Asrospace		ATTM 668	REV.NO.
	Systems Division	Results of CPLEE Engineering		2.4
	6-6-67	Model Tests	PAGEO	F 24 PAGES

ATM 668

RESULTS OF CPLEE ENGINEERING MODEL TESTS

Prepared by: A. D. Robinson

Approved by: Approved by:

			JNO.		REV.NO.	
Bendby	Aeroepace		ATM	668		
	Systems Division	Results of CPLEE Engineerin	g	-		
	6-6-67	Model Tests	PAGE	emperative	OF24	- PAGES

1.0 ENGINEERING MODEL SUBSYSTEM TESTS

All the engineering model subsystem tests with the CPLEE and the CPLEE experiment test set were successfully completed during February and March. The tests were performed under both ambient pressure and vacuum conditions. When the experiment was operated under vacuum conditions, all the electronic circuits and detectors were operated. Therefore, we obtained with the CPLEE Engineering Model a valid test on operating characteristics such as power profile and turn-on transients in addition to obtaining a complete check-out of all interface circuits. It is also important to note that operation of any or all three of the high voltage power supplies did not affect the performance of the interface circuits.

The CPLEE engineering model was tested in accordance with ATM 630, CPLEE Engineering Model Test Procedure, and the results of these tests are recorded in Tables I through VIII. The tests verified that CPLEE was operating properly and was ready to be integrated with the Central Station.

There were four test discrepancies that occurred during subsystem tests:

- 1. The Channeltron Power Supply "Increase ON" command was inoperative.
- The feedback ripple from the low voltage power supply on the +29 volts line exceeded the spec limit.
- 3. This same feedback ripple from the low voltage power supply was picked up on the analog housekeeping lines, timing lines, and control lines.
- 4. There were current transients greater than 200 milliamperes per millisecond caused by the switching characteristics of the DC-DC converter in the low voltage power supply.

2.0 SYSTEM INTEGRATION TESTS

The following report on the system integration tests with CPLEE was prepared by the System Engineering Department and published in ATM 643, "March Engineering Model Test Progress Report." This information is repeated in this ATM in order to consolidate all the results from the CPLEE engineering model tests at BxA in a single document.

	_		INO.	KEY.NU.
Bendix	Aeroepace		ATM 668	
	Systems Division	Results of CPLEE Engineering		
	6-6-67	Model Tests	PAGE C)F <u>24</u> PAGES

3.0 CATEGORY #2 TESTS FOR CPLEE

Subsystem tests with the CPLEE operating in vacuum were completed in February and Category #2 tests in vacuum commenced at the beginning of March. At this time the EM System was substantially in the Array A experiments configuration but with the CPLEE connected in place of the LSM, utilizing the LSM commands and data slots, although the CPLEE analog signal outputs were correctly connected to the Central Station multiplexer. This arrangement permitted Category #2 tests of CPLEE to be performed and also allowed the Array A experiments STS software to be checked and debugged.

The Category #2 tests of the CPLEE which were made at the end of January in the arrangement described except that the experiment was operating in air had proceeeded very smoothly, but when the tests in vacuum were started the experiment data stream was meaningless. In consequence a careful investigation was made to determine whether the change in the behavior of the experiment, which had passed its subsystem tests satisfactorily, was due to some spurious condition of the test set up with the Central Station. All the interface signals were proved to be in accordance with the ICS, and the only apparent change from the earlier test in air was the use of a non-standard cable between the Central Station and the CPLEE ETS vacuum chamber. Thiscable is required as the standard flat cable cannot be used with the vacuum chamber connectors. Measurements made at the chamber connector showed that high frequency noise induced from the experiment power convertor was present between the shields of the digital timing and data lines and the signal return, of about 200 mV peak-to-peak amplitude.

After further investigation it was established that valid experiment data could be obtained either by connecting a .025 μ F capacitor between the data line shield and the signal return at the vacuum chamber end of the cable, and/or by making more direct connections between the cable shields and the Central Station ground. Category #2 tests were performed with these revised timing and data line shielding arrangements.

Table IX is a table of functional discrepancies noted during the Category #2 and #3 tests. A brief summary of the Category #2 test results is given below:

			NO.	REV.NO.
GUODY	Aeroepace		ATM 668	
0	Systems Division	Results of CPLEE Engineering	S A	2.4
	6-6-67	Model Tests	PAGE 4	DF <u>24</u> PAGES

Power

The experiment power profile and the turn-on transient were within the limits quoted in the interface specification. Observed values of input current are:

CPLEE Status		Current
1.	Normal	98 mA
2.	Ripple during analyzer voltage sequence	10 mA p-p
3.	Turn on lst peak 2nd peak	240 mA 280 mA
4.	Heater on increment	90 mA
5.	Initial heater on transient	80 mA

The turn-on-current transient, which has a characteristic double peak arising from the operation of the current limiter, is shown in Figure I.

The recorded turn-off transient peak voltages were +65V and -25V. These values are considered to be high but acceptable to the data subsystem. The turn-off voltage transient is shown in Figure II.

The experiment power convertor noise was substantial. Variations in the noise voltage were recorded at the signal breakout box close to the Central Station at different steps in the analyzer sequence and on alternate convertor half cycles. The maximum noise level observed was about 1.0 V p-p. In Figure III typical waveforms for the observed voltage noise and for the transient on the input current to the experiment are illustrated.

Commands

Command response was normal, the experiment responded correctly to all commands and no spurious interactions were detected.

Examination of the waveform on the experiment to Central Station interface lines showed that substantial loading of the Central Station by the experiment occurred, raising the logical "low" level during the command to a value which depended on the command line being examined, and which was between +150 mV and +300 mV. Also about 250 mV peak-to-peak noise induced from the CPLEE power convertor was present, so that on certain lines the level could rise marginally above the ICS value of +400 mV maximum.

endb	Acrospece		NO.	REV.NO.
	Systems Division	Results of CPLEE Engineering	ATM 668	
				DF <u>24</u> PAGES

Both records:Top trace:29 V to experiment 10 V/cmBottom trace:29 V line input current to experiment 100 mA/cmBoth records:10 mS/cm

(a) PCU #2

(b) PCU #1

7.13 e. 3

Figure I

B

CPLEE Turn-On Transients

Rendly 4	Aeroepace		NO. ATM 668	REV.NO.
	Systems Division	Results of CPLEE Engineering	AIM 000	
	6-6-67	Model Tests	PAGE	OF PAGES

All records: Top trace: 29 V line to experiment 20 V/cm Bottom trace: 29 V supply from PCU 200 mV/cm

Figure II CPLEE Turn-Off Voltage Transients

(a) 5 mS/cm

b) 200 µs/cm

cc) 20 بر cm

			NO.	REV.NO.
senady	Asrospace		ATM 668	
	Systems Division	Results of CPLEE Engineering		
			PAGE 0	F PAGES

All records: Top trace: 29 V to experiment 0.5 V/cm Bottom trace: 29 V line input current 100 mA/cm All records: 2 µs/cm multiple sweep exposures

Figure III CPLEE 29V Line, Typical Power Convertor Noise Note that variations occur:

1. Between each convertor half cycle.

2. At different steps in the analyzer sequence.

	•		NO.	REV.NO.
Bendly	Asrospace		ATM 668	
	Systems Division	Results of CPLEE Engineering		
	6 - 6 - 6 7	Model Tests	PAGE 0	F PAGES

Oscillograph records were obtained and are available at BxA, but the noise frequency is sufficiently high to be at the limit of the speed of the camera and film which was available and the records are not suitable for reproduction.

Timing and Data Signal Waveforms

All the timing and data signal waveforms were normal and were in accordance with the ICS specification values. Typical data words are shown with the corresponding demand pulses in Figure IV.

Detail oscillograph records were taken of all the waveforms, and these are available at BxA. It was observed that the loading of the experiment raises the low level of the even frame mark to $\pm 0.15V$ and the low level of the shift and data demand lines to $\pm 0.3V$. Furthermore, about 150mV peak-topeak of power convertor induced noise was superimposed on these levels. However, as explained above for the command lines the records are not suitable for reproduction.

Downlink Performance

With the revised shield grounding and filtering as described above, the downlink performance appeared to be good, but a detailed verification of the downlink performance was deferred until the Category #3 tests.

4.0 CATEGORY #3 TESTS - - ARRAY A3

Category #3 testing was limited to three days operation of the Array A3 configuration of experiments, the PSE, SWE and CPLEE were operated together, the LSM was not available to complete the array. In this configuration CPLEE replaces the SIDE, and the SIDE data slots are used, i.e., words 15, 31, 47, 56 and 63 in the ALSEP format, together with word 24 which was previously a SP PSE word.

Most of the testing was directed towards checking the CPLEE, as the other experiments had previously been checked during the Array A Category #3 tests as reported in ATM 626. A new problem was encountered, the count data on both the science and calibration steps appeared to be correct, examination of the analog lines indicated that the analyzer voltage was sequencing correctly but a substantial number of errors on the experiment sequence status bits were detected. These errors only occurred on the positive analyzer voltage steps of the sequence, no errors were recorded on the negative voltage steps.

			JNO.	KEV.NU.
penady	Aerospace		ATM 668	
	systems Division	Results of CPLEE Engineering		2.4
		Model Tests	PAGE	OF PAGES

All records: Top trace: 10 MSB's of CPLEE word #2, 2 V/cm Bottom trace: Data demand 2 V/cm All at: 1 mS/cm

(a) Calibration count

(b) All "zeros"

•

(c) Leading "one" followed
by all "zeros"

1. AM2

Figure IV CPLEE Data and Data Demand Signals

		1	JNU.	KEY.NU.
Bendix	Aerospace		ATM 668	
	Systems Division	Results of CPLEE Engineering		
	6-6-67	Model Tests	PAGE	OF PAGES

Large fluctuations of the error rate were observed during the three day test period. It was established that the interface signals to the CPLEE were in accordance with the ICS values, and also that the error rate at a given time was unaffected by the operation of either or both the PSE and the SWE. Consequently, it was decided to perform the planned Category #3 tests, and to treat the observed errors as a simple experiment malfunction not associated with the rest of the system. During the course of the tests, no correlation between error rate and experiment operating time or temperature could be discerned.

The system command response was checked with all the experiments operating in a similar test to that performed on the Array A experiment configuration. Command sequences for both central station control and for the individual experiments were employed. During this tests, the experiments which were not being directly addressed were set in their reset mode, and the operating mode status of the experiments was verified by the ETS's.

No major interactions which would permanently affect the experiment operating mode were detected, although on two occasions the CPLEE apparently jumped forward in its analizer voltage sequence. This behavior could not be made to recur on repeating the commands. However, as the CPLEE status bits reflect the current state of the experiment, the effect of any jump is restricted to the possible loss of one or two frames of CPLEE data which would appear to be of minor significance.

5.0 CATEGORY #4 TESTS

The CPLEE STS program was run for the first time 3/15/67 and proved to be completely correct, the data decommutation, experiment status tracking, data output formating, data print out and command tracking operations all worked without error.

Bendix	Aerospace Sustome Division		סא . מדו	M 668	KEN	/.NU.	
	SASTELLIS PLATRICL	Results of CPLEE Engineering					
	6-6-67	Model Tests	PAGE	11	0F	24	PAGES

Table I - ETS Isolation of Lines Check(1), ETS

Selector SW Pos.	ETS AL		a di serie di anno di anno di serie di anno di serie di s	to be a complete to a complete	
SW Pos.		0116	ETS with CPLEE		
	Specified	Measured	Specified	Measured	
A 2	30K A + (*)	\mathcal{A}	1.5K (*)	1.6 K	
A 4	1800 R	1580 SL	1.3K	1.3 K	
A 6	1450 N	1490 52	1.3K	1.2 K	
A 9	1800 N	1360 52	1.3K	1.3 K	
A 19	80	00	22K	22 K	
A 20	00	Ø	7.3K	7.3 K	
A 21	60	00	6.9K	6.9K	
A 22	-	0	320 9	320-02	
	949 1540	~	5.5K	5.5 K	
		2		5.6 K	
A 24 C+11	ł-	3100	5.5K	1.3 K	
	1700 በ 1700 በ	3/00	1.3K	1.3 K	
C-12		3100	\uparrow	1.3 K	
C-13	1700 N	3100		1.25K	
C-14	1700 N	3100			
C-15	1700 Ω	3100		1.25K	
C-16	1700 R			1.25K 1.3 K	
C-17	1700 A	3100	•		
C-18	1700 Ω	3100	1.3K	1.3 K	
A 26	74 Ω	75_R	70 Ω	70-Q 70-Q	
A 27 4	\$74R		70Ω	· man and an and a feature share a second	
A 30	<i>e</i> o		3801	380 1	
A 31	2800 N	<u>32 k.</u>	1.2K	1.15 K	
A 32	00		1.4K	<u>1.4 K</u>	
A 33	00	0	1.0K	0.9 K	
A 34	00		650 N	650 A	
A 35	∞		310 Ω	310 Ω	
A 36	••• · · ·	0	24K	24 K	
A 37	°° (*)		300K	300 K	

(1) Refer to Fig. 1 for ETS Selector Switch Designation.

(*) All resistances are specified to + 25%.

(4) Throw switch on Mais Power Panel & "Survival Htr Power Line" position for this measurement only.

Table II - CPLEE Cable Isolation Measurements

	Santay Sin editors (The State of the Classific Science State of the			RESISTAN					Ŋ
		Deutsch	Line to Ca	se Grad (1)	Line to Sig	nal Grnd(2)			
No.*	Line	P65B	Specified	Measured	Specified	Measured	Remarks		hanna
1	Shield				~	∞		6	
2	Digital Data	K			1.6K (3)	1.6 K	· ·	6 -	
3.	Shield				00	00	1	67	
1	Shift Pulse (Data Clock)	Ū			480K	48.0 K	1		
5	Shield	5			8	Ś			NISKON
<u>6</u>	Even Frame Mark	T			16K	16K		.	
P	Shield	t			00	\sim		Kesu. Mode	
3	Case Ground Return	s	20		00	∞	1	odel	
7	Demand Pulse	h			1.3K	1.3K]	l T T	 1
• •	Signal Return	E .			OR	0		les les	
<u> </u>	Therm.Cost. Bypass On			·	10 Meg	10 Mer		sts C	
2	Therm.Cont. Bypass Off	g			8.5 Meg	8.5.MC		ד ד ד	d
3	Dust Cover Removal	a a			120K	120 K		ן דן	
4	Auto. Volt Level Seq. On	P			70K	70 K	.	t	ŋ
	Step Voltage Level	1			500K	500 K].	Engineerin	ار د
5	Asto Volt Level Seq. Off	le	1		500K	500K	<u>]</u> .	L O	(
7 -	Chann. P.S. Volt INCR On				~	~		ne	5
8	Chann. P.S. Volt INCR Of				 ∞	~		er.	ŝ
-				· · · · ·				3uī	3
These	s flat cable line numbers are	the same	s as connect	or J65A-P65	(flight conn	ector) numb	erø.	PAG	1930er
(1) Co	nnect one lead of the ohmme	ster to lin	e 8 (Deutsch	Pin S).		-		ic E	
(Z) Co	annect one lead of the chmme	eter to lin	e 10 (Deutso	h Pin r).				2 5 2 5 5 5 2 5 6 5	
•••	l resistances are specified t	io + 25%.	-						
	₩	-						. 12	
	:						•	<u>ې</u>	

NO. ATM 668

Bendix

REV.NO.

24

- PAGES

Table II (continued)

\$200000-00-00-00-00-00-00-00-00-00-00-00-	<mark>n⁶</mark>		RESISTANCE				T	- (00
		Deutsch	Line to Ca	se Grad	Line to Si	gaal Grad			<u> </u>
No.	Line	P65B	Specified	Measured	Specified	Measured	Remarks		28
<u> </u>						2016	•		Aerospace Svatama Division
19	Switchable P.S. Volt	L			30K	30.K	-		ă Q
20 21	Channeltron PS #1 volt	K	i t		17.5K	7.5 K	+	-6	<u> </u>
21	Channeltron PS #2 volt	J			17.0K	7.0K		6-6-67	S
19 20 21 22 22 23 23 24	DC-DC Converter volt	d c H			R OOE	300 12	4	7	
g 23	Temperature #1	c			5.7K	5.7K			ð
õ 24	Temperature #2	1			5.7K	<u>5.7K</u>			
63	Spare	р Б G			00	8		Results Model 7	1
26	Operating & Heater Pwr	P				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-	su. de	
27						~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	+	lts	
28		<u>n</u> 			4	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	4		
29		<u>∔≞</u>			· • • • • • • • • • • • • • • • • • • •	+	1	s of CPLEE Tests)
30	Power Return Line	F			41	<u>∞</u>	-	τ	j
31		m k Z			4				1
32		k -				~~~		۲. E	j
33					44	~	4	т <u>н</u>	J
34	Survival Heater Power	E				8	-	L B L	
35		Y			4	∞		ne	
36	·	X				2		er	
37		D			×		4	Engineering	•
		<u> </u>		1		1		Concession of the local division of the loca	
	Not Connecte	d -(A						PAGE	ATM 668
		Јв							\leq
		ζc						13	66
	<i>,</i>	(w :			•			ω	œ
	· ·							0F	1
								24	
					<i>t</i>			PAGES	
				•				m	1
		5 -							l

Bendix

NO. ATM 668

REV.NO.

Table III - Experiment Functional Tests

ه ۲۰۹۶ ۲۰۹۶

Paragraph		Test			S.
<u>Annper</u> Annter	Test Parameter	Lámit	Measured Value	Remarks	6
.6.1	Experiment Current (Heater Off)	80 ± 5 ma	80 MA +40 mA	ourrest noise	Systems Division 6-6-67
.6.2	Noise & Ripple	400 mv p-p	- 30 mA	Cubbend more	ģ
. 6 . 3	Digital Data Sequence	rig.2	Correct Incorrect		Result Model
.6.3	Test Oscillator Frequency	Pig. 2	381 KC		sults del J
.6.4.1	Experiment Current, Beater Off	80 + 5 ma	SomA		s of C Tests
.6.4.1	Command Indicator Lights Thermal Control Bypass On	CIN			PLEE
	Automatic Voltage Sequence On Chaneltron P.S. Voltage Increase Off	ON	<u> </u>		Engin
	All other indicator lights	OFF			heering
.6.4.1	Experiment Current (Heater Oa)	142 + 5 ma	160 mA		
.6.4.2	Experiment Current (Heater Off)	80 ± 5 ma	80mA		PAGE .
.6.4.2	Command Indicator Lights Thermal Control Bypass Off	ON	<u> </u>		14
	Automatic Voltage Sequence On Chameltren P.S. Veltage Increase Of	ON	6- 6-		OF _
	All other indicators Off	off	and the second sec		24

۰.

Bondix

Table III - Experiment Functional Tests

Peragneja Number	Test Parameter	Toot Lisentt	Measured Value	Remerice	6-6-
5.6.4.3	Dust Cover Removal Signal 3. 10V				-6 -6
	Amplitude	18+2m			7 7
					3
5.6.4.3	Command Indicator Lights Thormal Control Bypase Off		L .		Re; Mo
	Automatic Voltage Seguence Da	000	L.	**************************************	sult del
	Champitran P.S. Voltage Increase Off	CON .	* *		Te
	Dust Cover Removal	031			f C] sts
	All other tedicated	077	And the second se		PLI
5.6.4.4	Digital Data Sequence, AUTO SEQ. OFT	Me. 2	ID Bit Check Correct Incorrect		EE .
				ма ма	Enginee
	Command Indicator Lights Thormal Control Bypass Off	ION .	V		ine
	Automatic Voltage Sequence Off	NON			erir
	Channeltren P.S. Veitage Incases Off				<u></u>
	All other indicators	OFF			PAGE .
			ID Bit Check. 3, 4 3, 4 3, 4 3, 4		55 3
5.6.4.5	Digital Data Sequence, STEP VOLT. LEVE	4 228.6	एगा एगा बग बग		15
			3,4 3,4 3,4 3,4		о Р
			11100100		

Bendix

PAGES

· · · ·

* , t '2

Take III - Experiment Functional Tests

Ambient Pressure (continued)

Pamprapa	Test Paramer	Test Limit	Measured Value	Remia rks	6-6
5.6.4.5	Command Indicator Lights Thermal Control Bypass Off	ON	Light Check		D -67
	Automatic Voltage Sequence Off Channeltren P.S. Voltage Increase Off	ON '			
	All other indicators	OFF	Correct Incorrect		Resu. Mode
5.6.4.6	Digital Data Seguence, ASTO SEQ. CM	Mg.2			lts of 1 Tes
	Command Indicator Lights Thermal Control Bygacs On	ON	2		CPLI ts
	Automatic Voltage Sequence On Channeltres P.S. Voltage Increase OS	ON			EE En
	All other indicators	OFT			ngine
					erin

NO. ATM 668 REV.NO.

PAGE

16

ę

24

PAGES

Bendix

				NO .		REV.NO.	
Bendix	Aerospace Systems Division			ATM	[668		halineng ali mendendak menyaga milinen
	SARCHUS DIAMON	Results of CPLEE	Engineering	4			
	6-6-67	Model Tests		PAGE	17	DF <u>24</u>	PAGES
	er an an an an tha tha tha the state			en ener		Stand Lands	

Table N - Asslog Housekeeping Date

Ambient Pressure Condition

Voltage Selector Switch	Title	Ausleg T/M	Nignals Tolersage	Measured
HK-1	Switchable P.S. +3508 350 35	OV OV OV	+ 0. RY - 0. 2Y - 0. 2V	0V 0V
	+0 -3500 -350 -35 -0		+ 0.1Y + 0.2Y + 0.2Y + 0.2Y + 0.2Y + 0.1Y	
нж-2 нк-3	Chanceltron P.S.#2 Chanceltron P.S.#2	0V 9V	+ 9.2V + 9.2 V	0 V 0 V
1874 - 4 1874 - 5	DC-DC Converter Temp. of Logic	1. 78V (+25°C	+ 0.2V Non 1	3-3 V 1: 95 V
HK-6	Module Sixpand	1. 1 1144-249C)	Noio 1	1.90 y

NOTE: Maximum sale operating température in vacuum is 45° See attached curves for conversion dats.

Bendix	Aerospace		NO. ATN	л 668	KEY.NU.	
	Systems Division	Results of CPLEE Engineering		18	24	
	6-6-67	Model Tests	PAGE	0	F P	AGES

Table Y. . . OSE Connector Signals

Ambient Freesure Condition

CPL	Connector		ition of 5 Selector	SIGNA		
(9 Pi	ns)	Sw1	tch "A"	Spacified	Measered	Remarks
	Test Osc. Outj		S0 S1	Fries, SISKC to DESEC	<u>381 ku</u>	Should be yero
						unless expersal VFO signal is applied.
TP4		89V	52 53	+34VDC (+ 1.0 +29VDC (+ 0.5	29.5 V	
T.ba	Supply	6V	34	+ 8VDC (+ 1.0	A state of the second secon	
TP6	Signal to Squil		35 13 m - 1 m - 1 m - 1	3. 10 (+ 0. 2) VD	••••••••••••••••••••••••••••••••••••••	See Note 1
••						
TP7	Channeltron P Low Voltage	.8.	K	28.8 (+ 9.5) vo	110 DC 27.5 V	
TP8	Channeltren P Return	.8.) 7	M	1	and the second
			s. S			
• • • • • • • • • • • • • • • • • • •						

Note 1

This point measures the voltage applied to the collector of a transistor. When the dust cover removal command is transmitted, the transistor is turned "ON"; and this voltage drops to about +9.5 volts for 20 millisecond.

	_		JNO.		KEY.NU.	
Bendix	Asrospace		ATN	A 668		
	Systems Division	Results of CPLEE Engineering	2			
	6-6-67	Model Tests	PAGE		OF <u>24</u>	- PAGES

Table VI - Analog Housekeeping Data

Vacuum Condition

Voltage Selector		Analog T/M		
Switch	Title	Nominal	Tolerance	Measured
HK-1	Switchable P.S.			
[+3500	3.30V	+ 0.2V	3.34 1
ì.	350	4.30V	+ 0.2V	4.30
*	35	4.15V	+ 0.2V	4.15
ì	+0	0.25V	+ 0.1V	(Sant 2
2	-3500	4.05	+ 0.2V	4.05
4	-350	4.30V	+ 0.2V	4.30
į	- 35	4.15V	+ 0.2V	He15
•	-0	0.25V	$\overline{+}$ 0.1V	0.25
HK-2	Channeltron P.S.#1	3.75V	<u>+</u> 0.2V	3.75
I K-3	Channeltron P.S.#2	3.38V (no load)	<u>+</u> 0.2V	3.31
IK-4	DC-DC Converter	3.10V	<u>+</u> 0.2V	3.1
HK-5	Temp. of Logic Module	1.78V'(=25 ⁰ C)	Note 1	1.78
HK-6	Temp ef Low Voltage P.S.	1.70V(=24°C)	Note 1	1.70

NOTE: Maximum safe operating temperature in vacuum is 45°C. See attached curves for conversion data.

endi	X Aerospace			NO. Atm 668	KEV.NU.
	Systems Div 6 - 6 - 67	rision Results of CP Model Tests	LEE Engineering	PAGE 20	OF PAGE
÷ .					
		Table VII - OSE	Connector Signal	Ma Ma	erch 15, 1967
		Vacuum (sendition		5x10 torr
	CPLEE	Position of			1
	GSE Connector (9 Pins)	ETS Selector Switch 121	SIGNA Specified	L. Measured	Remarks
	TPI Test Osc. Outpu		Freq.: 315RC	381 KC	Kellarab
			to 385KC		
	TP2 VFO Input	31	See remarks		Should be ser
			•	•	unless external VFO signal is
			ХХ 1		applied.
		6V 32 9V 33	+34VDC (4 1.0) +29VDC (+ 0.5)	29.5 V	1+250 my P 1-200 my P
8		5V 34	+ 8VDC (+ 1.0)	8.4 V	
	TP6 Dust Cover Bei	noval 35	3.10 (+ 0.2) VDC		See Note 1
	Signal to Squibe				
$\gamma \cdot \cdot$					
					SHI.OV P
,	TP7 Channeltron P. Low Voltage	5. 36	28.8 (+ 0.5) vo	27.5V	2-1.0VP
•	4 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	n n n	O VDC		
	TPS Channeltron P.1 Return	3. 37	U VIC	27.51	When TP-7 is jumpered to
					TP-& on Com-
				4	mand Indicator Panel, TP-8
					will read 28.8 (+ 0,5) volts.
					L. a. al Aarta.

Note 1 This point measures the voltage applied to the collector of a transistor. When the dust cover remeval command is transmitted, the transistor is turned "ON" and this voltage drops to about +0.2 volts for 20 milliseconds.

March 1st 1967 **Table VIII - Experiment Functional Tests** Vacuum: 2.5 × 10 torr Vacuum Operation **Soc** Paragraph Test δ Number Tést Paramoter Limit Measured Value Remarks 6 -67 5.7.2 a. Experiment Current (Heater Off), HV supplies OFF 80 + 5ma a. 80 ma. 92 ma b. Experiment Current (Heater Off, HV P.S. On) 98 + 5ma b c. Noise & Ripple +40 ma, -30 ma d. Noise & Ripple +40 ma - 30 ma Model Results Fig. 2 (Correct 5.7.5 Digital Data Sequence IacorrectU 441424 c/1.147sec (OK within 10% limits Test Oscillator Frequency Fig. 2 5.7.5 Tests of 98 ma 96 + 5 ma Experiment Current, Heater Off 5.7.6.1 Ω ъ Ĥ 5.7.6.1 **Command Indicator Lights** 鬥 Thermal Control Bypass On Ħ ON Ħ Automatic Voltage Sequence On ON nginee Channeltron P.S. Voltage Increase Off ON All other indicator lights OFF / άQ 160 ma 5.7.6.1 Experiment Current (Heater On) 160 + 5 maPAGE NO. 98 ma 98 + 5 ma ΤM 5.7.6.2 Experiment Current (Heater Off) 899 21 Command Indicator Lights 5.7.6.2 Thermal Costrol Bypass Off ON ON Q Automatic Voltage Sequence On KEV.NU Channeltres P.S. Voltage Increase Off ON \sim 4 OFF All other indicators Off T AGE

Table VIII (continued)

	1		مى قىمە يىشىرىرى مەربىيە		Syste	
Paragraph Number	Test Parameter	Test Làmit	Measured Value	Remarks	9-9 0 3 W	
5.7.6.3	Dust Cover Removal Signal Amplitude Duration	<u>і8 + 2 п</u>	$-3.10 \pm 0.2V$ $-0 \Rightarrow 0.2 V$		-67)
5.7.6.3	Command Indicator Lights Thermal Centrol Bypass Off	on /			Results Model J	
	Automatic Veltage Sequence On Channeltren P.S. Voltage Increase Off Dust Cover Removal	ON / ON / ON /	•		ts of CP Tests	
	All other indicators	off /			LEE	
5.7.6.4	Digital Data Sequence, AUTO SEQ. OFF	Fig. 2	ID Bit Check Correct Incorre	DC\$	2	
	Command Indicator Lights Thermal Centrel Bypass Off Automatic Voltage Sequence Off Channeltron P.S. Voltage Increase Off	ON ✓ ON ✓ ON ✓	5 5		Engineering PA	NO
	All other indicators	off			PAGE -	NO. ATM 668
5.7.6.5	Digital Data Sequence, STEP VOLT. LEVE	L Fig.2	ID Bit Check 3.4 3.4 3.4 111 10 01	3.4 [0][0]		847
. .		•	3,4 3,4 3,4	3.4		REV.N
-					24 PAGES	NO.

٩.

Bendix

Table VIII continued

'e s egre ph Sabor	Test Parameter	Teet Limit	Measured Value	Remerke	
			Light Check		6
5.7.6.5	Command Indicator Lights	~~ 1	•		D 5-6-67
•	Thermal Control Bypads Off	ON	<i>J</i>	· · · · · · · · · · · · · · · · · · ·	-67
. 1	Automatic Voltage Sequence Off	ON ·	-		6
· · · ·	Channeitren P.S. Voltage Increase Off	U 3 N	V.		
· · · · · · · · · · · · · · · · · · ·	All other indicaters	off			Results Model 7
and the R	LITY ALEXA I THANK AND ALL S	VEE	Correct Incorrect	• •	su] de
5.7.6.6	Digital Data Sequence, AUTO SEQ. ON	F1g.2		• •	
****	en elle anno e mander haa genaring af vank is a mentifik and e		5		s of C Tests
5.7.6.6	Command Indicator Lights	-	· · · · · · · · · · · · · · · · · · ·		sts C
	Thermal Control Bypass On	ON	V		1q
	Automatic Voltage Sequence On	ON	V	-	CPLEE 's
, , .	Channeltron P.S. Veltage Increase Off	NO		•	2
	~				L'ng
	All other indicators	off			Engineering
5.7.7	Tura-On Transient				ee
2.6.7		A		•	r 1r
	Auto Volt. Sequence Channeltren P.S. Increase	ON			
	Thermal Control Bypass	off off	V		PAGE 23
•			V ,		PAGE
5.7.8	Noise & Ripple on Power Lines	≤100 m V	PP +40mV, -3	OmV, all H.V. -ON	
• • • • •			Supplie	- 0 A/	23
			ppries	UIV	\mathbb{N}^{\sim}
					OF

Bondix

- PAGES

\$.

Results of CPLEE Engineering Model Tests

6-6-67

RO. A7	гм 668	~	3
			· · · ·
PAGE	24	OF	PAGES

,

Table IX

CPLEE DISCREPANCIES NOTED IN EM TESTS

	Discrepancy	ICS Paragraph	ICS Value	Acceptable Value to Bendix	Remarks
1.	Intermittent Digital Data Operation with EM Central Station	NA	NA	NA	Investigation indicates that the experiment logic may have a low noise margin. Cate- gory #2 tests completed with revised ground- ing and filtering of timing lines to reduce noise input to the experiment. Improved shielding incorporated in the prototype.
2.	Power Line Noise	3.2.3.4	100 mV p-p	Dependent on Cat. #3 tests	l V p-p noise in the 29 V line. Additional shielding incorporated in prototype model.
3.	Power Converter Noise on Analog Lines	3.2.2.2	10 mV p-p		Affects data accuracy, refer to 2. Accept- able value depends on accuracy required.
4.	Power Converter Noise on Timing and Command Lines	Not specified.		100 mV p-p	About 150 mV p-p on timing, about 250 mV p-p on command lines. Can carry the logic "low" level marginally above the +0.4 V limit. See Item 1 regarding sensitivity of experiment to this noise.
5.	Errors on Status Bits Transmitted by Experi- ment	3.2.2.3.4		Errors are not accept- able	Observed during Category #3 tests. All other data indicates that experiment is functioning correctly. Errors could not be correlated with operation of the other experiments.