

ATM 668

RESULTS OF CPLEE ENGINEERING MODEL TESTS

Prepared by: $\frac{70,2}{A \cdot D . R o b i n s o n}$

Approved by: $\frac{\text { E. Dye }}{7 . \mathrm{H}, \mathrm{L}}$

1.0 ENGINEERING MODEL SUBSYSTEM TESTS

All the engineering model subsystem tests with the CPLEE and the CPLEE experiment test set were successfully completed during February and March. The tests were performed under both ambient pressure and vacuum conditions. When the experiment was operated under vacuum conditions, all the electronic circuits and detectors were operated. Therefore, we obtained with the CPLEE Engineering Model a valid test on operating characteristics such as power profile and turn on transients in addition to obtaining a complete check-out of all interface circuits. It is also important to note that operation of any or all three of the high voltage power supplies did not affect the performance of the interface circuits.

The CPLEE engineering model was tested in accordance with ATM 630, CPLEE Engineering Model Test Procedure, and the results of these tests are recorded in Tables I through VIII. The tests verified that CPLEE was operating properly and was ready to be integrated with the Central Station.

There were four test discrepancies that occurred during subsystem tests:

1. The Channeltron Power Supply "Increase ON" command was inoperative.
2. The feedback ripple from the low voltage power supply on the $\$ 29$ volts line exceeded the spec limit.
3. This same feedback ripple from the low voltage power supply was picked up on the analog housekeeping lines, timing lines, and control lines.
4. There were current transients greater than 200 milliamperes per millisecond caused by the switching characteristics of the DC-DC converter in the low voltage power supply.

2.0 SYSTEM INTEGRATION TESTS

The following report on the system integration tests with CPLEE was prepared by the System Engineering Department and published in ATM 643, "March Engineering Model Test Progress Report." This information is repeated in this ATM in order to consolidate all the results from the CPLEE engineering model tests at BxA in a single document.

Pendly	Acroppence Sycueme Division	Results of CPLEE Engineering	INO. ATM 668	jev.nu.	
			PAGE 3	OF $\quad 24$	PAGES

3.0 CATEGORY \#2 TESTS FOR CPLEE

Subsystem tests with the CPLEE operating in vacuum were completed in February and Category \#2 tests in vacuum commenced at the beginning of March. At this time the EM System was substantially in the Array A experiments configuration but with the CPLEE connected in place of the LSM, utilizing the LSM commands and data slots, although the CPLEE analog signal outputs were correctly connected to the Central Station multiplexer. This arrangement permitted Category\#2 tests of CPLEE to be performed and also allowed the Array A experiments STS software to be checked and debugged.

The Category \#2 tests of the CPLEE which were made at the end of January in the arrangement described except that the experiment was operating in air had proceeeded very smoothly, but when the tests in vacuum were started the experiment data stream was meaningless. In consequence a careful investigation was made to determine whether the change in the behavior of the experiment, which had passed its subsystem tests satisfactorily, was due to some spurious condition of the test set up with the Central Station. All the interface signals were proved to be in accordance with the ICS, and the only apparent change from the earlier test in air was the use of a non-standard cable between the Central Station and the CPLEE ETS vacuum chamber. This cable is required as the standard flat cable cannot be used with the vacuum chamber connectors. Measurements made at the chamber connector showed that high frequency noise induced from the experiment power convertor was present between the shields of the digital timing and data lines and the signal return, of about 200 mV peak-to-peak amplitude.

After further investigation it was established that valid experiment data could be obtained either by connecting a $.025 \mu \mathrm{~F}$ capacitor between the data line shield and the signal return at the vacuum chamber end of the cable, and/or by making more direct connections between the cable shields and the Central Station ground. Category \#2 tests were performed with these revised timing and data line shielding arrangements.

Table IX is a table of functional discrepancies noted during the Category \#2 and \#3 tests. A brief summary of the Category \#2 test results is given below:

Power

The experiment power profile and the turn-on transient were within the limits quoted in the interface specification. Observed values of input current are:

CPLEE Status

1. Normal
2. Ripple during analyzer voltage sequence

Current

98 mA
$10 \mathrm{~mA} \mathrm{p}-\mathrm{p}$
3. Turn on
lst peak 240 mA
2nd peak 280 mA
4. Heater on increment 90 mA
5. Initial heater on transient 80 mA

The turn-on-current transient, which has a characteristic double peak arising from the operation of the current limiter, is shown in Figure I.

The recorded turn-off transient peak voltages were +65 V and -25 V . These values are considered to be high but acceptable to the data subsystem. The turn-off voltage transient is shown in Figure II.

The experiment power convertor noise was substantial. Variations in the noise voltage were recorded at the signal breakout box close to the Central Station at different steps in the analyzer sequence and on alternate convertor half cycles. The maximum noise level observed was about 1.0 V p-p. In Figure III typical waveforms for the observed voltage noise and for the transient on the input current to the experiment are illustrated.

Commands

Command response was normal, the experiment responded correctly to all commands and no spurious interactions were detected.

Examination of the waveform on the experiment to Central Station interface lines showed that substantial loading of the Central Station by the experiment occurred, raising the logical 'low' level during the command to a value which depended on the command line being examined, and which was between +150 mV and +300 mV . Also about 250 mV peak-to-peak noise induced from the CPLEE power convertor was present, so that on certain lines the level could rise marginally above the ICS value of +400 mV maximum.

Both records:
Top trace: $\quad 29 \mathrm{~V}$ to experiment $10 \mathrm{~V} / \mathrm{cm}$
Bottom trace: 29 V line input current to experiment $100 \mathrm{~mA} / \mathrm{cm}$
Both records: $10 \mathrm{mS} / \mathrm{cm}$

(a) PCU \#2
(b) PCU \#1

Figure I
CPLEE Turn-On Transients
|REY.NO.

All records:
Top trace: 29 V line to experiment $20 \mathrm{~V} / \mathrm{cm}$
Bottom trace: 29 V supply from PCU $200 \mathrm{mV} / \mathrm{cm}$

(a) $5 \mathrm{mS} / \mathrm{cm}$
(b) $200 \mu \mathrm{~s} / \mathrm{cm}$
(c) $20 \mu \mathrm{~s} / \mathrm{cm}$

[^0]All records:
Top trace: $\quad 29 \mathrm{~V}$ to experiment $0.5 \mathrm{~V} / \mathrm{cm}$
Bottom trace: 29 V line input current $100 \mathrm{~mA} / \mathrm{cm}$
All records: $2 \mu \mathrm{~s} / \mathrm{cm}$ multiple sweep exposures

Note that variations occur:

1. Between each convertor half cycle.
2. At different steps in the analyzer sequence.

Oscillograph records weré obtained and are available at BxA, but the noise frequency is sufficiently high to be at the limit of the speed of the camera and film which was available and the records are not suitable for reproduction.

Timing and Data Signal Waveforms
All the timing and data signal waveforms were normal and were in accordance with the ICS specification values. Typical data words are shown with the corresponding demand pulses in Figure IV.

Detail oscillograph records were taken of all the waveforms, and these are available at BxA. It was observed that the loading of the experiment raises the low level of the even frame mark to $\$ 0.15 \mathrm{~V}$ and the low level of the shift and data demand lines to $\$ 0.3 \mathrm{~V}$. Furthermore, about 150 mV peak-topeak of power convertor induced noise was superimposed on these levels. However, as explained above for the command lines the records are not suitable for reproduction.

Downlink Performance
With the revised shield grounding and filtering as described above, the downlink performance appeared to be good, but a detailed verification of the downlink performance was deferred until the Category \#3 tests.

4.0 CATEGORY \#3 TESTS - - ARRAY A3

Category \#3 testing was limited to three days operation of the Array A3 configuration of experiments, the PSE, SWE and CPLEE were operated together, the LSM was not available to complete the array. In this configuration CPLEE replaces the SIDE, and the SIDE data slots are used, i. e., words $15,31,47,56$ and 63 in the ALSEP format, together with word 24 which was previously a SP PSE word.

Most of the testing was directed towards checking the CPLEE, as the other experiments had previously been checked during the Array A Category \#3 tests as reported in ATM 626. A new problem was encountered, the count data on both the science and calibration steps appeared to be correct, examination of the analog lines indicated that the analyzer voltage was sequencing correctly but a substantial number of errors on the experiment sequence status bits were detected. These errors only occurred on the positive analyzer voltage steps of the sequence, no errors were recorded on the negative voltage steps.

All records:
Top trace: $\quad 10 \mathrm{MSB}$'s of CPLEE word \#2
$2 \mathrm{~V} / \mathrm{cm}$
Bottom trace: Data demand
$2 \mathrm{~V} / \mathrm{cm}$
All at: $1 \mathrm{mS} / \mathrm{cm}$

Figure IV CPLEE Data and Data Demand Signals

Large fluctuations of the error rate were observed during the three day test period. It was established that the interface signals to the CPLEE were in accordance with the ICS values, and also that the error rate at a given time was unaffected by the operation of either or both the PSE and the SWE. Consequently, it was decided to perform the planned Category \#3 tests, and to treat the observed errors as a simple experiment malfunction not associated with the rest of the system. During the course of the tests, no correlation between error rate and experiment operating time or temperature could be discerned.

The system command response was checked with all the experiments operating in a similar test to that performed on the Array A experiment configuration. Command sequences for both central station control and for the individual experiments were employed. During this tests, the experiments which were not being directly addressed were set in their reset mode, and the operating mode status of the experiments was verified by the ETS's.

No major interactions which would permanently affect the experiment operating mode were detected, although on two occasions the CPLEE apparently jumped forward in its analizer voltage sequence. This behavior could not be made to recur on repeating the commands. However, as the CPLEE status bits reflect the current state of the experiment, the effect of any jump is restricted to the possible loss of one or two frames of CPLEE data which would appear to be of minor significance.

5.0 CATEGORY \#4 TESTS

The CPLEE STS program was run for the first time 3/15/67 and proved to be completely correct, the data decommutation, experiment status tracking, data output formating, data print out and command tracking operations all worked without error.
\qquad

TAble 1 - ETS Isolation of Lines Check(1), ETS

(1) Refer to Fig. 1 for ETS Selector Switch Deaignation.
(中) All resistapces are epeckied to $\pm 25 \%$.
(d) Throw witch on Maim Power Panel be "Survival Hir Power Line" position for thi meanurement only.

Table II-CPLEE Cable Isolation Maseuroments

No. ${ }^{\text {a }}$	Lime	$\begin{aligned} & \text { Deutech } \\ & \text { P65B } \\ & \hline \end{aligned}$	RESISTANCE				
			Line to Came Grmal (1)		Lune to Sigmal Cred (2)		Remarite
			Specified	Meamared	Specified	Measured	
1	Smield	V			∞	∞	
2	Diseltal Data				1.6K (3)	$1.6 . \mathrm{K}$	
3	Shiteld				- ${ }^{\text {a }}$	∞	
4	Shitat Puise (Data Clock)				480 K	480 K	
5	Shield				∞	∞	
6	Evea Fraxne Mar Shield Cas Gromed Return Demand Pulse Sigpal Retura	家	0Ω		$\begin{gathered} 16 k \\ \infty \\ \infty \\ 1.3 k \\ 0 \Omega \\ \hline \end{gathered}$	1615	
7						∞	
8						∞	
9						1.35	
10						0	
11	Therna. Coat. yypase On	$\begin{aligned} & \frac{f}{R} \\ & \frac{g}{q} \\ & \frac{p}{q} \\ & \hline \end{aligned}$			$\begin{array}{\|l\|} \hline 10 \mathrm{Meg} \\ 8.5 \mathrm{meg} \\ 120 \mathrm{~K} \\ 70 \mathrm{~K} \\ 500 \mathrm{~K} \\ \hline \end{array}$	10 Meg	
12	Therm.Cont. Bypaee Off					8.5 MO	
13	Dust Cower Removal					120 K	
15	Asto. Volt Level Seq. On					70 K	
15	Suep Voithge Lovel		,			500K	
16	Arto Vot Levol Seq. Of	E			$\begin{aligned} & 500 \mathrm{~K} \\ & \infty \\ & \infty \end{aligned}$	500 K	
17	Chanm.P.S. Volt LHCR On	N				∞	
18	Cham.P.S. Yolt IFCR Of	M				∞	

(1) Connect one lead of the ohumeter to line 8 (Deutach Pin S).
(2) Consect on lead of the ohmmeter to line 10 (Deutech Pim I).
(3) All resiatancen are pecilled to $\pm 25 \%$.

Table II（continued）

No．	Lixe	$\begin{aligned} & \text { Deutsch } \\ & \text { P65B } \\ & \hline \end{aligned}$	RESISTANCE				Rema rke
			Line to Case Grad		Line to Sigaal Grmd		
			Specified	Measured	Specified	Measared	
$0 \sqrt{19}$	Switchable P．S．Vols	L			30K	$30 . \mathrm{K}$	
9 20	Chanmeltron PS 11 vold	K			2．58	7.5 K	
－ 21	Chameltron PS 㕊2 volt	J			17.0 K	7.01 K	
422	DC－DC Converter volt	d			S00	300Ω	
－ 23	Temperature ${ }^{\text {\％}}$	\bar{c}			S．7K	5.7 K	
\％ 24	Temperature ${ }^{\text {\％}}$	最			5.715	5，7K	．
45	Spare	P			∞	∞	
26	Oparating \％Heater Pwr	$\frac{8}{6}$			1	∞	
27		\bar{Z}		\cdots		∞	
28		－				∞	
39		星				∞	
30	Power Retara Line	F				∞	
31		m				∞	
32		k				∞	
33		$\overline{2}$				∞	
34	Survival Heater Pewer	E				∞	
35		Y				∞	
36	．	X			∞	∞	
37				－		∞	

Not Connected

$$
\left\{\begin{array}{l}
A \\
B \\
C \\
W
\end{array}\right.
$$

Table III - Experimens Functinei Testa
Ambiem Preame

Tahin - Experuent Functomal Teat

Aroliont Prenemse (cominuod)

Bendix
 Abrospace

 6-6-67Results of CPLEE Engineering Model Tests

Anatene Presown coctrat

Bendly
 Aeroepace
 Systemn Division

	jNO. ATM 668	Krv.nu	
Results of CPLEE Engineering Model Tests	page 18	$\text { of } \quad 24$	PAGES

Notel Thi point mongures tho voltege appliced tethe collactor of e tranelster.
 if turned "ON\% and this volugb trepe to atoct +0. Tolte for 20 milueccht.

Bendre	Aeroepace Systems Division $6-6-67$	Results of CPLEE Engineering Model Tests	${ }^{\text {NO. }} \text { ATI }$	668	\|xiv.m	
			PAGE	19	OF $\quad 24$	PAGES

Table VI - Analog Housekeeping Data
Vacuum Condition

NOTE: Maximum safe operating temperature in vacuum is $45^{\circ} \mathrm{C}$.

- See attached curves for conversion data.

Bendly	Acroeponce Systenns Division 6-6-67	Results of CPLEE Engineering Model Tests	NO. ATI	66	$\underline{L}^{\text {KEV.Nu }}$	
			PAGE	20	Of 24	PAGES

($2 \rightarrow-2-44$
Table vi- are comector signi March $/ 55,1967$
Vaeru condien Vacucun 2.5×10^{-6} torr

Not 1 This point moasure the voltrge appliced to collecter of a trendeter. When the duef cover removel cemmend is trenemitted, the tranolatod Le furned "ON" and finif velinge drope to mbout +5.2 velty for 20 mallineconds.

Table Vtu - Expmanont Functional Teste
Vacun Operation vacuum : 2.5×10^{-6} torr
5.7.21. Experimen Correat (Heater Off, HV upplis OFE $80 \pm 5 \mathrm{ma}$
. 80 ma
b. Experiment Curfent (Heater Olf, HV P,S. On)
b.
c. Noise Ripple
d. Noise Ripple

5.7.5 Tost Oscillator Freguct
c.

5.7.6. 1

9 ± 5
98 ma
Command Indicator Lighte
Thermal Control Byme On
Automatic Voltage Segrance Oa
Chameltrom P.S. Voltag licrosee Off ON γ
All other imdicetor inethe
OFE
5.7.6.1

Experiment Current (Rieater On)
$160 \pm 5 \mathrm{ma}$
160 ma
5.7 .6 .2

Experduon! Curremt (Heater Off)
5.7.6.2

Command Endicator Lijhts
Thermal Cemtrol Bypase OA
Autcomatic Voltage Sinume O_{s}
Chanalitre P.S. Voltage Increaze Of
All other indicitore OH

> Table Viul (contimued)

Paragrent Nubler	Tage Parazeter	$\begin{aligned} & \text { Test } \\ & \text { insant } \end{aligned}$	Motamed Vate	Remanertu
5.7 .6 .3	Dust Cover Recrevid Blama Amplistede Durathom		$\begin{aligned} & -3.10 \pm 0.2 \mathrm{~V} \\ & -0 \rightarrow 0.2 \mathrm{~V} \end{aligned}$ sec	
5.7.6.3	Comamand Indiombr Lighte Thermal Coutrol Bypaen Of Autamade V eltay Bequace On Chameltren P.E. Voltage Increme Of Dust Cove Remprel			
	All other indicatore	Ori		
5.7.6.4	Dightal Data Sequence, AUTO SEQ, OFT	Fig. 2	$\underset{X}{\text { ID Bit Chect }}$	
	Commasd ImAlicmtor Lights			
	Thermal Centrel Bypee Off	ON		
	Automatic Voltage Seysme OtChameltron P.8. Yolte Increse On	O* ${ }^{\text {O }}$		
		ON		
	Ais other indicatore	OFP		
			ID Bit Check	
5.7.6.5	Difical Data Sequmece, STEP VOLT. LEVE	Fig. 2		
			$\frac{3,3}{4,1}{ }^{3,1}{ }^{3}$	

Table VII ematimed

Pand Tumstase	Ted Pramocts	Teet Uniats	Mesmures fatme	Eamantas	
			Ltget Chect		
-5.7.6.5					
		OX	\checkmark		
	A	On	\checkmark		
	Chamenty P.6. Votue learene orr	On	\checkmark		
	All other indicaters	OPr	\checkmark		2.00.000.50
			Comrect Imeors		
9.7.6.6		54. 2	- \square		
					$\begin{gathered} 9 \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered}$
5.7.6.6	Cenmanel Indicetme Inte				
		ON	\checkmark		0
	Amematie Volsan forpeace Oa	O*	\checkmark		(x)
	Chmestice P.S. Vateg Imcrese Of	Ond	\checkmark		
			\checkmark		$$
	Als ather indecators	OrP			
5.7 .7	Tura-Oe Tramions	\because	\checkmark		$\begin{gathered} \text { H. } \\ \stackrel{0}{0} \\ 0 \\ 0 \\ \hline \end{gathered} .$
	Auto Volt. Segueace	ON			
	Chameltren P. 6. Encrene		\checkmark		2
	Thermel Couten Bypas	OFE	\checkmark		
5.7 .8	Nedec R Rapple \cos Porer Limes	$\leq 100 \mathrm{~m}$	$p=\quad+40 \mathrm{mV}$		${ }^{\text {m }}$
			supplies - ON		${ }^{\sim}$
\%	$*$				11
					$\stackrel{\sim}{\sim}$
	- - ,			:	
					7
					\bigcirc

PAGE 24 of 24 PAGES

Table IX

CPLEE DISCREPANCIES NOTED IN EM TESTS

Discrepancy

1. Intermittent Digital

Data Operation with EM Central Station
2. Power Line Noise
3. Power Converter Noise on Analog Lines
4. Power Converter Noise on Timing and Command Lines
5. Errors on Status Bits Transmitted by Experiment

ICS	ICS	Acceptable Value to
Paragraph	Value	Bendix
NA	NA	NA

3.2 .3 .4	100 mV $\mathrm{p}-\mathrm{p}$	Dependent on Cat. \#3 tests
3.2 .2 .2	10 mV $\mathrm{p}-\mathrm{p}$	-
Not specified.		100 mV

3.2.2.3.4 \qquad Errors are not acceptable

Remarks

Investigation indicates that the experiment logic may have a low noise margin. Category \#2 tests completed with revised grounding and filtering of timing lines to reduce noise input to the experiment. Improved shielding incorporated in the prototype.

1 V p-p noise in the 29 V line. Additional shielding incorporated in prototype model.

Affects data accuracy, refer to 2. Acceptable value depends on accuracy required.

About 150 mV p-p on timing, about 250 mV $\mathrm{p}-\mathrm{p}$ on command lines. Can carry the logic "low" level marginally above the +0.4 V limit. See Item 1 regarding sensitivity of experiment to this noise.

Observed during Category \#3 tests. All other data indicates that experiment is functioning correctly. Errors could not be correlated with operation of the other experiments.

[^0]: Figure II CPLEE Turn-Off
 Voltage Transients

