

MISSION H-2 / APOLLO 13 SCIENTIFIC EXPERIMENTS REQUIREMENTS

MANNED SPACECRAFT CENTER

HOUSTON, TEXAS January 1970

MISSION H-2/APOLLO 13 SCIENTIFIC EXPERIMENTS REQUIREMENTS

Prepared by General Electric Company

For

Science and Applications Directorate Manned Spacecraft Center Houston, Texas

under

Contract NAS 9-10230

Prepared by

Glenn P. Barnes Space Experiments Engineering General Electric Company

Concurrence

William K. Stephenson Data Management Office

Concurrence

ohn G. Zarcaro, Acting Manager

Lunar Missions Office

Approved by

Anthony J. Calio, Director Science and Applications

MISSION H-2/APOLLO 13 SCIENTIFIC EXPERIMENTS REQUIREMENTS

Preface

This document contains data and information applicable to the operation and performance of the Lunar Surface Scientific and Geology Experiments.

Comments or questions concerning the contents of this document should be directed to the Lunar Surface Operations Planning Office (LSOPO), TD, telephone: HU3-2055.

REFERENCES

1. Apollo Lunar Surface Experiments Operational Requirements. MSC-TA-D-68-1 (December 1968).

2. Measurements Requirements Document. ALSEP-SE-03, Revision H (8 April 1969).

3. Apollo Lunar Geology Definitive Experiment Plan (April 1968).

4. Apollo Lunar Geology Experiment Operational Requirements (December 1968).

TABLE OF CONTENTS

SECTION

۴

1.0 INTRODUCTION

1.1	Purpose	1-1
1.2	Scope	1-1
1.3	Principal Investigators	1-3
1.4.	Abbreviations and Acronyms	1-4

2.0 MISSION OBJECTIVES

2.1	ALSEP Mission Objectives	2-1
2.2	Lunar Dust Detector Mission Objective	2-1
2.3	Contingency Sample Collection Mission	
	Objective	2-1
2.4	Selected Sample Collection Mission Objective	
2.5	LGE Mission Objectives	2-1
2.6	Lunar Soil Mechanics Mission Objective	2-2
	Solar Wind Composition Mission Objective	

3.0 MISSION DESCRIPTION

	3.1 ALSEP Mission Description	3-1
	3.2 Lunar Dust Detector Mission Description	3-2
	3.3 Contingency Sample Collection Mission	•
	Description	3-3
	3.4 Selected Sample Collection Mission	
	Description	
	3.5 LGE Mission Description	3-3
	3.6 Lunar Soil Mechanics Mission Description 3.7 Solar Wind Composition Mission Description	3-4
	3.7 Solar Wind Composition Mission Description	3 - 4
1. 0		1
4.0	PHASE I (LUNAR SURFACE EVA PHASE)	4-⊥
5.0	PHASE II (LUNAR SURFACE OPERATION CHECKOUT PHASE)	5-1
	THALE II (DONAR BONFACE OF MAILON CHECKOUT THASE))-1
6.0	PHASE III (FORTY-FIVE DAY PHASE)	6-1
7.0	PHASE IV (ONE-YEAR PHASE)	7-1
-		
8.0	EXPERIMENT CONSUMABLES	8-1

ILLUSTRATIONS

¢

TITIE	FIGURE NUMBER	PAGE NUMBER
Lunar Surface Operation Phases	. 1-1	1 - 2
ALSEP Subpackage No. 1 (Array B)	• 3-1	3 - 14
ALSEP Subpackage No. 2 (Array B)	• 3-2	3 - 15
Geologic Sampling Tools	• 3-3	3 - 16
Apollo Lunar Hand Tools	• 3-4	3-17
HFE Deployment Site	• 3-5	3 - 18
RTG Power Profile	. 8-1	8-2
PCU Power Output vs. Central Station Dissipation	. 8-2	8-3
PSE Power Profile	8- 3	8-4
CCGE Power Profile	. 8-4	8-5
HFE Power Profile	8-5	8-6
CPLEE Power Profile	8-6	8-7

TABLES

ø

DESCRIPTION	TABLE NUMBER	PAGE NUMBER
RTG Deployment Constraints	3.1-1	3-5
Antenna Deployment Constraints	3.1-2	3-6
Central Station Deployment Constraints	3.1-3	3 - 7
PSE Deployment Constraints	3.1-4	3-8
CCGE Deployment Constraints	3.1-5	3-9
HFE Deployment Constraints	3.1-6	3-10
PROBE Deployment Constraints	3.1-7	3-11
CPLEE Deployment Constraints	3.1-8	3 - 12
SWC Deployment Constraints	3.1-9	3 - 13
Phase I (Lunar Surface EVA Phase)	4 - 1	4 - 2
Phase II (Lunar Surface Operation Checkout Phase)	5 - 1	5 - 2
Phase III (Forty-Five Day Phase)	6-1	6 - 2
Phase IV (One-Year Phase)	7-1	7 - 2

1.0 INTRODUCTION

1.1 PURPOSE

This document defines the scientific operations for ALSEP Array B, the lunar geology traverse, and the crew activities during the lunar surface operation phases. The information contained in this Plan includes data on ALSEP Array B, its limitations and constraints. This data is necessary for mission management, mission planning and the formulation of mission documentation based on hardware limitations.

1.2 SCOPE

This scientific experiments document contains a statement of mission objectives, mission descriptions, and an operational timeline for the lunar surface operations.

The operational timeline consists of four phases which are defined as follows:

Phase I, Lunar Surface EVA Phase, covers the period during which the astronauts are available for specific deployment, back-up operations, and field geology investigations. For further information regarding astronaut activity, refer to the Apollo 13 Flight Plan.

Phase II, Lunar Surface Operation Checkout Phase, covers the period from LM ascent through the checkout and calibration of all systems.

Phase III, Forty-Five Day Phase, covers the period from experiment checkout through the first 45 days of ALSEP operation.

Phase IV, One-Year Phase, covers the period from day 45 through the first year of ALSEP operational life.

A block diagram of events is presented in Figure 1-1 to identify the different phases of the mission.

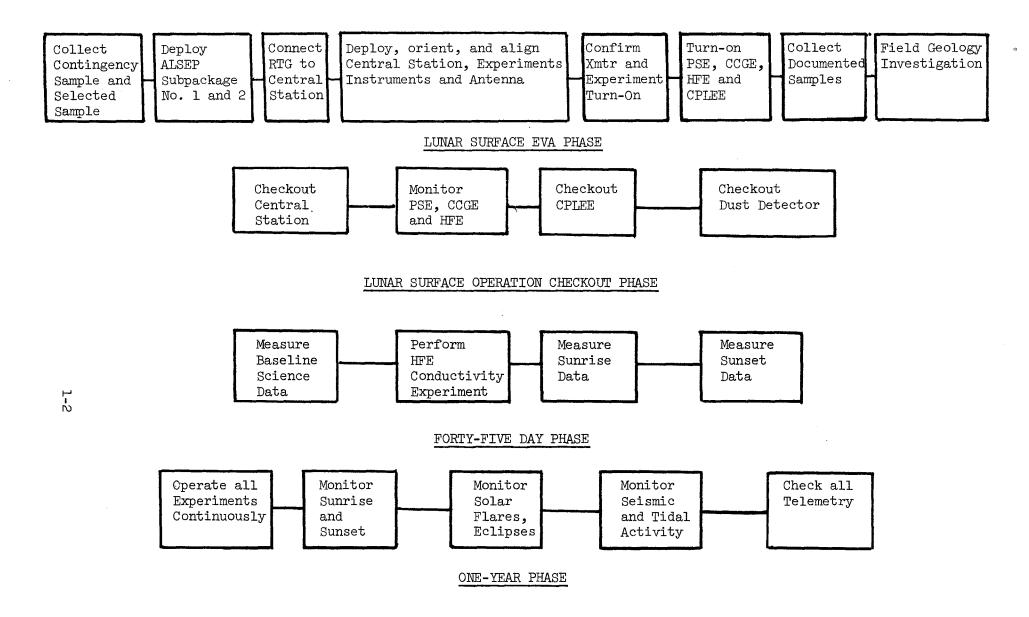


FIGURE 1-1. LUNAR SURFACE OPERATION PHASES

1.3 PRINCIPAL INVESTIGATORS

- 1. Passive Seismic Experiment Dr. Gary V. Latham, Lamont-Doherty Geological Observatory, Columbia University, Palisades, New York.
- 2. Cold Cathode Gauge Experiment Dr. Francis S. Johnson, University of Texas at Dallas, Post Office Box 30365.
- 3. Heat Flow Experiment Dr. Marcus G. Langseth, Lamont-Doherty Geological Observatory, Columbia University, Palisades, New York.
- 4. Charged Particle Lunar Environment Experiment Dr. B. J. O'Brien, University of Sydney, Australia.
- 5. Lunar Geology Experiment Dr. Eugene M. Shoemaker, United States Geological Survey, 601 East Cedar Ave., Flagstaff, Arizona.
- 6. Lunar Soil Mechanics Experiment Dr. William D. Carrier, Manned Spacecraft Center, Houston, Texas.
- 7. Lunar Dust Detector Dr. S. Freden, Manned Spacecraft Center, Houston, Texas
- 8. Solar Wind Composition Dr. Johannes Geiss, University of Berne, Physikalisches Institut, Sidlerstrasse 5, Berne, Switzerland.

The P.I.'s and their co-investigators for the above experiments will assist and advise the Flight Controller during the deployment and activation of their respective experiments. Operational methods, modes, real-time commands, and calibration procedures will be controlled by each P.I. for his experiment until a steady-state, operational equilibrium has been reached. Thereafter, the Flight Controller may contact the Science and Applications Directorate for advice or assistance.

1.4 ABBREVIATIONS AND ACRONYMS

ABBREVIATIONS DEFINITION AMPS Amperes Apollo Lunar Surface Experiments Package ALSEP Automatic AUTO CAAD Computation and Analysis Division CAL Calibrate CCGE Cold Cathode Gauge Experiment CPLEE Charged Particle Lunar Environment Experiment db decibels decibels with reference to one milliwatt dbm F Fahrenheit FOD Flight Operations Directorate Flight Crew Support Division FCSD HFE Heat Flow Experiment kHz kiloHertz kilovolts kv kw kilowatts LGE Lunar Geology Experiment ЪМ Lunar Module LPLong Period LSOP Lunar Surface Operatings and Planning ma. milliamperes MCC Mission Control Center MESA Modularized Equipment Stowage Assembly MHz MegaHertz Manned Space Flight Network MSFN millivolts mv PCU Power Conditioning Unit Power Dissipation Resistor PDR Power Distribution Unit PDU Principal Investigator ΡI Passive Seismic Experiment PSE Radioisotope Thermoelectric Generator RTG S&AD Science and Applications Directorate Scientific Equipment Bay SEQ Short Period Solar Wind Composition SPSWC USGS United States Geological Survey Vdc Volts direct current Transmitter XMIR

2.0 MISSION OBJECTIVES

2.1 ALSEP MISSION OBJECTIVES

The prime purpose of the ALSEP is to measure lunar physical and environmental characteristics and transmit the data to receiving stations on Earth, for a minimum period of one year.

2.2 LUNAR DUST DETECTOR MISSION OBJECTIVE

The objective is to investigate lunar dust deposition on each deployed ALSEP and lunar solar cell degradation radiation environment on each deployed ALSEP, by measurements.

2.3 CONTINGENCY SAMPLE COLLECTION MISSION OBJECTIVE

The purpose is to collect a small sample of loose material (approximately two pounds) in the immediate vicinity of the LM during the early part of the EVA.

2.4 SELECTED SAMPLE COLLECTION MISSION OBJECTIVE

The purpose is to collect geologically interesting samples of lunar material including individual rock samples and fine grained fragmental material during the lunar surface EVA. The emphasis is on collecting selected samples rather than only a large quantity of lunar material. However, the maximum volume of samples possible is to be returned.

2.5 LGE MISSION OBJECTIVES

The major objective of the LGE is to correlate carefully collected samples with a variety of observational data at the LM landing site.

The LGE functional objectives are as follows:

1. Examine, photograph, and collect lunar geologic samples for return to earth and analysis in the Lunar Receiving Laboratory.

2. Obtain data on field relations such as shape, size, range, pattern of alignment or distribution of all accessible types of lunar topographic features.

3. Collect core samples of lunar surface material.

- 4. Collect a gas analysis sample of lunar surface material.
- 5. Collect a special environmental sample of lunar surface material.
- 6. Collect a magnetic sample of lunar surface material.
- 7. Collect lunar surface drill stem samples.

2.6 LUNAR SOIL MECHANICS MISSION OBJECTIVES

The objective is to obtain data on the lunar soil mechanical behavior and on the surface and sub-surface characteristics.

2.7 SOLAR WIND COMPOSITION MISSION OBJECTIVE

The purpose is to determine the elemental and isotopic composition of the noble gases and other selected elements in the solar wind by measurement of particle entrapment on an exposed aluminum foil sheet.

3.0 MISSION DESCRIPTION

3.1 ALSEP MISSION DESCRIPTION

ALSEP Array B (Figures 3-1 and 3-2), is comprised of a central station to act as a power and communication center for gathering information from the scientific experiments, a data subsystem for transmitting data to and from Earth, and four scientific experiments defined as follows:

1. Passive Seismic Experiment (PSE) to monitor seismic activity.

2. A Cold Cathode Gauge Experiment (CCGE) to provide data pertaining to the density of the lunar ambient atmosphere, including temporal variations, and the rate of loss of contamination left in the landing area by the astronauts and the LM.

3. A Heat Flow Experiment (HFE) to provide data pertaining to the temperatures and heat production of the lunar interior by measuring the net outward flux at the surface. The heat budget of the lunar subsurface to a depth of ten feet will be measured for a period of at least one year. This data will provide information on the thermal properties and structure of the subsurface.

4. A Charged Particle Lunar Environment Experiment (CPLEE) to provide data pertaining to the solar wind, solar cosmic rays, and other particle phenomena by measuring the energy distribution and time variations of the proton and electron fluxes at the lunar surface.

The ALSEP will be transported to the lunar surface in the Scientific Equipment Bay (SEQ) of the lunar module (LM) descent stage.

ALSEP deployment procedures will be performed at a time when the sun angle from the lunar horizon is from 7 to 22 degrees. However, ALSEP design allows deployment at a maximum sun angle of 45 degrees and a relative lunar surface temperature of approximately +165 degrees F. The requirements, constraints, and limitations on the physical deployment arrangement for the ALSEP are presented in Tables 3.1-1 through 3.1-8.

The 300-foot distance to the emplacement area is the result of a trade-off in comparing the necessity of ALSEP deployment out of the LM ascent stage blast area with the constraints of keeping the astronaut . within the time and distance limitations dictated by the PLSS oxygen curve to assure a safe return to the LM. The walk to the deployment area is timed to prevent excess RTG warmup and thereby avoid potential thermal problems for the astronaut.

The ALSEP may be removed from the LM when the bottom of the SEQ Bay is from 18 to 60 inches from the lunar surface and with a \pm 15[°] tilt in any direction.

The ALSEP will be self-sufficient during operation, using a radioisotopic thermoelectric generator for electrical power, and will collect, format, and transmit scientific and engineering data to the receiving sites on earth for a minimum period of 1 year, possibly 2 years. This data will be used to derive information of the composition and structure of the lunar body, magnetic field, atmosphere, and the solar wind.

Downlink telemetry communications from the ALSEP are received at one or more of the remote sites of the Manned Space Flight Network (MSFN) and forwarded to the Mission Control Center (MCC). All uplink commands to ALSEP are executed by MCC for transmission by the remote sites. Up to 100 different commands allow selection of redundant components plus control of individual experiment ranges, operational modes, and calibration cycles.

3.2 LUNAR DUST DETECTOR MISSION DESCRIPTION

Data received from the dust detector which is composed of solar cells situated horizontally on the ALSEP Central Station and covered with different thickness of glass-shielding will be used in analyzing the effects of dust accumulated on the surface of the solar cells as a result of either natural deposition or from the effects of LM lift-off.

3.3 CONTINGENCY SAMPLE COLLECTION MISSION DESCRIPTION

The crewman will descend from the IM with the contingency sample container and quickly scoop up a loose sample of lunar soil. Sequence photographs will be made showing the astronaut collecting the sample. The sample container will be sealed and stowed in a pocket of the EMU until return to the IM.

3.4 SELECTED SAMPLE COLLECTION MISSION DESCRIPTION

Selected samples of rock fragments with varied texture or mineralogy will be collected and the remainder of the sample collection will be completed with loose materials representative of the landing area. The samples may be collected by the Astronauts in sample weigh bags provided in the Lunar Equipment Transfer Bag and in the Sample Return Container or individual bags from a dispenser.

In addition, the following samples will be collected during the selected collection mission.

1. One bagged sample taken when the SRC is opened will be designated for use by the Organic Principal Investigators.

2. One bagged sample taken under the IM will be designated the fuel contamination sample.

3. Core samples will be collected using the Apollo Lunar Surface Drill and drill core stems.

Upon completion of the sample gathering, samples will be sealed in the sample return container and prepared for transfer to the IM. Photographs of the immediate sample gathering area will be obtained although there is no prime photography requirements for the selected samples.

3.5 LGE MISSION DESCRIPTION

The fundamental requirements of lunar field geology procedures are observation, description, documented sampling, and photography. In the general case, these operations are combined to form a series of stops or stations that constitute a geologic traverse. The specific combinations of operations at a given station and the sequence of stations are controlled by three factors:

- 1. The nature of the geologic terrain.
- 2. The equipment available.
- 3. The time available.

The nature of the geologic terrain can rarely be fully anticipated and therefore some degree of flexibility in procedures is always required.

The geological sampling tools are presented in Figures 3-3 and 3-4.

The real-time planning of each traverse prior to egress from the Lunar Module will consist of the linking of procedures and the known geology of the site with the actual geologic setting observed by the crew. With the aid of the data and personnel in the Scientific Support Facility, the crew will make the final plans for a geologic traverse.

Samples to provide a more detailed and selective variety of lunar material will be collected in the following manner:

1. Samples will be collected using the carrier and tools stowed in the MESA and will be documented by photographs. Samples will be placed individually in pre-numbered bags and the bags placed in the sample return container. Additional loose samples judged by the crew to be of particular interest will be collected and stowed loose in the Sample Return Container weigh bag.

2. Features and relationship such as shape, size, range, and patterns of alignment or distribution will be described and photographed.

3. Core samples will be collected with drive tubes provided in the sample return container.

4. A gas analysis sample of lunar surface material will be collected and sealed in the gas analysis sample container and placed in the sample return container.

5. A special environment sample of lunar surface material will be collected, sealed in the special environmental sample container and placed in the sample return container.

6. A magnetic sample of lunar material will be collected, placed in the magnetic shield sample container and placed in the sample return container.

7. Drill stem samples will be collected utilizing the Apollo lunar surface drill and placed in the sample return container.

3.6 LUNAR SOIL MECHANICS MISSION DESCRIPTION

The crewmen will obtain data on the mechanical behavior of the lunar surface material including texture, consistency, compressibility, cohesion, adhesion, density and color.

3.7 SOLAR WIND COMPOSITION MISSION DESCRIPTION

The Solar Wind Composition Experiment (SWC) consists of a panel of very thin aluminum foil rolled and assembled into a combination handling and deployment container. The SWC is designed to entrap noble gas constituents of the Solar Wind, such as helium, neon, argon, krypton and xenon.

The crewmen will remove the SWC experiment from the LM Modularized Equipment Stowage Assembly (MESA) and deploy it on the lunar surface. The experiment will remain deployed until after completion of all EVA tasks and will then be disassembled. The reel and foil will be placed in a teflon bag and stored in a sample return container for return to earth.

The requirements, constraints, and limitations on the physical deployment arrangement for the SWC experiment are presented in Table 3.1-9.

PARAMETER

CONSTRAINT

Separation Between RTG and 9 to 13 feet. Limited by 13-foot Central Station 9 to 13 feet. Limited by 13-foot cable. Hot RTG should be away from Central Station to avoid contact with astronaut, and to provide maximum heat radiation to free

RTG Orientation from Central Station

RTG Deployment Site

RTG Alignment

Interrelation

maximum heat radiation to free space.
 + 20^o East or West of Central Station as visually determined

Station as visually determined by astronaut to minimize thermal load on Central Station.

Horizontal site. Pallet must be horizontal $\pm 10^{\circ}$, as visually determined by astronaut. No mechanical provisions for astronaut to level RTG. Astronaut will avoid craters and slopes which impede dissipation of heat from RTG.

No critical constraints. Astronaut will align so as to favor RTG cable exit toward Central Station.

RTG requires maximum view of space to maximize heat radiation. Astronaut will read ammeter on shorting switch box, connect RTG to Central Station, actuate switch.

ANTENNA DEPLOYMENT CONSTRAINTS

PARAMETER CONSTRAINT Site Selection Attached to Central Station +0.55° of vertical. Astronaut Antenna Leveling will use bubble level to adjust. Level adjustment interacts with alignment. +0.50° of East-West line, with Antenna Alignment reference to sun line. Astronaut will use sun dial to align. Astronaut will set dial to value Antenna Azimuth Setting indicated on Antenna Aiming Tables for landing site chosen. Antenna Elevation Setting Astronaut will set dial to value indicated on Antenna Aiming Tables for landing site chosen. 1. Maximum Allowable Errors for Special Requirements Astronaut Alignment: A. Scale Setting: 0.25° B. Leveling: 0.50° C. Shadow Alignment: 0.70° D. Overall Mean: 1.16°

CENTRAL STATION DEPLOYMENT CONSTRAINTS

PARAMETER

CONSTRAINT

Central Station-to-LM 300 ft. minimum. This distance is Separation required to keep ALSEP out of the LM ascent blast area.

Central Station Orientation from LM

Central Station Deployment Site

Due West or East of IM, preferably

West. Must not be deployed in shadow of LM.

Approximately horizontal, as visually determined by astronaut to provide stable base for antenna. Astronaut must avoid craters and slopes which would degrade thermal control of unit.

Central Station Leveling

 \pm 2.5^o of vertical as noted by astronaut on bubble level. Leveling procedure interacts with alignment procedure; accuracy of leveling must be maintained to assure accurate antenna aiming.

Central Station Alignment

+ 1° of East-West as aligned by astronaut using partial compass rose. Alignment affects thermal control capability of Central Station. Closed or curtained sides of Central Station must face East-West.

Interrelation

Central Station, as with most ALSEP subsystems, requires clear field-of-view for both thermal control and scientific data reasons. Central Station must not be shaded from the sun on the lunar surface prior to deployment. ALSEP design allows deployment when sun angle is between 7 and 45 degrees. ALSEP may be removed from IM when bottom of SEQ Bay is from 18 to 60 inches from lunar surface and with a 15 degree tilt in any direction.

Station

PARAMETER

PSE Orientation from Central

PSE Deployment Site

CONSTRAINT

PSE-to-Central Station Separation	8 to 10 feet. Limited by 10-foot cable. 8 feet minimum separation
	due to thermal heat from RTG.

Due East or West of Central Station as visually determined by astronaut. Must be out of fieldof-view of Central Station radiator.

Approximately level spot, free from loose material.

Must be coarse leveled by astronaut within + 5 degrees of vertical. Five degrees is the limit of the automatic, fine-leveling gimbal system.

Astronaut must rough align within + 20 degrees of lunar East, before opening PSE shroud, by pointing arrow on the sensor girdle towards the sun.

Fine alignment will be performed by the astronaut after removing girdle and spreading the thermal shroud. Astronaut will read and record, to the nearest degree, the intersection of the shadow of the gnomon on the compass rose. Final azimuth alignment must be known within + 5 degrees accuracy with reference to lunar North or South.

PSE must be no less than 10 feet from other units to minimize pickup of stray vibrations by PSE.

PSE Alignment

PSE Leveling

Interrelation

CCGE DEPLOYMENT CONSTRAINTS

PARAMETER

CONSTRAINT

CCGE - Central Station50 to 60 feet from CentralSeparationStation. Limited by 60-foot cable.

CCGE Orientation from Central Parallel to Central Station as Station visually determined by the astronaut.

CCGE Deployment Site

CCGE Leveling

CCGE Alignment

Interrelation

Special Requirements

Astronaut must align CCGE within + 15 degrees of lunar East.

Approximately level spot, free

view in front of orifice.

from loose material. Unobstructed

Must be leveled within + 3 degrees

of vertical by use of bubble level.

CCGE must be no less than 100 feet from the LM ascent stage.

The CCGE gauge nozzle must point away from the LM and other subsystems.

9 est

PARAMETER	CONSTRAINT
Separation between HFE electronics package and Central Station	25-30 feet. Limited by 30-foot cable.
HFE electronics package ori- entation from Central Station	Southeast of the Central Station. See Figure 3-5
HFE Electronics Package Deployment Site	Approximately level area, removed from any surface irregularities or rocks that might reflect sunlight directly onto the sunshield re- flector of the electronics package.
HFE Electronics Package	Leveled to + 12 degrees of vertical for maximum utilization of the thermal sunshield.
HFE Electronics Package Alignment	Aligned to within ± 5 degrees of the plane of the ecliptic or lunar equator.
Electronics Package to Probe Separation	16-20 feet. Limited by length of cable.
Electronics package to Probe Orientation	See Figure 3-5.
Probe Deployment Site	See Table 3.1-7.
Probe Alignment	Within 15 degrees of vertical.
Probe to Probe Separation	Approximately 34-36 feet, as shown in Figure 3-5.
Interrelation	The HFE should be at least 10 feet from all other experiments and at least 20 feet from the PSE.

3-10

÷,

PARAMETER

Probe Deployment Site

CONSTRAINTS

At least 10 diameters from fresh craters with strew fields of stones.

At least 5 diameters from large isolated blocks (boulders) exposed at the surface.

Try to avoid topographic features greater than a meter in diameter such as craters or hummocks that have an aspect ratio greater than 1 to 10, (slopes of 10°).

On the scale of 10's of meters topographic highs should be avoided and depressions preferred to assure the thickest possible regolith.

TABLE 3.1-8 CPLEE DEPLOYMENT CONSTRAINTS

cable.

astronaut.

surface.

PARAMETER

CONSTRAINT

Generally South of Central Station.

Minimum 10 feet, preferably 20 feet from RTG. Must avoid field-of-view of Central Station radiator. Orientation visually determined by

9 to 11 feet, limited by 11-foot

CPLEE-to-Central Station Separation

CPLEE Orientation from Central Station

CPLEE Deployment Site

CPLEE Leveling

CPLEE Alignment

Interrelation

Within + 2.5 degrees of vertical. Astronaut will level the CPLEE using bubble level. Leveling

interacts with alignment.

Approximately level area, free of gross surface irregularities and rocks or boulders. Bottom of experiment should not touch the

Within + 2 degrees of East-West sun line. Astronaut will align so that arrow on top of unit points East, then report, within ± 1 degree, the reading of the shadow of the handling tool on the partial compass rose.

Radioactive contaminants caused by other ALSEP Subsystems must be less than 0.1 count per second in all channels of CPIEE.

ê^{5.}...

.....

SWC DEPLOYMENT CONSTRAINTS

PARAMETER

CONSTRAINTS

SWC Deployment Site

60 to 100 feet from the LM to prevent dust (due to crew activity) or residue from vented gases from settling on the aluminum foil.

Perform no activity within 15 to 20 feet of the deployed SWC. Astronaut will avoid craters or slopes during SWC deployment.

SWC Leveling

SWC Alignment

in a vertical position and facing the sun.

Must be emplaced on the lunar surface

Alignment will be performed by the Astronaut within + 30 degrees of the sun line.

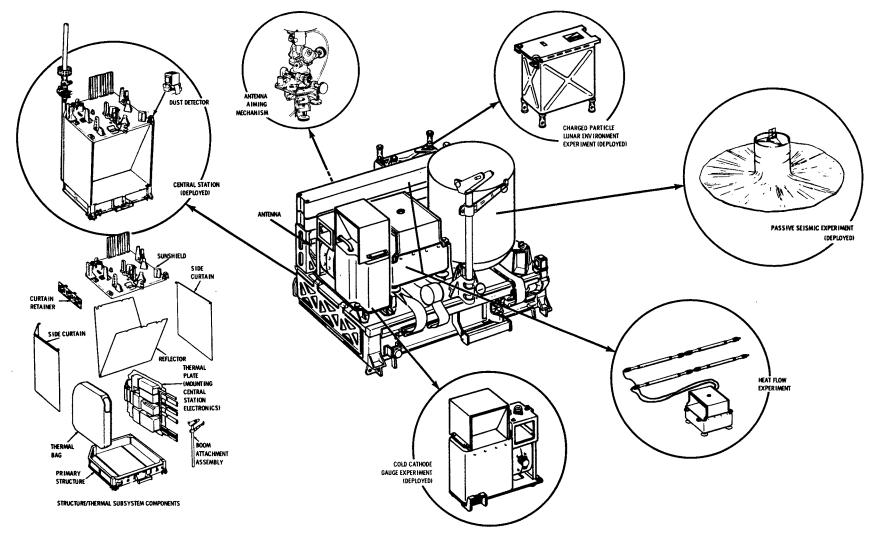


Figure 3-1 ALSEP Subpackage No. 1 (Array B)

6.

÷

3-14

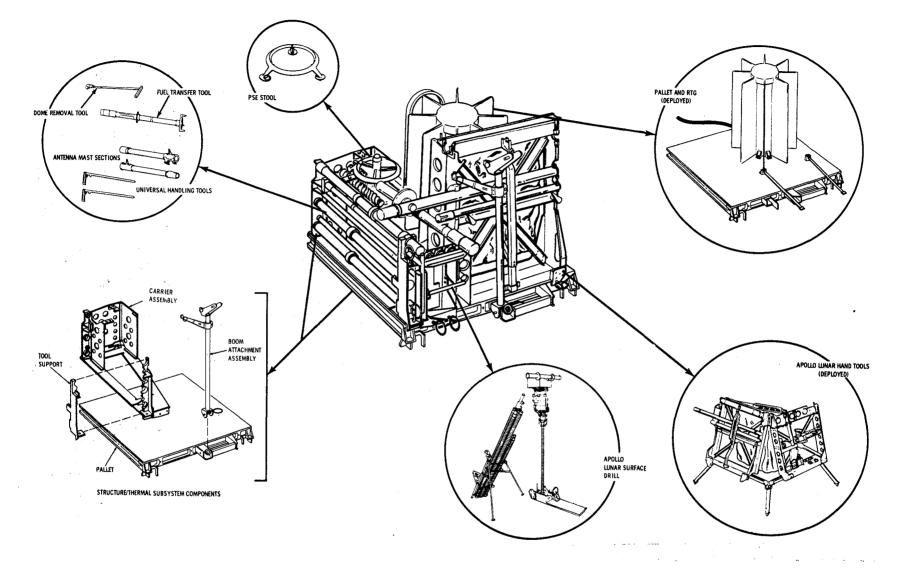


Figure 3-2 ALSEP Subpackage No. 2 (Array B)

•

2

3-15

•

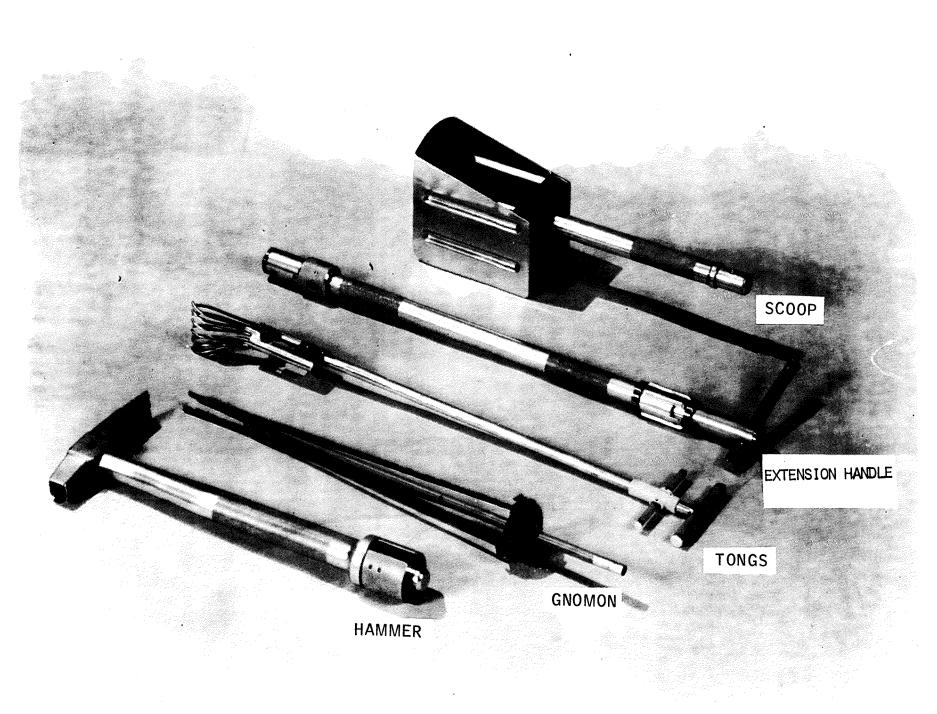
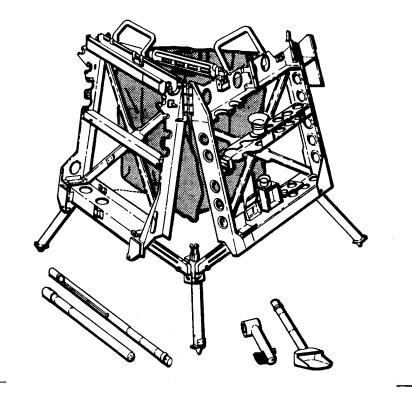
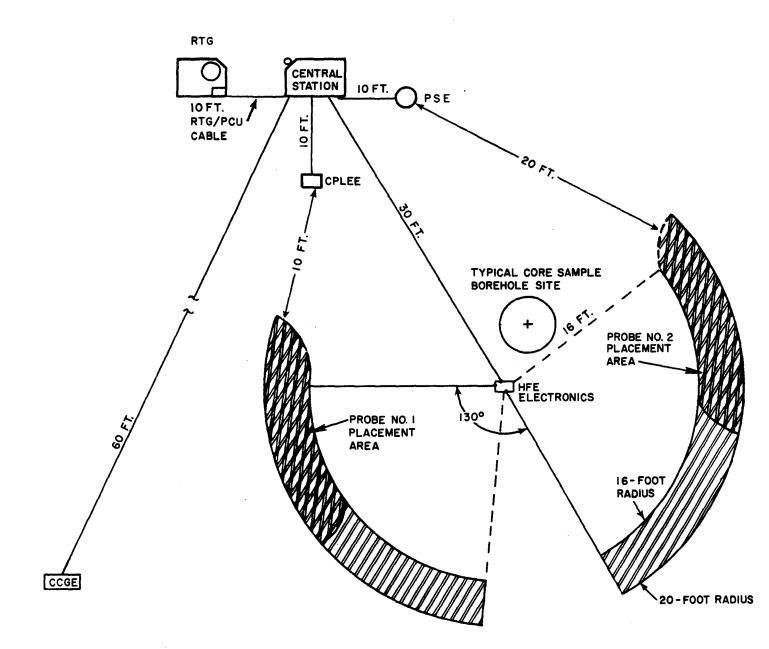




FIGURE 3-3 GEOLOGICAL SAMPLING TOOLS

Prime ALSEP deployment location is due west of LM. Backup location is due East of LM.

, con

Figure 3-5 TYPICAL ARRAY B DEPLOYMENT ARRANGEMENT

4.0 PHASE I (LUNAR SURFACE EVA PHASE)

j.

Phase I is outlined in Table 4-1 and covers the period during which the astronauts are available for specific deployment and field geology investigations. Refer to Apollo 13 Flight Plan for further information involving astronaut activities during this phase.

TABLE 4-1PHASE I (LUNAR SURFACE PHASE)

	EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	NOMINAL VALUE	REMARKS
1.	Contingency Sample Collection	Collect a contingency sample.			
2.	Solar Wind Composition	Deploy and orient the SWC instruments.			Retrieve the SWC experiment after completion of all other EVA tasks.
3.	Selected Sample Collection	Collect samples of lunar material.			
4.	Orient Central Station	Unload experiments. Orient and level CS			
4-2		Assembly and erect antenna and sunshield.	:		
5.	Deploy Experiment Instrument	Deploy, orient and level PSE Instrument CCGE Instrument HFE Instrument CPLEE Instrument			Preset condition: Standby On Preset condition: Power Off Preset condition: Power Off Preset condition: Standby On
		Drill two holes and install probes. Recheck alignment and leveling of HFE electronics package.			
6.	Station Antenna	Level CS, orient antenna base, and enter pre- scribed offsets.	Verify antenna settings chosen by astronaut.		
		Astronaut will actuate Switch S-l and notify MCC of readiness status via voice link.	Acknowledge readiness message via voice link.		

4

TABLE 4-1PHASE I (LUNAR SURFACE PHASE)

4

EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	NOMINAL VALUE	REMARKS
7. Turn On ALSEP Transmitter		Initiate command CD-2 (octal Ol3) "Transmitter On."		If ALSEP does not respond, actuate switches SW-2 and SW-3.
		Verify execution of com- mand by reception of RF signal from ALSEP.		
		Start data recorders and verify transmission of 1060 bps telemetry.		
-		Advise astronaut via voice link that ALSEP trans- mitter is functioning.		
	Acknowledge MCC receipt of RF signal and useful data via voice link.			
8. Passive Seismic Experiment Turn-On		A. Check experiment status telemetry, AB-4 (channel 12, octal 264-314), for correct indication.		PSE Standby On
		 B. Check reserve power status telemetry, AE-5 (channel 8), for indication lower than octal 267. 		
		C. Initiate command CD-13 (octal 036), PSE Operational Power On.		If telemetry data is interrupted for more than 5 minutes, command PSE to Standby.

4-3

 TABLE 4-1
 PHASE I (LUNAR SURFACE PHASE)

wh.

....

EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	NOMINAL VALUE	REMARKS
8. Passive Seismic Experiment Turn-On (Continued)		D. Check telemetry Word 46 for verification of command reception and parity check.		
		E. Check experiment status telemetry, AB-4 (channel 12, octal 171-215), for correct indication.		PSE Power On HFE Power Off
.		F. Check experiment status telemetry, AB-5 (channel 14, octal 206-306), for correct indication.		CCGE Power Off CPLEE Standby On
		G. Check reserve power status telemetry, AE-5 (channel 8), for indication lower than octal 264.		
		H. Housekeeping Data Check (Word 33).		
		l. Long period gain (X and Y) channel 23.	3.0 volts	Preset condition: -30db
		2. Long period (Z) amplifier gain, channel 38.	3.0 volts	Preset condition: -30db
		3. Level direction and speed, channel 53.	0 volts	Preset condition: + low

 TABLE 4-1
 PHASE I (LUNAR SURFACE PHASE)

*

EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	NOMINAL VALUE	REMARKS
8. Passive Seismic Experiment Turn-On (Continued)		H. (Continued) 4. Short period amplifier gain, channel 68.	3.0 volts	Preset condition: -30db
		5. Leveling mode and coarse sensor mode, channel 24.	0 volts	Auto, Coarse Sensor Out.
		6. Thermal control status, channel 39.	0 volts	Auto, On
н - 5		7. Calibration status (L.P. and S.P.) channel 54.	3.0 volts	All Off
		8. Uncage status, channel 69.		Caged
		I. Uncage Passive Seismometer		
		 Initiate command CL-9 (octal 073) to Uncage PSE Sensor Assembly. 		
		2. Verify command reception and acceptance (word 46).		

REMARKS	
ds between Step	
before adjusting djust gain to 1.	
l leveling or LP components are rify feedback ng Step J.10. In, execute com- ctal 101) and	

6

EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	NOMINAL VALUE	REMARKS	
8. Passive Seismic Experiment Turn-On (Continued)		 J. (Continued) 2. Initiate command COARSE LEVEL SEN- SOR. CL-14 (octal 102). 3. Verify reception and acceptance of command (word 46). 4. Check telemetry channel 24 for change in status of COARSE LEVEL SENSO and verification of AUTO leveling mode 5. Initiate and verify command CL-12 (oct- al 076) THERMAL CONTROL MODE SELECT 	R f · ·	Switch as required to obtain COARSE LEVEL SENSOR and AUTO status by commands CL-14 (octal 102) and CL-15 (octal 103).	
		6. Check telemetry channel 39 for con- firmation that heaters are Off.	l volt	Off	
		7. Check shunt regu- lator current channel 8. Adjust PDRs if necessary.	l.l amps		

٤

EVENT	ASTRONAUT ACTIVITY	MCC	ACTIVITY	NOMINAL VALUE	REMARKS
8. Passive Seismic Experiment Turn-On (Continued)		8.	Initiate command LEVELING POWER X MOTOR ON CL-6 (octal 070). Verify decrease of shunt regulator current channel 8 (or 13).	l.l amps	
۲ -8		10.	Observe recorder of long period, Tidal X-axis data as leveling pro- ceeds.	∆ t≈0	During initial leveling, verify that feedback filter is switched out. This can be done by verifying the time lag between tidal and seismic data. If filter is in, execute command CL-13 (octal 101) and note response.
		11.	Observe S.P. Seismic data on recorder		Observe S.P. Channel
		12.	When X tidal output reaches a value of 0.5V or less, initiate command CL-6 (octal 070) LEVELING POWER X MOTOR OFF.		If tidal outputs are not within + 0.5 volts, repeat steps J.1 to J.14 deleting steps J.2 and J.3.

4-8

.

TABLE 4-1

PHASE I (LUNAR SURFACE PHASE)

· *

EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	NOMINAL VALUE	REMARKS
8. Passive Seismic Experiment Turn-On (Continued)		 J. (Continued) 13. Verify reception and acceptance of command (word 46) 14. Verify that shunt regulator current has returned to approximately the value measured in Event 7, Step J.7. 	l.l amps	
6 - 1		15. Repeat Event 7, step J.8 through J.14, for Y-axis, initiating and verifying command CL-7 (octal 071) LEVELING POWER Y MOTOR while moni- toring appropriate recorder.		
		16. Initiate and verif command CL-14 (oc- tal 102) COARSE LEVEL SENSOR		
		17. Check channel 24 for change of status.	0 volts	Auto, Coarse Sensor OUT
		18. Verify that X & Y tidal outputs are within <u>+</u> 0.5 volts		
1			}	

-

Þ

Turn-On (Continued)Iy command CL-8 (octal 072) LEVEL- ING POWER Z MOTORre	Initial centering of Z-axis requires following command
	settings: leveling command mode, high speed and + direc- tion. Turn Z power ON.
20. Verify decrease of 1.1 amps shunt regulator current (HK-8)	
21. Monitor Z-axis Ti- Mean lunar dal data as center- gravity at ing progresses. site of ALSEP.	
22. When a zero cros- sing is observed on Z tidal output, select "Leveling AUTO" mode.	
23. When Z tidal output reaches a value of 0.5 volt or less, initiate and veri- fy command CL-8 (octal 072) LEVEL- ING POWER Z MOTOR OFF.	
24. Verify that shunt regulator current has increased to approximately the value measured in Event 7, Step J.7.	

TABLE 4-1

PHASE I (LUNAR SURFACE PHASE)

يغر

*

EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	NOMINAL VALUE	REMARKS
8. Passive Seismic Experiment Turn-On (Continued)		J. (Continued) 25. Verify that all tidal outputs (X, Y and Z) are within <u>+</u> 0.5 volts.		If tidal outputs are not within + 0.5 volts, repeat steps J.1 to J.24, deleting steps J.2, J.3, J.16 and J.17.
		26. Initiate and verify command PSE FILTER IN CL-13 (octal 101).	×	
цт-11		27. Verify that filter has been switched IN by comparison of L.P. Seismic and L.P. Tidal data on recorders.		
		28. Execute command CL-12 (octal 076) THERMAL CONTROL MODE SELECT as required to keep within limits.		
		29. Check telemetry of thermal control status (channel 39).	0 volts	
		K. Passive Seismometer Calibration		
		1. Initiate and verify command CL-4 (octal 066) CALIBRATION LP ON/OFF		

-0

*

EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	NOMINAL VALUE	REMARK S
8. Passive Seismic Experiment Turn-On		K. (Continued)		
(Continued)		2. Check for response in Tidal data and in L.P. Seismic data on drum recorders.		
		3. Check for status change in channel 54.	1.0 volts	L.P. On S.P. Off
4-1 V		4. Initiate and verify command CL-4 (octal 066) CALIBRATION L.P. ON/OFF		
		5. Check for status change in channel 54.	3.0 volts	All Off
		6. Initiate and verify command CL-3 (octal 065) CALIBRATION SP ON/OFF.		
		7. Check for response in SP Seismic data on recorder.		
		8. Check for status change in channel 54.	2.0 volts	L.P. Off S.P. On
		9. Initiate and verify command CL-3 (octal 065) CALIBRATION SP ON/OFF		

4-12

~

s.

EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	NOMINAL VALUE	REMARK S
8. Passive Seismic Experiment Turn-On (Continued)		K. (Continued) 10. Check for status change in channel 54.	3.0 volts	All Off
		L. Thermal Stabilization of Passive Seismometer		
-		 Monitor sensor unit temperature and verify that trend is toward 125°F, deter- mine gradient. 		Relevel as required per event 7, step J, deleting step J.2, J.3, J.16 and J.17.
		2. Continue to moni- tor temperature until equilibrium is reached.		
		M. Collection of Baseline Passive Seismic Data		
		 Record data, with- out further trans- mission of command for determination of background noise level, frequency and magnitude of detec- table seismic events 		
		2. Fix gains at levels determined from Step M.1 above.		

-44

ber -

EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	NOMINAL VALUE	REMARKS
9. Cold Cathode Gauge Experiment		A. Check CCGE reserve pow- er status telemetry, channel 8.		CCGE in survival mode. Do not initiate any commands without consulting the PI.
		B. Monitor the experiment supply voltage, channel 20.	29.0 volts	
-		C. As soon as possible after ALSEP deployment and power has been applied to CCGE, ini- tiate command 5 (Auto- matic Operate Mode).		Turn all power on to CCGE. Record Power increase from central system.
-		D. Record data on high- speed printer contin- uously.		
		E. One (1) hour after power turn-on, initiate command 2 followed by command 4 (CCGE break seal). Record data continuous (1 page data/ min.) on high speed printer for up to 3 hours after LM lift-off, and then followed by one page data every 5 min- utes. Also record gauge data, electrometer range, gauge, and electronic temperature on analog re corder up to 3 hours after LM lift-off.		Opens the break seal.

EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY		NOMINAL VALUE	REMARK S
9. Cold Cathode Gauge Experiment (Continued)		F. Telemetry cho 1. Examine to data and decommutation being propered executed. 2. Check power tion. 3. Check the engineering ID CCGE Word 1 ALSEP Word 15 0 1 2	ecks: elemetry ensure that tion is perly er consump-	PCM Count $220 + 35 - 30$ $127 + 6$ $122 + 27 - 33$ $127 + 4$	Subcommutated into CCGE word 5 (8 bits each) during 5 successive ALSEP frames. Subcommutation repeats itself after 4 complete ALSEP frames. Engineering Data CCGE Word 5 ALSEP Word 63 +4.5 KVDC +15 VDC +10 VDC

.

η.

EVENT	ASTRONAUT ACTIVITY	M	CC ACTIVITY		NOMINAL VALUE	REMARKS
9. Cold Cathode Gauge Experiment (Continued)			ontinued) Check the fo temperatures	Llowing		
		ID	Parameter	CCGE Word	ALSEP Word	PCM Count
		dg-8	Gauge Temperature	3	47	40 - 250
		DG-9	Electronics Temperature	4	56	127 - 200
Λ		5.	Check the fol calibration of in CCGE. Cal voltages sele command 1. F change is ini by command 3. direction is by command 4 and command 2	roltages ibrate cted by Range tiated Range selected (down)		
		Range DG - 6	ID -	CCGE Word	ALSEP Word	PCM Count DG-7
		0		2	31	128 <u>+</u> 26
		1		2	31	128 <u>+</u> 26
		2		2	31	128 + 26

EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY		NOMINAL VALUE	REMARKS
9. Cold Cathode Gauge Experiment (Continued)		F. (Continued) 5. (Continued)			
		Range ID DG-6 3	CCGE <u>Word</u> 2	ALSEP Word 31	PCM count DG-7 128 <u>+</u> 26
		4	2	31	128 <u>+</u> 26
		5	2	31	128 <u>+</u> 26
_		6	2	31	128 <u>+</u> 26
5		6. Check PCM coun against the an word 1 channel and the range against the an word 2 channel	alog , AG-1 ID alogue		
		7. Check telemetr associated wit performance in word 2. ALSEP 31 with CCGE i matic-operate (command 5).	h CCGE CCGE word n auto-		
		CCGE Output CCGE Range	DG-7 DG-6		

*

TABLE 4-1

PHASE I (LUNAR SURFACE PHASE)

EVENT	ASTRONAUT ACTIVITY	MCC ACT	IVITY	NOMINAL VALUE	REMARKS
9. Cold Cathode Gauge Experiment (Continued)		G. Cold Cat Experime	chode Gauge ent Break Seal		
		l. Initi comma	ate and verify and 2.		
		2. Initi comma	ate and verify and 4.		
		data	CCGE output for increase butable to seal		
8 1- 1		H. Collecti CCGE dat	on of Baseline a:		
		out f	d data, with- ourther trans- on of commands.		
		ID	Parameter	Limits	
		DG-10	4.5 KVDC	<u>+</u> 200 V	
		DG-11	+15 VDC	<u>+</u> 1V	
		DG-12	-15 VDC	<u>+</u> 1V	
		DG-13	+10 VDC	+0.1V (critic	al)
		DG-8	Gauge Temp.	+250 ⁰ F -275 ⁰ F	
		DG-9	Elec. Temp.	+185 ⁰ F - 50°F	

TABLE	4-1	PHASE	I	(LUNAR

EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	NOMINAL VALUE	REMARKS
10. Heat Flow Experiment Turn-On		A. Check Heat Flow re- serve power status telemetry, channel 8.	29.0 volts	
		B. Initiate command CD-19 HFE Operational Power On		
		C. Check experiment status (channels 12 and 14) for correct indications.		PSE Power On HFE Power On, Mode 1 CPLEE Standby On CCGE Power On
1-1		D. Confirm operations of HFE by appearance of data in telemetry word 21.		
		E. Check HFE data channels as shown below:		
		l. +5V supply (channel 30)	+5V	
		25V supply (channel 45)	-5V	
		3. +15V supply (channel 56)	+157	
		415V supply (channel 74)	-15V	
		5. Low Conductivity Heater (Frame 57)	ov	Frames 57 and 75 should be zero except during the conductivity experiments.

SURFACE PHASE)

۲

EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	NOMINAL VALUE	REMARKS
10. Heat Flow Experiment Turn-On (Continued)		E. (Continued) 6. High conductivity Heater (frame 75)	OV	
		F. Thermal check of HFE:		Should turn-on in Mode 1
		<pre>1. Check telemetry data word 21 for sub- system mode indica- tions (bit 3, 4, 5, of frames 3 and 11).</pre>	100 mode 1 010 mode 2 001 mode 3	Gradient Mode Low Conductivity Mode High Conductivity Mode
		2. If system is not in mode 1, initiate and verify command CH-1 (octal 135), mode 1.		Refer to HFE command description
·		3. Initiate and verify commands HF-8 and HF-9 in that order.		This sequence of commands selects an operating subse- quence which includes ambient temperatures at both probes and at the electronic package.
		4. Check telemetry indication of HFE thermocouple refer- ence and probe cable temperature (word 21 subcommutated).		

-	EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	NOMINAL VALUE	REMARK S
10.	Heat Flow Experiment Turn-On (Continued)		 F. (Continued) 5. Continue to monitor until stabilization of temperatures has been confirmed. G. Collection of Baseline HFE Data: 		
11. 4-21	Charged Particle Lunar Environment Experiment		 A. Check CPLEE reserve power status telemetry, Channel 8. B. Monitor the experiment supply voltage, channel 20. C. Initiate command CD-22 (octal 052) Operational Power On D. Verify change of status (channels 12 and 14) E. Check level of experi- ment supply voltage, channel 20. F. Verify CPLEE Channeltron Voltage increase - OFF 	9.0 watts min. 29 volts	CPLEE should be in the Auto- matic mode. PSE Power On CCGE Power On HFE Power On, Mode 1 CPLEE Power On CPLEE Power On CPLEE Power On CPLEE Power On

٩.,

•

*

	EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	NOMINAL VALUE	REMARK S
11.	Charged Particle Lunar Environment Experiment (Continued)		G. Verify that CPLEE is still in Automatic mode and is stepping		Voltage step, odd frames, word 39, bit 1 and even frame, word 7, bit 1. Remain in this step for approximately 30 minutes to look at data. Send Command 114 if not in automatic mode.
			H. Initiate Command CC-6 (octal 117) Automatic Voltage Sequence - Off		CPLEE in manual mode.
4-22			I. Initiate Command CC-5 (octal 115) 8 times.		After each execution, verify CPLEE has stepped by looking at the high speed printer. Remain in each step for approxi- mately 20 minutes.
			J. Initiate Command 114 Automatic Sequence - ON		
			K. Initiate and verify Command CC-7 (octal 120) CPLEE Channeltron Voltage - ON		Need approximately 30 minutes of data for Steps K and L.
			L. Initiate and verify Command CC-8 (octal 121) CPLEE Channeltron Voltage - OFF		CPLEE Operational Power - ON. (Automatic mode) Leave in Automatic mode until PI request CPLEE be placed in Standby mode.
					NOTE: Put CPLEE in Standby Power ON mode during LM ascent.

-

EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	NOMINAL VALUE	REMARKS
12. Experiments Turn-On Verification	Acknowledge Report	 A. Advise crewmen that the PSE, HFE, CPLEE, and CCGE experiments have been turned On. B. Monitor PSE data. C. Monitor CCGE data. D. Monitor HFE data. E. Monitor CPLEE data. 		Put CPLEE in Standby Power before LM ascent.
13. Field Geology Investigation		The MSC activity consists of managing the incoming geologic information in various ways.		

٠

TABLE 4-1

and and a

PHASE I (LUNAR SURFACE PHASE)

EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	NOMINAL VALUE	REMARKS
EVENT 13. Field Geology Investigation (Continued)	ASTRONAUT ACTIVITY	 Encode data for imput into computer. Make real-time notes and sketches of des- criptions to transmit over closed circuit TV. Make hard copy of Apollo TV images. Annotate large scale versions of the astro- naut data package maps. Keep track of photos taken as a check on 		REMARKS
·	 A. Sample and describe the morphological features of small but predominant craters in the near area of the landing site. B. Take scoop samples at scattered points along traverse. 	photo coverage. 6. Prepare specific ques- tions to ask if and when appropriate.		Photograph sample site in stereo. Describe texture and composition; compare to other areas; photo- graph each sample site in stereo.

TABLE 4-1PHASE I (LUNAR SURFACE PHASE)

a.

*

EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	NOMINAL VALUE	REMARKS
13. Field Geology Investigation (Continued)	C. Dig several trenches parallel to sun's rays at different points along traverse			Photograph trench in stereo and show details of wall texture such as: Color Change Chemical Alterations Textural Changes Compositional Changes Fragment Type and Concentration
4-25	D. Collect fragments of rocky material which appears to be repre- sentative types.			Try to move the large objects or pry beneath them after photographing their original positions.
Ϋ́ς	E. Take core tube sam- ples, preferably where layering is known to exist.			Check for layering with chisel end of hammer along traverse. Take one photograph of surface before driving tube, then stereo photographs with tube and extension handle in place. Give brief statement of impres- sions on: Origin of Material How Emplaced How Distributed or Affected
				Since Emplacement Mechanical Properties

TABLE 4-1

PHASE I (LUNAR SURFACE PHASE)

4

w

EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	NOMINAL VALUE	REMARKS
13. Field Geology Investigation (Continued)	F. Observe Morphologic type craters on hori- zon (Sharp-rimmed to subdued, pan-craters, funnel-shaped, dimple craters, chain and loop craters, secon- dary craters, etc.)			Briefly identify Morphologic type, then photograph general shape in stereo with baselines approximately 1/3 to 1/2 dis- tance to points of interest, such as far wall. Give impressions or origin and mechanism of the craters' formation (impact, volcanic, other); relative age of crater. Activities A through F will be performed consistent with the Apollo 13 Flight Plan. These activities are not necessarily listed in order or priorities.

PHASE I (LUNAR SURFACE PHASE)

ACTIVITY CHART

Event (Geologic features to be studied)		Astronaut Ad	stronaut Activity		
	SAMPLING	PHOTOGRAPHY	DESCRIPTION	MONITORING	
 OUTCROP Blocky Rimmed Crater Blocks Bright Halo Crater Regolith Sharp Rimmed Crater Elongate Crater Crater Chain Mare Ridge Scarp Crater Cluster Dimple Crater Lineament Subdued Crater 	of • Outcrop • Blocks • Regolith using • hammer • tongs • scoop • core tubes	of • Outcrop • Blocks • regolith • geologic features • topographic features using • monoscopic • stereoscopi • panoramic with • Hasselblad • Apollo TV • Time- Sequence	of Rock Material and Geologic features with respect to Color, texture, com- position, structure weathering or alter- ation. variations-horizontal and vertical relationships to adjacent features comparisons with similar features integrations of: origins of features sources of materials processes	 Descriptions and encoding dat annotating maps and photos prepare questions answer questions advise 	

The astronaut activity will consist of observation, photography, description, and sampling of certain geologic features conducted along the traverse. At the same time MSC will be monitoring and documenting the astronaut activity.

4-27

5.0 PHASE II (LUNAR SURFACE OPERATION CHECKOUT PHASE)

Phase II is outlined in Table 5-1 and covers the period from LM ascent through the checkout of all subsystems.

¢

EVENT	MCC ACTIVITY	NOMINAL VALUE	REMARKS
l. IM Ascent	A. Monitor all scientific and engineering telemetry during and after launch noting any changes attributable to LM activity.		Note significant trends.
ັງ ເ			

	EVENT		MCC ACTIVITY	NOMINAL VALUE	REMARKS
2.	Power Supply Check	Α.	Check the following para- meters:		When telemetry indicates the need for adjustment of the DC load, the necessary control can be accomplished by switching
			l. 0.25 Vdc Calibration (on Channel 2)	0.25 volts	power dumps in or out through use of the following commands:
			2. 4.75 Vdc Calibration (on Channel 3)	4.75 volts	CD-5 (PDM Load #1 On) CD-6 (PDM Load #1 Off) CD-7 (PDM Load #2 On)
			3. Converter Input Voltage (on Channel 1)	16.2 volts	CD-8 (PDM Load #2 Off)
ហ			4. Converter input current (on Channel 5)	4.2 amps	
ŭ		в.	Verify that system is oper- ating on PCU #1 by checking Channel 8 of telemetry word No. 33 (Shunt Regulator #1 Current)	l.l amps	
		C.	Check PCU temperatures as follows:		
			l. Power Oscillator #1 (on Channel 64)	+ 94 ⁰ F	
			2. Regulator #1 (on Channel 77)	+103 ⁰ F	

thereas a

Arrent

EVENT	MCC ACTIVITY	NOMINAL VALUE	REMARKS
2. Power Supply Check (Continued)	D. Check PCU operating parameters as follows: +29V (on Channel 20) +15V (on Channel 35) +12V (on Channel 50) + 5V (on Channel 65) -12V (on Channel 79) - 6V (on Channel 80) 	+ 29.0 Volts + 15.0 Volts + 12.0 Volts + 5.0 Volts - 12.0 Volts - 6.0 Volts	If either the temperatures of Event 2, Step C or the parameters of Event 2, Step D, are out of limits, switch to PCU 2 by transmission of Octal Command O62 (Power Conditioning Unit Reset).
	E. Check RTG Temperatures as follows:	÷	
5-4	 Hot Frame #1 (Channel 6) Hot Frame #2 (Channel 37 Hot Frame #3 (Channel 52 Cold Frame #1 (Channel 7 Cold Frame #2 (Channel 67 Cold Frame #3 (Channel 82 	1107°F 478°F 426°F	
	F. Initiate command CX-Ol (octal 027) DUST DETECTOR ON.		
	G. Monitor Cell Voltage of Dust Accretion Units		
	l. Dust Cell 2 Output (Channel 26)	52 mv	
	1	l	

э

	EVENT	1	MCC ACTIVITY		NOMINAL VALUE	REMARKS
i	Power Supply Check (Continued)		(Continued) 2. Dust Cell 3 Ou: (Channel 41)	tput	52 mv	
		н. ј	3. Dust Cell 1 Ou (Channel 84) Initiate Command C (Octal 031) DUST D OFF.	- X-02	52 mv	
ר	3. Temperature Checks and Thermal Control	4	Check telemetry ch indicated below fo ent temperature me Location	r pertin-		If either the temperature or power levels are outside limits, switch to back-up transmitter by initiating command CD-14 (Octal Ol5) or command CD-1 (Octal Ol2).
		1. 9 2. 9 3. 9 4. 9 5. 6.	Sunshield Thermal Plate Structure Sides Structure Bottom and Back Inner Multilayer Insulation Outer Multilayer Insulation	27, 42 4, 28, 43, 58, 71 59, 87 15, 88 60 72	- 80° F + 83° F 0° F +6° F, +28° F + 64° F + 26° F	If necessary turn Central Station Back-Up Heater On and Off by initiation and veri- fication of following commands: CD-9 (Heater On) CD-10 (Heater Off)

5-5

TABLE 5-1

39

an al

3. Temperature Check and Thermal Control (Continued) A. (Continued) Channel Location Channel Channel 7. Analog Data Processor Base 33 + 83°F 8. Analog Data Processor Internal 34 + 90°F 9. Digital Data Processor Internal 47 + 87°F 10. Digital Data Pro- cessor Internal 47 + 87°F 11. Command Decoder Base 48 + 83°F 12. Command Decoder Internal 49 + 86°F 13. Command Decoder Internal 49 + 86°F 13. Command Demodu- lation VCO 14 + 86°F 14. Power Distribu- tion Unit Base 62 + 83°F 15. Power Distribu- tion Unit Internal + 100°F 15. Check Shunt Regulator Current (Channel 8) 1.1 amps	EVENT	MCC ACTIVITY		NOMINAL VALUE	REMARKS
	Check and Thermal Control	 A. (Continued) <u>Location</u> 7. Analog Data Processor Base 8. Analog Data Processor Internal 9. Digital Data Processor Base 10. Digital Data Pro- cessor Internal 11. Command Decoder Base 12. Command Decoder Internal 13. Command Demodu- lation VCO 14. Power Distribu- tion Unit Base 15. Power Distribu- tion Unit Internal B. Check Shunt Regulator 	33 34 46 47 48 49 61 62 63	+ 83°F + 90°F + 83°F + 87°F + 83°F + 86°F + 86°F + 86°F + 83°F + 100°F	

5-6

÷

`~

-	EVENT		MCC ACTIVITY		NOMINAL VALUE	 REMARKS	
3.	Temperature Check and Thermal Control (Continued)	с.	Optimize Central S thermal environmen dumping reserve po the external power tion resistors. I commands in accord the following tabl	nt by ower into dissipa- Initiate lance with			
			If AE-5 Shunt Current is:	Command PDR			
ת ו ק			0.6 to 1.1A	CD-5 (Octal 017 PDR #1 ON)		
			1.1 to 1.5A	CD-7 (Octal 022 PDR #2 ON)		
			> 1.5A	CD-5 & 7 Both PDR #1 & #2 ON			
			< 0.6A	Both PDR #1& #2. OFF			
		D.	Check Verificatior commands transmitt Event 3, Step C ak (Word 46).	ed per			

na Com

ă

•

	EVENT		MCC ACTIVITY	NOMINAL	VALUE		REMARKS	
C T	Cemperature Check and Chermal Control Continued)	E.	Check for appropriate change in shunt current for any command transmitted in Event 3, Step C (AE-5)					
		F.	Initiate command CX-Ol (Octal O27) DUST DETECTOR ON.					
		G.	Check Dust Accretion Unit					
JI			l. Dust Cell 2 Temp (Channel 30)	+ 136° F				
- 20			2. Dust Cell 3 Temp (Channel 56)	+ 136° F				
			3. Dust Cell 1 Temp (Channel 83)	+ 136° F				
		н.	Initiate command CX-02 (Octal 031) DUST DETECTOR OFF.					
						1		

5**-**8

÷

۹

	EVENT	MCC ACTIVITY	NOMINAL VALUE	REMARKS
4.	Transmitter Checks	 A. Monitor the following transmitter temperatures: 1. Transmitter A Crystal Temperature, Channel 18 	+ 75 [°] F	If either the temperature or power levels are outside limits, switch to back-up transmitter by transmission of command CD-4 (or CD-1).
		2. Transmitter A Heat Temperature Sink, Channel 19	+ 75 ⁰ F	
ហ៊ុ		B. Check transmitter A AGC voltage, Channel 51	1.10 V@ +75 ⁰ F	
ė.		C. Check transmitter A Power Doubler Current, Channel 81	162 ma @ +75 ⁰ F	
		D. Request MSFN check of ALSEP transmitter frequency. Log frequency and verify that it is within 11.5 kHz of nominal (2275.5 MHz for Array B).	2275.5 MHz	
		E. Request MSFN check level of signal from ALSEP. Log level and verify that it exceeds the minimum receiver input power.	30' dish - 125.2 dbm 85' dish -118.2 dbm	

	EVENT		MCC ACTIVITY	NOMINAL VALUE	REMARKS
4.	Transmitter Checks (Continued)	F.	Initiate Command CD- ¹ 4 (Octal O15), XMTR B Select		Consult LSPO before initiating this command.
		G.	Repeat Event 4, Steps A-E above, checking channels 31, 32, 66 and 22.	+75 [°] F, +75 [°] F, 0.61V @ +75 [°] F, 157 ma @ +75 [°] F	
		н.	Initiate and verify Command CD-1 (Octal Ol2) Transmitter A Select.	÷	
5. 5-10	Diagnostic Checks	А.	Monitor local oscillator crystal temperature A (Channel 16).	+144° г	
·		в.	Monitor Channel 36 for RF level of ALSEP receiver local oscillator.	6.1 dbm	
		c.	With MSFN ground transmitter radiating at rated power level, Monitor ALSEP Channel 21 for prelimiting signal level of command receiver.	-88 dbm	
		1			

.....

_	EVENT		MCC ACTIVITY	NOMINAL VALUE	REMARKS
5.	Diagnostic Checks (Continued)	Þ.	Check for subcarrier indication, Channel 9	No modulation pre- sent. Octal 57	
		Ε.	Check Channel 9 for indica- tion of availability at the command decoder of 1 KHz subcarrier when it is trans- mitted from MSFN.	Modulation present. Octal 275	
5-11		F.	Determine ALSEP receiver center frequency by plotting MSFN transmitter frequency vs. ALSEP prelimiting signal level as transmitter is tuned across band. Log center frequency (nominally 2119 MHz ± 21 kHz).	2119 MHz	
6.	Passive Seismic Experiment Checkout	Α.	Monitor all science data measurements on a continuous basis.		Note significant trends, especially during the turn-on period for the other experiments. During LM ascent, PSE Scientific data must be monitored continuously so as to measure
		в.	Monitor the experiment supply voltage, Channel 20.	29.0 volts	any seismic disturbance due to ascent engine blast. Note significant trends.

5-11

*

	EVENT		MCC ACTIVITY	NOMINAL VALUE	REMARKS
E C	Passive Seismic Experiment Checkout (Continued)	C. D.	Monitor the thermal plate temperatures, Channel 43. Check need for leveling as indicated by the Tidal out- put recordings.		Note significant trends and compare tempera- tures against other thermal plate temperatures on Channel 4, 28, 58 and 71.
5-12					

-

	EVENT		MCC ACTIVITY	NOMINAL VALUE	REMARKS
7.	Cold Cathode Gauge Experiment		Check experiment status (Channel 14) for correct indications		PSE Power On HFE Power On CPLEE Standby On CCGE Power On
		в.	Record CCGE data on the high speed printer.		Record data continuous (l page data/min) for up to 3 hours after IM lift-off, and then followed by one page data every 5 minutes.
ת ני	i	с.	Record CCGE data on the analog recorder.	:	Record gauge data, electrometer range, gauge, and electronic temperature up to 3 hours after IM lift-off.

~

EVENT		MCC ACTIVITY	NOMINAL VALUE	REMARKS
8. Heat Flow Experimen Checkout	, A.	Check HFE data on a continuous basis		Note significant trends, especially during the turn-on period for the other experiments.
Gileckout	в.	Monitor the experiment supply voltage, Channel 20	29.0 volts	Note significant trends
	c.	Check need for leveling of the HFE electronics package.		
	D.	Initiate and verify octal command 152 twice.	:	To insure command link is operating properly.
л- 	E.	Monitor HFE Engineering channels as shown below:		Note significant trends.
		Telemetry word 33		
		l. +5 v supply (Frame 29)	+ 5.0 volts	
		25 v supply (Frame 45)	- 5.0 volts	
		3. +15 v supply (Frame 55)	+15.0 volts	
		415 v supply (Frame 74)	-15.0 volts	
		5. Low conductivity heater (Frame 57)	0	Frames 57 and 75 should be zero except during the conductivity experiment.
		6. High conductivity heater (Frame 75)	0	

TABLE 5-1PHASE II, (LUNAR SURFACE OPERATION CHECKOUT PHASE)

æ

.

	EVENT	MCC ACTIVITY	NOMINAL VALUE	REMARKS
9.	Charged Particle Lunar Environment Experiment	A, Check engineering data as follows:		CPLEE in automatic Mode - ON
		1. Temperature Sensor #1, Channel 11 (AC-5)		
		2. Temperature Sensor #2, Channel 90 (AC-6)		
		3. DC-DC converter voltage, Channel 10. (AC-4)	:	
5-15		4. Switchable Power Supply Voltage, Channel 25. (AC-1)		
		5. Channeltron #1 Power Supply Voltage, Channel 89. (AC-2).		
		 Channeltron #1 Power Supply Voltage, Channel 40. (AC-3) 		
		B. Monitor telemetry for scienti- fic data outputs (words 7, 17, 19, 23, 39, 55), comparing against results of ground tests.		
		I	1	1

TABLE 5-1 PHASE II, (LUNAR SURFACE OPERATION CHECKOUT PHASE)

	EVENT		MCC ACTIVITY	NOMINAL VALUE		REMARKS	
9 .	Charged Particle Lunar Environment Experiment (Continued)	C.	 Note following status flag in scientific data: 1. Sensor Assembly, odd frames, word 7, bit 1 2. Deflection voltage polarity, odd frames, word 19, bit 1. 3. Voltage Step, odd frames, word 39, bit 1 and even frames, word 7, bit 1. Verify that CPLEE is automatically stepping and that sequence is proper. 		DC-97 1 0 5 5 5 5 5 5 5 5 5 5 5 5 5	DC-98 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0	$ \begin{array}{c} \underline{DC-99}\\ 1 & 1\\ 1 & 1\\ 1 & 1\\ 1 & 0\\ 1 & 0\\ 1 & 0\\ 1 & 0\\ 1 & 0\\ 1 & 0\\ 1 & 1\\ 1 & 1\\ 1 & 1\\ 1 & 1\\ 1 & 1\\ 1 & 0\\ 1 & 0\\ 1 & 0\\ 1 & 0\\ 1 & 0\\ 1 & 0\\ 1 & 0\\ 1 & 0\\ 0 & 1\\ 0 & 1\\ 0 & 1\\ 0 & 1\\ 0 & 1\\ 0 & 0\\ 0 & 0 \end{array} $

_

TABLE 5-1 PHASE II, (LUNAR SURFACE OPERATION CHECKOUT PHASE)

*

	EVENT		MCC ACTIVITY	NOMINAL VALUE	REMARKS
9.	Charged Particle Lunar Environment Experiment (Continued)	E.	Voltage Step Comm Check 1. Initiate and verify command CC-6 (octal 117) CPLEE automatic voltage sequence - OFF		CPLEE auto sequence stops.
			 Initiate and verify at 5 minute intervals, eight (8) command CC-5 (octal 115) CPLEE step voltage level. 		CPLEE steps through sequence upon commands.
5-17			3. Verify from printout, proper values for test oscillator readout (DC-85 through and including DC-96)		
			4. Initiate and verify command CC-4 (octal 114) CPLEE automatic voltage sequence - ON		CPLEE auto sequence begins.
		F.	Beta Source Check		
			1. Check CPLEE science data for proper beta source counts (verify with PI).		Accumulate data for approximately 30 minutes.
			2. Initiate Command 120 Channeltron Voltage - ON		Accumulate data for approximately 30 minutes.
			3. Initiate Command 121 Channeltron Voltage - OFF		

TABLE 5-1 PHASE II, (LUNAR SURFACE OPERATION CHECKOUT PHASE)

4

EVENT		MCC ACTIVITY	NOMINAL VALUE	REMARKS
Charged Particle Lunar Environment Experiment (Continued)	G. н.	Turn CPLEE - OFF Turn CPLEE - ON		Turn CPLEE - OFF during IM Ascent Turn CPLEE - ON approximately 15 minutes after IM Ascent. Consult PI before executing this command.
	I.	Dust Cover Removal		
		1. Check with PI or PI representative prior to dust cover removal.	<i>,</i>	
		2. Check for availability of adequate reserve power, HK-8. Adjust PDRs if necessary		
		3. Initiate and verify command CC-3 (octal 113) CPLEE dust cover removal.		Dust cover removed.
		4. Check science data for confirmation of dust cover removal.		
	J.	Scientific Data Check		
		1. Send Command 120		Analyze data for 30 minutes.
		2. Send Command 121		Analyze data for 30 minutes.
	Charged Particle Lunar Environment Experiment	Charged Particle Lunar Environment Experiment (Continued) I.	Charged Particle Lunar Environment Experiment (Continued)	Charged Particle Lunar Environment Experiment (Continued) G. Turn CPLEE - OFF H. Turn CPLEE - ON I. Dust Cover Removal I. Dust Cover Removal I. Dust Cover Removal I. Check with PI or PI representative prior to dust cover removal. 2. Check for availability of adequate reserve power, HK-8. Adjust PDRs if necessary 3. Initiate and verify command CC-3 (octal 113) CPLEE dust cover removal. 4. Check science data for cover removal. J. Scientific Data Check 1. Send Command 120

TABLE 5-1 PHASE II, (LUNAR SURFACE OPERATION CHECKOUT PHASE)

.

	EVENT		MCC ACTIVITY	NOMINAL VALUE	REMARKS
10.	Dust Detector Checks	A.	Check redundant decoder by initiation of command CX-1 (Octal 027) DUST DETECTOR ON with the alternate command address.		
		в.	Verify reception and accep- tance of command (Word 46).		
		c.	Check temperatures of dust detector cells in Channels 30, 56 and 83.	+ 136° F	
		D.	Check shunt regulator current Channel 8 (Adjust PDRs if necessary).	, l.l amps	
		Е.	Check Channels 26, 41 and 84 for cell voltages of Dust Accretion units.	52 mv	
		F.	Initiate Command CS-02 (Octal 031) DUST DETECTOR OFF.		

6.0 PHASE III (FORTY-FIVE DAY PHASE)

*

Phase III is outlined in Table 6-1 and covers the period from power turn-on and experiment checkout, through the following 45 calendar days.

....

EVENT		MCC ACTIVITY	NOMINAL VALUE	REMARKS
l. Central Station	Α.	Temperature Monitor 1. Monitor critical Central Station temperatures. (Word 33)		Note any out-of-limit readings and significant trends toward limits.
	в.	Power Monitor		
		 Check RTG temperatures on a continuous basis. (Word 33) 		Continuously check the telemetry of the electrical parameters associated with the power supply.
6 - N		 Log RTG temperatures every 2¹/₄ hours and identify significant trends. (Word 33) 		
		3. Log input power, voltage, and current and output voltages every 24 hours and identify significant trends.		
	c.	Thermal Control		
		<pre>1. Initiate and verify commands. CD-06 (Octal 021) PDR #1 OFF CD-08 (Octal 023) PDR #2 OFF</pre>		· · · · · · · · · · · · · · · · · · ·

_	EVENT	MCC ACTIVITY	NOMINAL VALUE	REMARKS
l.	Central Station (Continued)	 C. (Continued) 2. Check reserve power as indicated by shunt reg lator current, Channel 3. Utilize reserve power thermal control by ini ting and verifying com in accordance with the following table: 	u- 8. for tia- mands	
6-3		DayCommandsLunar CycleCommandsDayCD-5 (Octal O17 PDR #1 ONDayCD-7 (Octal O22 PDR #2 ONDayCD-5 (Octal O17 PDR #1 ON DayDayCD-7 (Octal O22 PDR #2 ONNightCD-7 (Octal O22 PDR #2 ONNightCD-26 (Octal O56 Heater 2 ON))	

-

	EVENT	MCC ACTIVITY	NOMINAL VALUE	REMARKS
1.	Central Station (Continued)	C. (Continued) Night Lunar Cycle Comma	nds	
		Night CD-25 (Octal Heater 1 OP Pwr ON Night CD-26 (Octal Heater 2 OP	056)	
6-4		Pwr ON and CD-9 (Octal Heater 3 ON Night CD-25 (Octal Heater 1 OP Pwr ON and CD-9 (Octal Heater 3 ON	055) 024)	
		4. Confirm an appropri change in Channel 8 1, Step C.2) for ea command executed in 1, step C.3.	(Event ch	
		5. If CD-26 is execute confirm change in s telemetry Channel 14	tatus	
		Otherwise confirm no change in Channel 12 Channel 14.	and	
	i			

~

•

EVENT	MCC ACTIVITY	NOMINAL VALUE	REMARKS
l. Central Station (Continued)	 D. Transmitter Monitor 1. Check transmitter frequency at each "hand-over" from one MSFN station to the next. Log results and note any significant trend. Frequency should be: 2275.5 MHz (+11.5 KHz) for ALSEP Array B. 		
б 	2. Approximately once per day preferably at a fixed evaluation angle at a single MSFN station, measure and record receiver input level of the signal received from ALSEP. Log results and note trend daily.		
	3. Monitor and log daily the electrical parameters associated with the ALSEP transmitter:		
	ParameterChannel		
	Trans. A, AGC Voltage 51 Trans. B, AGC Voltage 66 Trans. A, DC, Power Doubler 81 Trans. B, DC, Power Doubler 22		

ς.

-4

...

1. Central Station (Continued) E. Downlink Bit Error Check 1. Approximately once per hour obtain results of bit error check (against the predic- table first words of each ALSEP frame). 2. Log results and note significant trends. F. Receiver Monitor 1. Log daily readings of electrical parameters associated with ALSEP receiver. Parameter Channel RCVR, Local OSC Level 36 RCVR, Pre-limiting level 21 2. Once per day recheck 2119 MHz	EVENT	MCC ACTIVITY	NOMINAL VALUE	REMARKS
ALSEP receiver center frequency as in Phase II, Event 5, Step F. Log results and note any significant trend.	l. Central Station (Continued)	 E. Downlink Bit Error Check Approximately once per hour obtain results of bit error check (against the predictable first words of each ALSEP frame). Log results and note significant trends. F. Receiver Monitor Log daily readings of electrical parameters associated with ALSEP receiver. Parameter <u>Channel</u> RCVR, Local OSC Level 36 RCVR, Pre-limiting level 21 Once per day recheck ALSEP receiver center frequency as in Phase II, Event 5, Step F. Log results and note any 		Note any significant trends. Reading taken with known output from ground

...

~4

	EVENT	MCC ACTIVITY	NOMINAL VALUE	REMARKS
2.	Passive Seismic Experiment	A. Monitor all science data measurements continuously on drum recorders.		
		B. Once per day record and log the following housekeeping data.		
		l. Experiment supply voltage Channel 20.	+ 29.0 Volts	
6-7		2. Thermal plate temperature, Channel 43.		Note any significant trends and compare temperature against other thermal plate temperatures Channels 4, 28, 58 and 71.
		C. Once per day, check need for leveling as indicated by Tidal output recordings. Relevel (automatic) as in Phase I, Event 8, Step J when required (deleting steps J.2, J.3, J.16 and J.17).		NOTE: Check experiment status Channel 14 for evidence of "ripple off" during leveling.
		CL-06 (Octal 070) X-axis CL-07 (Octal 071) Y-axis CL-08 (Octal 072) Z-axis		
		D. Check for evidence of automati calibration of short period sensor at 12-hour intervals.	c	
		E. Once per day, calibrate long period circuitry as in Phase I Event 8, Step K, Calibration (CL-04, Octal 066).	,	

.

-10

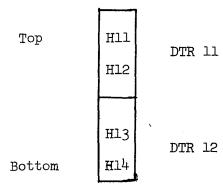
•4

	EVENT	MCC ACTIVITY	NOMINAL VALUE	REMARKS
3.	Cold Cathode Gauge Experi- ment	A. Monitor CCGE Engineering and Scientific data.		Note any significant trends. Print out CCGE format on high speed printer once every 30 minutes.
		B. Once per day, log power supply voltages and equipment tempera- tures.		Note any significant trends.
		C. Monitor input voltage to the experiment, Channel 20.	29.0 volts	Once per day, record and log.
6-8	: *			
				· · ·

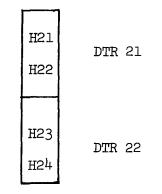
•

а

*


EVENT	MCC ACTIVITY	NOMINAL VALUE	REMARKS
4. Heat Flow Experiment	A. Monitor the HFE Engineering and Scientific Data.		Monitor temperature trends at each sensor. Monitor mode, heater, and programmer states and note abnormal readings.
	 B. Heat Flow Conductivity Experiment 1. Check HFE data telemetry word 21, bits 3, 4, 5, 6 of HF word 5 for correct heater state. 	0000	Consult PI prior to performing conductivity experiment. During the conductivity experiment consult the PI before making any mode changes or data interruptions. The time interval for hard copy printouts will be a real-time decision by the PI.
6-19	2. If bits 3, 4, 5, 6 of HF word 5 are not 0000, send octal command 152 (Heater Advance) until the bits are in the proper state. Reference HF heater se- quence - Page 6-10.		Octal command 152 advances the heater switch one state for each command sent. The heater sequence is equivalent to that of a rotary switch. Ex. In order to go from heater 12 OFF to heater 11 OFF, four heater advance commands must be sent. The next state after Heater 23 ON is Heater 12 OFF.

State					Heater	Function	Bridge Energized
	H4	H3	H2	Hl			
l	0	0	0	0	12	OFF	DTR 11
2	0	0	0	l	12	ON	DTR 11
3	0	0	l	0	14	OFF	DTR 12
4	0	0	l	l	14	ON	DTR 12
5	0	l	0	0	11	OFF	DTR 11
6	0	l	0	l	11	ON	DTR 11
7	0	l	l	0	13	OFF	DTR 12
8	0	l	l	1	13	ON	DTR 12
9	l	0	0	0	22	OFF	DTR 21
10	l	0	0	l	22	ON	DTR 21
11	l	0	1	0	24	OFF	DTR 22
12	l	0	l	1	24	ON	DTR 22
13	1	l	0	0	21	OFF	DTR 21
14	l	l	0	l	21	ON	DTR 21
15	l	l	l	0	23	OFF	DTR 22
16	l	l	l	l	23	ON	DTR 22


Bore Hole 1

.

19

-

6-10

_	EVENT	MCC ACTIVITY	NOMINAL VALUE		REMARKS
ч.	Heat Flow Experiment (Continued)			Heat Flow Cond. Experiment	Heater Energized
				1 2 3 4 5 6 7	H12 H14 H22 H24 H11 H13
			:	8	H21 H23
6-11 5.	Heat Flow Conductivity Experiment 1 Mode 2 Operation Hl2	Command Sequence (Initiate and verify)		Bridge <u>Measurement</u>	Heater State
	A) Initation	Monitor for 2 hours		DTH 11	0000
	B) Heating Phase (a)	152, 136		DTH 11	0001
	PI will determine, after l hour, to continue in Mode 2 or switch to Mode 3 operation	•		If PI elects to stay phase will be from 1	v in Mode 2 the heating 5 to 36 hours.
				(a) The heater adva 2 operation, ca 2 hour initiati	nce Command 152, in Mode n be sent during the on period.

4

	EVENT	MCC ACTIVITY	NOMINAL VALUE	REMAR	KS
6.	Heat Flow Conductivity Experiment 1 Mode 3 Operation	Command Sequence (Initiate and Verify)		Bridge Measurement	Heater State
	A) Heating Phase 10 hrs. Terminate on approval of PI.	140, 144		DTR 11, TR 11	0001
6-12	B) Monitor lower section ring bridge for 15 minutes.	152		DTR 12, TR 12	0010
	C) Monitor upper section ring bridge for 15 minutes. (a)	135, 152, 152, 140, 144		DTR 11, TR 11	0100
	 D) Monitor Probe 1 gradient bridge for 15 minutes. (b) 	135, 142, 152 (14 times)		DTH (11, 12) T (11, 12)	0010
	E) Monitor Lower section ring bridge for 15 minutes.	140, 144		DTR 12, TR 12	0010
				(a) For ring bridge, Mode 15 minute period star has been initiated an	ts when the last command
				(b) For gradient bridge m minute period starts been initiated and ve	when command 135 has

	EVENT	MCC ACTIVITY	NOMINAL VALUE	REMARKS	5
	6. (Continued) F) Return to Step 3 and repeat steps (C-E) for a minimum of 6 hours.				
	G) Return to Mode l operation, full sequence.	135, 141			
	Heat Flow Conduc- tivity Experiment 2			Bridge <u>Measurement</u>	Heater State
6-13	Mode 2 Operation H 14				
	A) Initiation	Monitor for 2 hours		DTH 12	0010
	B) Heating Phase	152, 136		DTH 12	0011
	PI will deter- mine, after 1 hour, to continue in Mode 2 or switch to Mode 3 operation				UTT .
				•	

6-13

e?

	EVENT	MCC ACTIVITY	NOMINAL VALUE	I	REMARKS
8.	Heat Flow Conductivity Experiment 2 Mode 3 Operation	Command Sequence (Initiate and Verify)		Bridge <u>Measurement</u>	Heater State
	A) Heating Phase 10 hours Terminate on approval of PI.	140, 144		DTR 12, TR 12	0011
6-14	B) Monitor lower section ring bridge for 15 minutes.	135, 152, 152, 152, 140, 144		DTR 12, TR 12	0110
	C) Monitor Probe l gradient bridge for 15 minutes	135, 142		DTH (11, 12) T (11, 12)	0110
	D) Monitor lower section ring bridge for 15 minutes.				
	E) Return to Step C and repeat steps (C and D) for a mini- mum of 6 hrs.				
	F) Return to Mode l operation, full sequence	135, 141			

.

÷

	EVENT	MCC ACTIVITY	NOMINAL VALUE	R	EMARKS
9.	Heat Flow Conductivity Experiment 3 Mode 2 Operation H 22	Command Sequence (Initiate and verify)		Bridge <u>Measurement</u>	Heater State
	A) Initiation	Monitor for 2 hours		DTH 21	0110
	B) Heating Phase	152, 152, 152, 136		DTH 21	1001
6-15	PI will deter- mine after one hour, to continue in Mode 2 or switch to Mode 3 operation.				

-	EVENT	MCC ACTIVITY	NOMINAL VALUE	REMARK	5
10.	Heat Flow Con- ductivity Experiment 3 Mode 3 operation	Command Sequence (Initiate and Verify)		Bridge Measurement	Heater State
	A) Heating Phase 10 hr. Terminate on approval of PI.	140, 144		DTR 21, TR 21	1001
6-16	B) Monitor lower section ring bridge for 15 minutes	152		DTR 22, TR 22	1010
	C) Monitor upper section ring bridge for 15 minutes	135, 152, 152, 140, 144		DTR 21, TR 21	1100
	D) Monitor Probe 2 gradient bridge for 15 minutes	135, 143, 152 (14 times)		DTH (21, 22) T (21, 22)	1010
	E) Monitor lower section ring bridge for 15 minutes.	140, 144		DTR 22, TR 22	1010
	F) Return to Step C and repeat steps (C-E) for a minimum of 6 hours.				

TABLE 6-1

PHASE III, (FORTY-FIVE DAY PHASE)

-	EVENT	MCC ACTIVITY	NOMINAL VALUE	REMARKS	
10.	(Continued) G) Return to Mode l operation, full sequence	135, 141			
11.	Heat Flow Conduc- tivity Experiment 4 Mode 2 Operation H 24	Command Sequence (Initiate and Verify)		Bridge Measurement	Heater <u>State</u>
	A) Initiation	Monitor for 2 hours		DTH 22	1010
0	B) Heating Phase	152,136	÷	DTH 22	1011
6-17	PI will deter- mine, after 1 hour to continue in Mode 2 or switch to Mode 3 operation.				
12.	Heat Flow Conduc- tivity Experiment 4 Mode 3 operation	Command Sequence (Initiate and Verify)		Bridge <u>Measurement</u>	Heater State
	A) Heating Phase 10 hours Terminate on approval of PI	140, 144		DTR 22, TR 22	1011
	B) Monitor lower section ring bridge for 15 minutes	135, 152, 152, 152, 140, 144		DTR 22, TR 22	1110

*

	EVENT	MCC ACTIVITY	NOMINAL VALUE	REMARKS	
12.	(Continued)				
	C) Monitor Probe 2 gradient bridge for 15 minutes.	135, 143		DTH (21, 22) T (21, 22)	1110
	D) Monitor lower section ring bridge for 15 minutes.	140, 144		DTR 22, TR 22	1110
6-18	E) Return to Step C and repeat steps (C thru D) for a mini- mum of 6 hrs.				
	F) Return to Mode l operation, full sequence.			· · · · · ·	
13.	Heat Flow Conduc-	Command Sequence		Bridge	Heater
	tivity Experiment 5 Mode 2 operation H ll	(Initiate and Verify)		Measurement	State
	A) Initiation	Monitor for 2 hours		DTH 11	1110
	B) Heating Phase	152 (7 times), 136		DTH 11	0101
	PI will deter- mine after 1 hour, to continue in Mode 2 or switch to Mode 3 operation	2.			

	EVENT	MCC ACTIVITY	NOMINAL VALUE		REMARKS
14.	Heat Flow Conduc- tivity Experiment 5 Mode 3 Operation	Command Sequence (Initiate and Verify)		Bridge Measurement	Heater State
	A) Heating Phase - 10 hrs. Terminate on approval of PI.	140, 144		DTR 11, TR 11	0101
6-1	B) Monitor upper section ring bridge for 15 minutes.	135, 152 (ll times) 140, 144		DTH 11, TR 11	0000
6-19	C) Monitor Probe l gradient bridge for 15 minutes.	135, 142		DTH (11, 12) T (11, 12)	0000
	D) Monitor upper section ring bridge for 15 minutes.	140, 144		DTR 11, TR 11	0000
	E) Return to Step 3 and repeat steps (C-D) for a minimum of 6 hours.				
	F) Return to Mode l operation full sequence	135, 141			

~

	EVENT	MCC ACTIVITY	NOMINAL VALUE	REMARKS	
15.	Heat Flow Conduc- tivity Experiment 6 Mode 2 Operation H 13	Command Sequence (Initiate and Verify)		Bridge Measurement	Heater <u>State</u>
	A) Initiation	Monitor for 2 hours		DTH 12	0000
	B) Heating Phase	152 (7 times), 136		DTH 12	0111
6-20	PI will deter- mine after 1 hour, to continue in Mode 2 or switch to Mode 3 opera- tion.		:		
16.	Heat Flow Conduc- tivity Experiment 6 Mode 3 Operation	Command Sequence (Initiate and Verify)		Bridge Measurement	Heater <u>State</u>
	A) Heating Phase 10 hrs. Terminate on approval of PI.	140, 144		DTR 12, TR 12	0111
	B) Monitor upper section ring bridge for 15 minutes.	135, 152 (9 times), 140, 144		DTR 11, TR 11	0000
	C) Monitor lower section ring bridge for 15 minutes.	135, 152, 152, 140, 144		DTR 12, TR 12	0010

6-20

٠

EVI	ENT	MCC ACTIVITY	NOMINAL VALUE		REMARKS
l gra	tor Probe adient ge for 15	135, 142, 152 (14 times)		DTH (11, 12) T (11, 12)	0000
sect	tor upper ion ring ge for 15 ces.	140, 144		DTR 11, TR 11	0000
$\begin{array}{c} C \text{ and} \\ c \text{ steps} \\ c \text{ b} E \end{array}$	n to Step l repeat s (C thru or a mini- of 6 hrs.				
l ope	n to Mode eration, sequence.	135, 141			
	w Conduc- xperiment operation	Command Sequence (Initiate and Verify)		Bridge Measurement	Heater <u>State</u>
A) Initi	ation	Monitor for 2 hours		DTH 21	0000
B) Heati	ng Phase	152 (13 times), 136		DTH 21	1101
mine aft to conti 2 or swi	ll deter- er l hour, nue in Mode tch to peration.				

PHASE III, (FORTY-FIVE DAY PHASE) TABLE 6-1

×

· ·

	EVENT	MCC ACTIVITY	NOMINAL VALUE	REMARKS	5
18.	Heat Flow Conduc- tivity Experiment 7 Mode 3 operation	Command Sequence (Initiate and Verify)		Bridge <u>Measurement</u>	Heater State
	A) Heating Phase - 10 hrs. Terminate on approval of P.I.	140, 144		DTR 21, TR 21	1101
6-22	B) Monitor upper section ring bridge for 15 minutes.	135, 152 (11 times), 140, 144		DTR 21, TR 21	1000
	C) Monitor Probe 2 gradient bridge for 15 minutes.	135, 143		DTH (21, 22) T (21, 22)	1000'.
	D) Monitor upper section ring bridge for 15 minutes.	140, 144		DTR 21, TR 21	1000
	 E) Return to Step C and repeat steps (C thru D) for a mini- mum of 6 hr. 				
	F) Return to Mode l operation, full sequence	135, 141			

44

-	EVENT	MCC ACTIVITY	NOMINAL VALUE	REMARK	S
19.	Heat Flow Conduc- tivity Experiment 8 Mode 2 operation H 23	Command Sequence (Initiate and Verify)		Bridge Measurement	Heater State
	A) Initiation	Monitor for 2 hours		DTH 22	1000
	B) Heating Phase	152 (7 times), 136		DTH 22	1111
6-23	PI will deter- mine after 1 hour, to continue in Mode 2 or switch to Mode 3 opera- tion.				
20.	Heat Flow Conduc- tivity Experiment 8 Mode 3 operation	Command Sequence (Initiate and Verify)		Bridge Measurement	Heater <u>State</u>
	A) Heating Phase 10 hrs.	140, 144		DTR 22, TR 22	1111
	Terminate on approval of PI.				
	B) Monitor upper section ring bridge for 15 minutes.	135, 152 (9 times), 140, 144		DTR 21, TR 21	1000
	C) Monitor lower section ring bridge for 15 minutes.	135, 152, 152, 140, 144		DIR 22, IR 22	1010

Ŋ

	EVENT	MCC ACTIVITY	NOMINAL VALUE		REMARKS	
20.	(Continued)					
	D) Monitor Probe 2 gradient bridge for 15 minutes.	135, 143, 152 (14 times)		DTH (21, 22) T (21, 22)	1000	
	E) Monitor upper section ring bridge for 15 minutes.	140, 144		DTR 21, TR 21	1000	
6-24	F) Return to Step C and repeat Steps (C thru E) for a mini- mum of 6 hours.					
	G) Return to Mode l operation, full sequence	135, 141				

	EVENT	MCC ACTIVITY	NOMINAL VALUE	REMARKS
21.	Charged Particle Environment Experiment	A. Monitor science data continu- ously with CPLEE in automatic voltage sequence mode.		Report abnormal activity to PI.
	IAPCIIMCII	B. Once per day monitor and record CPLEE housekeeping parameters listed below.		If any housekeeping parameters exceed the red- line limits initiate contingency action.
ი ֈ		AC-2 Channeltron PS #1 AC-3 Channeltron PS #2 AC-4 DC-DC Conv. Volts AC-5 Temp. of phy. anal. AC-6 Temp. of Swt. P.S.		
25		C. At discretion of the PI, utilize CPLEE voltage step command to concentrate on particular range of particle energy.		
22.	Dust Detector	A. Lunar Day		
		l. Initiate and verify command CX-Ol (Octal 027) DUST DETECTOR ON.		
		2. Once per day, log outputs of dust detector cells, AX-4, AX-5 and AX-6 (HK channels 84, 26 and 41), corrected for temperature per AX-1, AX-2 and AX-3 (Channels 83, 30 and 56) and supply voltages (plus and minus 12 volts, Channel 50 and 79.)		Note any significant trends,

	EVENT	MCC ACTIVITY	NOMINAL VALUE	REMARKS
 22. Du	EVENT st Detector ontinued)	MCC ACTIVITY B. Lunar Night 1. After terminator has passed ALSEP site, initiate and verify command CX-O2 (Octal O31) DUST DETECTOR OFF 2. Confirm small increase in reserve power (Channel 8) when command is executed.		REMARKS

7.0 PHASE IV (ONE-YEAR PHASE)

Phase IV as outlined in Table 7-1 covers the period from forty-five (45) days through the first year of operational life for ALSEP.

TABLE 7-1 PHASE IV, (ONE-YEAR PHASE)

*

EVENT	MCC ACTIVITY	NOMINAL VALUE	REMARKS
1. Central Station	A. Check Central Station temperatures as in Phase III, Event 1, Step A, and initiate any contingency action indi- cated. Log critical para- meters for trend identification		Check temperatures early in each access period, and every day during continuous coverage.
	B. Check and log RTG temperatures as in Phase III, Event 1, Step B.1.		Every 24 hours
7-22	C. Check telemetry of power supply parameters as in Phase III, Event 1, Step B.3. Log for trend identification. Initiate contingency action if required (e.g., switch PCUs).		Check telemetry early in each access period. and every day during continuous coverage.
	D. Check transmitter performance as in Phase III, Event 1, Step D. Log data and initiate contingency action (e.g., switch transmitters), if necessary.		Check transmitter early in each access period, and every day during continuous coverage.

TABLE 7-1 PHASE IV, (ONE-YEAR PHASE)

*

_	EVENT	MCC ACTIVITY	NOMINAL VALUE	REMARKS
1.	Central Station (Continued)	E. Check receiver performance as in Phase III, Event 1, Step F. Log results.		Check receiver every day and near the end of each access period.
		F. Check the bit error rate of the downlink as in Phase III, Event 1, Step E. Log results		Check downlink bit error every day and near the end of each access period.
4		G. Optimize the Central Station thermal environment for the next 24-hour period as in Phase III, Event 1, Step C.		Optimize thermal control every day and near the end of each access period.
°2.	Passive Seismic Experiment	A. Early in the access period and every day during continuou coverage, check sensor tempers ture, DL-7, and initiate contingency action if out-of- limits.	LS ,-	
		B. Early in the access period and again near end of access, cheo Tidal X, Y and Z data, DL-4, DL-5 and DL-6, respectively, for excessive drift of sensor and relevel, if necessary, in accordance with Phase I, Event 8, Step J (deleting steps J.2, J.3, J.16 and J.17).	k	

7-3

TABLE 7-1 PHASE IV, (ONE-YEAR PHASE)

	EVENT	MCC ACTIVITY	NOMINAL VALUE	REMARKS
2.	Passive Seismic Experiment (Continued)	C. During each continuous coverage access period, check for evi- dence of automatic calibration in short period data, DL-8, and initiate contingency action if necessary. Adjust gain, if necessary, per Phase I, Event 8, Step H.		
7-4		D. During each access period, calibrate long period cir- cuitry as in Phase I, Event 8, Step K.		
• •		E. Near the end of each access period, examine science data for evidence of unusual developments.		
3.	Cold Cathode Gauge Experiment	 A. Monitor the CCGE Engineering and Scientific data. B. Monitor the experiment supply voltage, Channel 20. 	29.0 volts	Log abnormal activity. During the 2 hour period of real-time monitoring print out CCGE data with high speed printer once every 15 minutes.

TABLE 7-1 PHASE IV, (ONE-YEAR PHASE)

چ

	EVENT	MCC ACTIVITY	NOMINAL VALUE	REMARKS	
4.	Heat Flow Experiment	Command Sequence:		Bridge Measurement: Heater	State:
	A. Check HFE data for 2 hr. periods	(Initiate and Verify)		Monitor temperature trends at each so Monitor mode, heater, and programmer and note abnormal readings.	ensor. states
	1. Initiation			Ensure heater state is 0000. If not command 152 until state 000 is reached	, send ed.
	2. M 3 operation - 15 min.	140, 144	:	DTR11 0000	
7- 5	3. M l operation - 15 min.	135, 152, 152		Full Sequence 0010	
	4. M 3 operation - 15 min.	140, 144		DTR12 0010	
	5. M 1 operation - 15 min.	135, 152 (6 times)		Full Sequence 1000	
	6. M 3 operation - 15 min.	140, 144		DTR21 1000	
	7. M 1 operation - 15 min.	135, 152, 152		Full Sequence 1010	
	8. M 3 operation - 15 min.	140, 144		DTR22 1010	
	9. M 3 operation - 15 min.	135, 152 (6 times)		Full Sequence 0000	
				The PI will perform a second set of c tivity experiments during the final t of the lunar year.	conduc- wo months

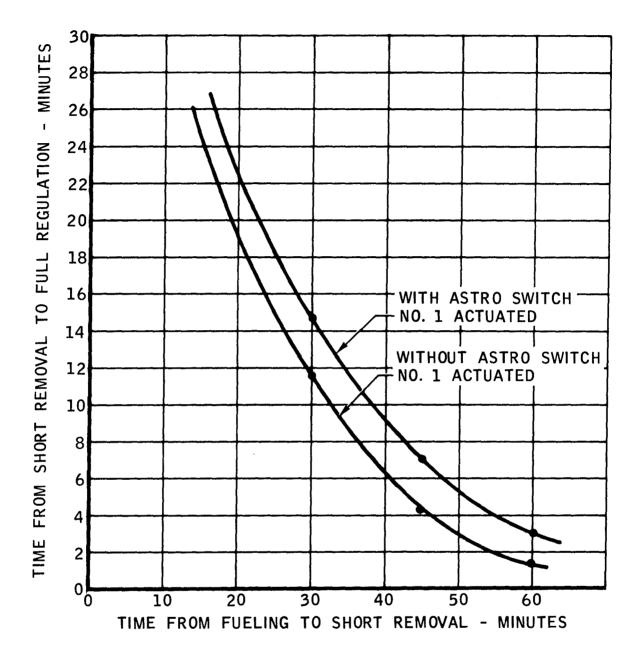
TABLE 7-1PHASE IV, (ONE-YEAR PHASE)

-10

-

	EVENT		MCC ACTIVITY	NOMINAL VALUE	REMARKS
5.	Charged Particle Lunar Environ- ment Experiment	Α.	Early in each access period check status of CPLEE housekeeping.		Log abnormal activity and initiate contingency action if required.
		в.	Monitor CPLEE science data and adjust voltage stepper mode, at the discretion of the PI, to optimize data.		
6. 7-6	Dust Detector	Α.	At access just prior to lunar sunrise, turn on dust detector by initiating and verifying command CX-Ol (Octal 027) DUST DETECTOR ON.		
		в.	Once per day during lunar day check and log dust detector data as in Phase III, Event 22, Step A.2. Compare against previously obtained data for same point in lunar cycle.		
		с.	At first access after lunar sunset, turn dust detector off by initiating and verifying command CS-02 (Octal 031) DUST DETECTOR OFF.		

7-6


8.0 EXPERIMENT CONSUMABLES

The following graphs of the experiment consumables are enclosed.

The RTG Power Profile is presented in Figure 8-1.

The PCU Power output vs. Central Station Dissipation is presented in Figure 8-2.

The Power Profile for the PSE is presented in Figure 8-3. The Power Profile for the CCGE is presented in Figure 8-4. The Power Profile for the HFE is presented in Figure 8-5. The Power Profile for the CPLEE is presented in Figure 8-6.

NOTES:

**

- 1. FULL REGULATION IS 36 WATTS @ 16 VOLTS.
- 2. A VARIATION OF \pm 3 MINUTES MUST BE ALLOWED DUE TO VARIABLES AFFECTING RTG LUNAR SURFACE OPERATION.

Figure 8-1 RTG POWER PROFILE

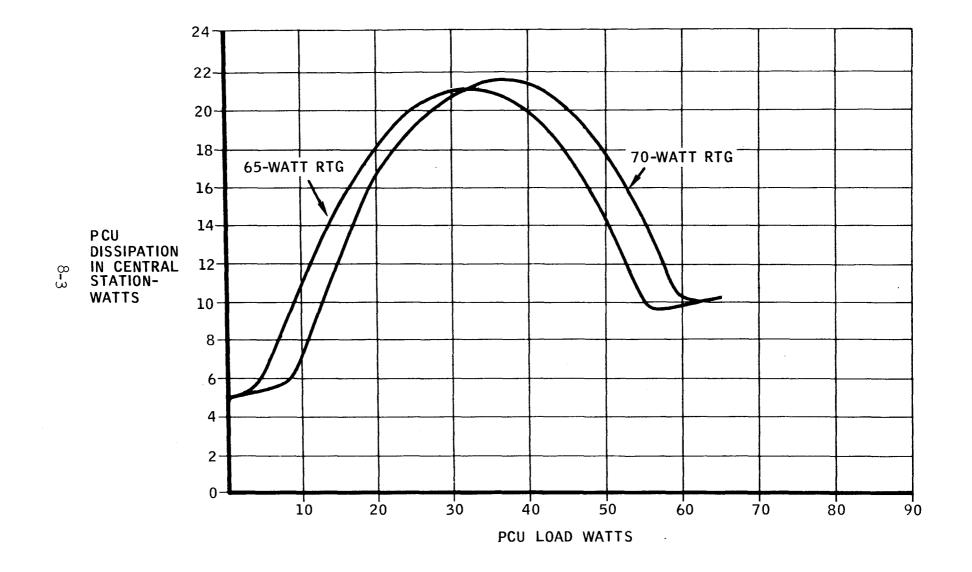


Figure 8-2 PCU POWER OUTPUT VS CENTRAL STATION DISSIPATION

Ø

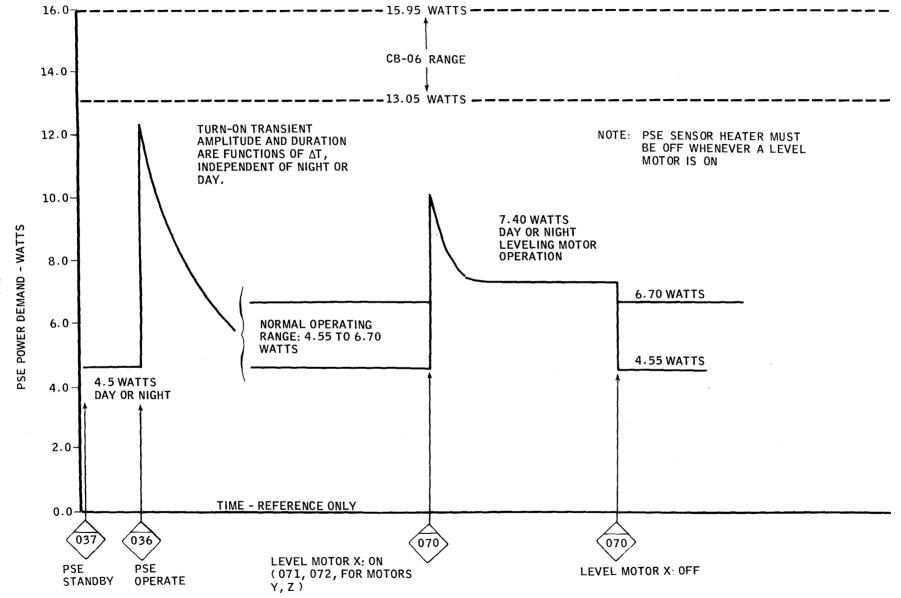


Figure 8-3 PSE POWER PROFILE

8-4

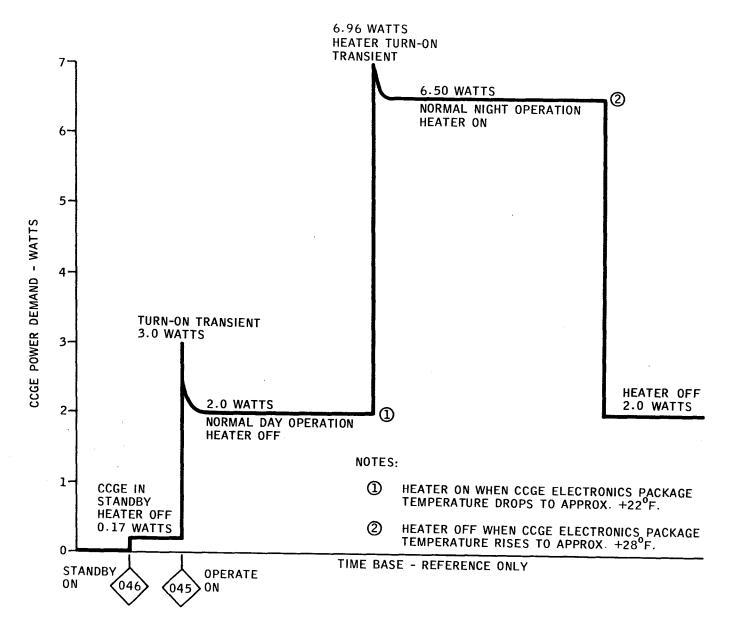
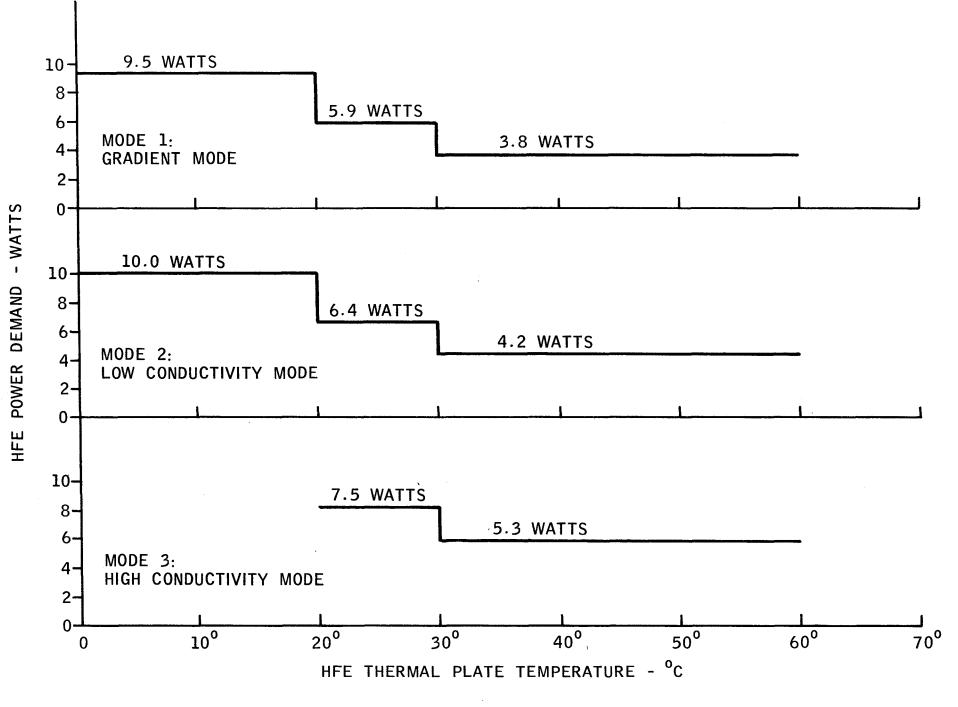
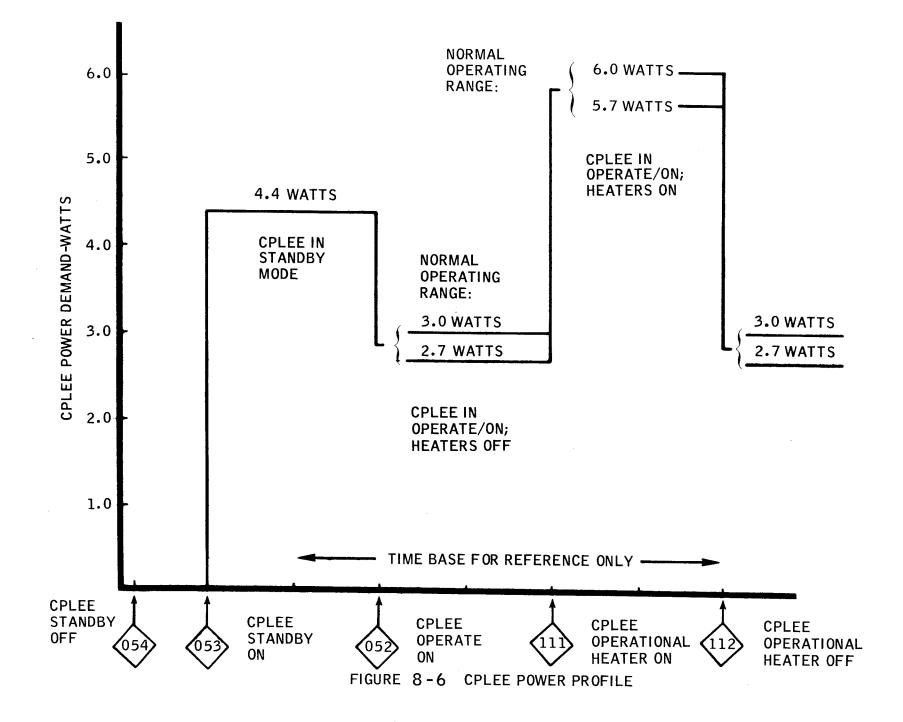



FIGURE 8-4 CCGE POWER PROFILE

8-5


4

*

Figure 8-5 HFE POWER PROFILE

8**-**6

1

.