9

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

AS-511/CSM-112/LM-10 APOLLO MISSION J-1 (APOLLO 15)

MISSION SCIENCE REQUIREMENTS

PRELIMINARY

OCTOBER 30, 1970

02253

LUNAR MISSIONS OFFICE SCIENCE AND APPLICATIONS DIRECTORATE MANNED SPACECRAFT CENTER

HOUSTON, TEXAS

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

۵

9

L

MISSION SCIENCE REQUIREMENTS J-1 TYPE MISSION (APOLLO 15)

PRELIMINARY

October 30, 1970

Prepared by TRW Systems

for

LUNAR MISSIONS OFFICE SCIENCE AND APPLICATIONS DIRECTORATE MANNED SPACECRAFT CENTER HOUSTON, TEXAS

C2253

Contract NAS 9-8166

MISSION SCIENCE REQUIREMENTS

J-1 TYPE MISSION (APOLLO 15)

PRELIMINARY

SUBMITTED BY:

Richard R. Baldwin, TM1 Science Mission Manager

CONCURRED BY:

12

110

James H. Sasser, Chief Mapping Sciences Laboratory

R. Bryan Ærb, Manager Lunar Receiving Laboratory

APPROVED BY:

m

John G. Zarcaro, Manager Lunar Missions Office

Anthony J. Calio, Director Science and Applications

iii

ACKNOWLEDGEMENT

A number of Science and Applications Directorate and Contractor organizations were responsible for providing data contained in this document. Acknowledgement is made to the organizations listed below for their valuable support and contributions:

- Section III, Photographic Plan: Data Management and Operations Office/TM5, supported by General Electric Company; Mapping Sciences Laboratory/TJ; and Photographic Technology Laboratory/ BL.
- Section V, Science Operations Support Plan: Data Management and Operations Office/TM5, supported by General Electric Company.
- Section VI, Science Recovery Plan: Data Management and Operations Office/TM5, supported by General Electric Company.
- Section VII, Lunar Receiving Laboratory Plan: Lunar Receiving Laboratory/TL.
- Section VIII, Contingency Plan: Data Management and Operations Office/TM5, supported by General Electric Company.
- Appendix E, Film Characteristics and Processing Test Data: Photographic Technology Laboratory/BL.

Information, advice, and support provided by many other organizations and personnel, too numerous to list, are also gratefully acknowledged.

iv

INTRODUCTION

The Mission Science Requirements Document (MSRD) has been produced by TRW Systems under the direction of the Lunar Missions Office, Science and Applications Directorate (LMO/S&AD). It is intended for use by the Manned Spacecraft Center (MSC) and off-site organizations in program and mission planning and in the integration and implementation of mission science requirements. Detailed data included in this document are provided as source material for other MSC documents such as the Flight Plan, Lunar Surface Procedures, Photographic and Television Procedures, Voice Data Plan, Launch Mission Rules, and Flight Mission Rules.

The MSRD is divided into the following eight sections: Section I, General Mission Science Planning; Section II, Experiment and Equipment Description; Section III, Photographic Plan; Section IV, Lunar Traverse Plan; Section V, Science Operations Support Plan; Section VI, Science Recovery Plan; Section VII, Lunar Receiving Laboratory Plan; and Section VIII, Contingency Plan. These sections include detailed data which supplement science requirements for the J-1 Mission experiments defined in Detailed Experiment write-ups incorporated in the Mission Requirements Document.

Publication dates for the MSRD have been scheduled to optimize the availability and use of science data for preparation of other MSC documents. These publication dates for the J-1 Mission MSRD are: L - 9 months for the preliminary MSRD, L - 5 months for the final MSRD, and L - 2 1/2 months for the MSRD revision.

All proposed changes to and requests for additional copies of the MSRD should be submitted in writing to the following representatives of the Lunar Missions Office, Manned Spacecraft Center, Houston, Texas: Mr. Richard R. Baldwin/TM1, Science Mission Manager, J-1 Mission, and Mr. Bruce H. Walton/TM1, Technical Assistant.

v

CONTENTS

9000 ⁰⁰⁰ .	Section	Page
	I	GENERAL MISSION SCIENCE PLANNING
		1.1 General
		1.2 Mission Description
		1.3 Mission Science Objectives
		1.4 Landing Site Description
		1.5 Mission Science Experiments and Objectives 1-5
		1.6 Priority of Science Experiments and Objectives
	II	EXPERIMENT AND EQUIPMENT DESCRIPTION
		2.1 General
		2.2 Lunar Orbit Science Experiments and Objectives 2-1
loven _{dez v}		2.2.1 Command Module Science Experiments and Objectives
1899 (Freed		2.2.2 Service Module Science Experiments and Objectives
		2.3 Lunar Surface Science Experiments and Objectives
		<pre>2.3.1 ALSEP Experiments</pre>
	III	Objectives
	111	
		3.1 General
		3.2 Summary of Film Types
		3.3 Photographic/Science Requirements Correlation 3-1
		3.4 Photographic Reproduction Requirements
	IV	LUNAR TRAVERSE PLAN
	i	4.1 General
Station .		4.2 Geological Description

٩

C

CONTENTS (Continued)

Section		Page
	4.3 Experiment Activities	4-2
	4.4 Traverses	4-3
	4.5 Ground Rules and Constraints	4-3
v	SCIENCE OPERATIONS SUPPORT PLAN	5-1
	5.1 General	5-1
	5.2 Mission Phases	5 - 1
	5.2.1 Phase I (Lunar Surface EVA Phase)	5-2
	5.2.2 Phase II (Lunar Surface Operation	
	Checkout Phase)	5-2
	5.2.3 Phase III (Forty-Five Day Phase)	
	5.2.4 Phase IV (One-Year Phase)	5-2
	5.2.5 Phase V (Lunar Orbit Phase)	5-2
VI	SCIENCE RECOVERY PLAN	6-1
	6.1 General	6-1
	6.2 Preparation and Transportation Requirements	6-1
	6.2.1 Preparation of Data and Equipment	
	for Return to MSC	6-1
	6.2.2 Transportation Requirements	6-1
VII	LUNAR RECEIVING LABORATORY PLAN	7-1
VIII	CONTINGENCY PLAN	8-1
	8.1 General	8-1
	8.2 Assumptions	8-1
	8.3 Time Constraint	8-1
	8.4 Hold Points	8-2
	8.5 Experiment Rescheduling	8-2

,

Contraction of the second seco	Section		Page
	APPENDIX A	Acronyms and Abbreviations	A-1
	APPENDIX B	Glossary	B-1
	APPENDIX C	References	C-1
	APPENDIX D	Distribution	D-1
Ŵ	APPENDIX E	Film Characteristics and Processing Test Data	E-1

₩...

and the second s

TABLES

銢

٢:

and and a second se

Carrier and a second se

-	Table		P	age
	1-1	J-l Lunar Orbit Command Module Science Experiments/ Objectives and Cognizant Science Personnel	•	1-8
	1-2	J-1 Lunar Orbit Service Module Science Experiments/ Objectives and Cognizant Science Personnel	•	1–9
	1-3	J-l Lunar Surface Science Experiments/Objectives and Cognizant Science Personnel	•	1-12
	1-4	J-1 Mission Lunar Science Experiment/Objective Priority	•	1-15
	2-1	Lunar Orbit Science Equipment Summary	•	2-18
	2-2	Lunar Surface Science Equipment Summary	•	2-23
	3-1	Previous Apollo Flight Films		3-3
	3-2	Lunar Orbit Science Photographic Requirements	•	3-4
	3-3	Lunar Surface Science Photographic Requirements	•	3-14
	3-4	Photographic Reproduction Requirements	•	3-2
	4-1	Experiments Activities	•	4-4
	4-2	Traverse Data for Hadley-Apennines	•	413
	5-1	Phase I (Lunar Surface EVA Phase)	•	5-3
	5-2	Phase II (Lunar Surface Operation Checkout Phase)	•	5-40
	5-3	Phase III (Forty-Five Day Phase)	•	5 - 61
	5-4	Phase IV (One-Year Phase)		5-84
	5-5	Phase V (Lunar Orbit Phase)		5-90
	6-1	J-1 Mission Scientific Data and Equipment Recovery Requirements Matrix	•	6-3
	8-1	Experiment Use for Contingency Missions	•	8-3
	8-2	EVA Decisions	•	8-4

xi

ILLUSTRATIONS

钧

£.

and the second sec

Figure	Page
2-1	J-1 Mission SIM Bay Orbit Experiments Installation
2-2	Major 24-Inch Panoramic Camera Subassemblies 2-29
2-3	24-Inch Panoramic Camera
2-4	24-Inch Panoramic Camera Optics Detail 2-31
2-5	Field-of-View Detail of 24-Inch Panoramic Camera Assembly
2-6	3-Inch Mapping Camera and Laser Altimeter Assembly
2-7	SIM Bay Boom-Mounted Experiments Deployment 2-34
2-8	SIM Bay Gamma-Ray Spectrometer Experiment Assembly 2-35
2-9	SIM Bay Housing of Alpha Particle/X-Ray Fluorescence Sensors and Electronics
2-10	SM Mounting of X-Ray Fluorescence Solar Monitor 2-37
2–11	Mass Spectrometer Experiment Assembly
2-12	SIM Bay Subsatellite
2-13	Subsatellite Experiment Concept (Particle Shadows/Boundary Layer and Magnetometer) 2-40
2-14	ALSEP Central Station Assembly Details
2-15	LM SEQ Bay Stowage of ALSEP Subpackages
2-16	LM SEQ Bay Subpackages Configurations - ALSEP A-2/Heat Flow Array
2-17	Typical ALSEP Subpackages Experiment Mounting Details
2-18	RTG Fuel Cask Structure/LM Interface Detail 2-45
2-19	RTG Fuel Transfer Activities
2-20	ALSEP RTG Assembly
2-21	Preparation of ALSEP Subpackages for Traverse to Deployment Site

ILLUSTRATIONS (Continued)

Figure	Page
2–22	Perspective Representation of ALSEP Array A-2/ Heat Flow in Deployed Positions
2–23	Passive Seismic Experiment (S-031)
2–24	Deployed Passive Seismic Experiment (S-031) 2-51
2–25	Passive Seismic Experiment Sensors
2–26	Lunar Surface Magnetometer Experiment (S-034) 2-53
2–27	Solar Wind Spectrometer Experiment (S-035) 2-54
2–28	Deployed Suprathermal Ion Detector (S-036) and Cold Cathode Ion Gauge (S-058) Experiments
2–29	Heat Flow Experiment (S-037) Equipment
2-30	Heat Flow Experiment Probe Emplacement Detail 2-57
2-31	Apollo Lunar Surface Drill (ALSD)
2-32	Lunar Dust Detector Experiment (M-515)
2-33	Contingency Sampler (Contingency Sample Objective) 2-60
2-34	Lunar Geology Sample Containers
2-35	Lunar Field Geology Experiment (S-059) Equipment 2-62
2-36	Lunar Roving Vehicle
2-37	Laser Ranging Retro-Reflector Experiment (S-078) 2-64
2-38	Soil Mechanics Experiment (S-200)
4-1	Landing Site
4-2	ALSEP Array A-2/Heat Flow Layout 4-15
4-3	Hadley-Apennines Traverse Routes
5-1	Lunar Operation Phases, Events Identification 5-109
5-2	Lunar Surface Equipment Use Chart

xiv

,

ILLUSTRATIONS (Continued)

Conserver -	Figure		Page
	5-3	ALSEP Array A-2/Heat Flow Deployment Diagram (Typical)	5-111
	5-4	Lunar Geology General Planning Chart	5-112
ŵ.	5-5	Heat Flow Experiment, Heater Sequence	5-113

ç

and the second second

Noneral P

xv

SECTION I

GENERAL MISSION SCIENCE PLANNING

1.1 GENERAL

This section summarizes the science objectives and experiments for Apollo Mission J-1 (Apollo 15). Included are a general description of the J-1 Mission, a listing of the general science objectives to be accomplished, a brief general description of the lunar landing site, and a listing of the individual science experiment and science-oriented objectives that have been assigned to accomplish these general science objectives. This section also identifies the cognizant MSC Point-of-Contact for science requirements and the Principal Investigator responsible for data analysis and reporting for each of these experiments/objectives. A more detailed description of the J-1 landing site and its desirable science characteristics are presented in Section IV, Lunar Traverse Plan.

1.2 MISSION DESCRIPTION

Apollo Mission J-1 is the first of three missions that will terminate the Apollo Space Flight Program. These missions will incorporate spacecraft hardware modification and additional science equipment to provide increased capabilities for greater mission science return than was possible on previous Apollo missions. These increased capabilities, referenced to the highly successful Apollo 12 Mission, will provide for:

- a) An extended total mission duration from 11 days to 16 days.
- b) An extended lunar surface staytime from 32 hours to 66 hours.
- c) An increased lunar injected payload from 101,000 pounds to 107,000 pounds.
- d) An increased lunar orbital science payload from 25 pounds to 900 pounds.
- e) An increased lunar surface-landed payload from 345 pounds to 1000 pounds.
- f) An increased lunar surface ascent science payload from 100 pounds to 175 pounds.

- g) An extended total lunar surface EVA operation time from 8 hours to 18 hours.
- h) An increased lunar surface mobility and exploration capability-new pressure suit, modified portable life support system (PLSS), lunar surface color TV, and Lunar Roving Vehicle.
- Conducting of scientific experiments and mapping operations from lunar orbit (SIM bay experiments and deployment of subsatellite).
- j) Deployment of a greater variety of lunar surface experiments and the conducting of more and varied lunar surface geological activities.

Nominally, the launch date for Apollo 15 (J-1 Mission) will be July 27, 1971, with a planned lunar landing at the Apennine Front/Hadley Rille landing site. A hybrid translunar trajectory will be required because of the increased gross weight of the spacecraft. Multiburn LOI maneuvers may be required to reach this relatively high-latitude (25°N) site.

The LM can remain on the lunar surface up to 65 hours. During this time it is planned to accomplish three 2-man EVA's, each having a duration of a little over 6 hours for lunar surface exploration and surface science experiments deployment. As currently planned the first EVA will be performed on the day of landing, the second on the following day, and the third on ascent day. The maximum radius of operation from the LM has been extended over that characterized by "foot" traverses through use of the upgraded PLSS and the Lunar Roving Vehicle. Nominally, the Lunar Roving Vehicle will not be more than about 8 km from the LM at any time. The total traverse distance per EVA is expected to be approximately 15-20 km (about 10 km for the first EVA) although the total traverse capability is much greater.

A 72-hour lunar orbital experiment period has been provided between CSM/LM rendezvous and TEI for subsatellite deployment, remote sensing of the lunar surface with the SIM bay sensors, and SIM bay high-resolution photography activities. These science activities will be performed after pyrotechnic jettisoning of the SIM door which will be accomplished after CSM/LM docking. Orbital science activities will be conducted in a nominal 60 NM circular orbit. Investigations are currently underway to accomplish

the lunar orbital and lunar surface science activities simultaneously, but this concept has not yet supplanted the original concept. Command Module science activities - principally photography - can be conducted during the LM surface stay period, during the regular orbital science period, and for selected periods during transearth coast and translunar coast.

Some SIM bay experiments will be operated during transearth coast to obtain galactic and spacecraft background data. This data gathering period will be interrupted by an EVA lasting approximately 44 minutes to retrieve the film cassettes from the SIM bay cameras. Splashdown will nominally occur on August 10, 1971 (15-day mission).

1.3 MISSION SCIENCE OBJECTIVES

Science objectives are derived from the official mission objectives, assigned by the Office of Manned Space Flight (OMSF), that are listed in the Apollo Flight Mission Assignments Directive (AFMAD). The AFMAD document has not yet been updated to reflect the recent science payload changes and landing site selection for the J-1 Mission. Thus, the precise official science objectives in terms of delineation and verbiage cannot be presented in this document issue. However, the science objectives to evolve are expected to be similar to those presented in the following list:

- a) Investigate, survey, and sample the floor of a sinuous rille.
- b) Investigate, photograph, and document the major materials and structures of a sinuous rille.
- c) Investigate, photograph, and document Apennian materials in the mare landing area that may be impact ejecta from the formation of the Imbrium Basin.
- d) Emplace and activate science experiments for the purpose of examining local, regional, and subsurface structures and environmental characteristics.
- e) Investigate, survey, and measure the lunar surface and the nearmoon environment from lunar orbit.

These primary science objectives have, in turn, been subdivided into individual science experiments and detailed science objectives intended to acquire the information necessary to fulfill these primary objectives. Science experiments are those scientific investigations which have been recommended and assigned a number (e.g., S-059) by the Manned Space Flight Experiments Board (MSFEB), and assigned to the Apollo Program by the Associate Administrator for Manned Space Flight. Detailed scientific objectives represent science investigations that provide data and experience useful for the development of science hardware and/or procedures for application to other Apollo missions, or which contain activities largely of an experimental nature (e.g., SM Orbital Photographic Tasks).

Detailed objectives and experiments also encompass engineering, medical, and similar disciplines. Only those of a science nature are discussed in this document. The lone exception is the Lumar Dust Detector Experiment (M-515) which is classified as an engineering experiment. However, the data expected to be obtained from it are of interest to the scientific community, particularly the Principal Investigators for the lumar surface experiments. Detailed objectives, experiments, operational objectives, and engineering tests for all disciplines including science to be performed on the J-1 mission are contained in the J-1 Mission Requirements Document (MRD) published by the Systems Engineering Division, Apollo Spacecraft Program Office. Changes in mission assignments of experiments, detailed objectives, and operational tests are governed by Configuration Control Board Directives approved by the Apollo Program Director.

1.4 LANDING SITE DESCRIPTION

The J-1 mission landing site, termed Hadley-Apennines, is located in the north-central part of the moon (latitude of 24.5°N, longitude of 2.5°E) at the foot of the Apennine Mountains. These mountains rise up to 2km above the lunar surface and ring the eastern end of the Mare Imbrium ("sea of rains"). In comparison, this great fault scarp is higher than the east

face of the Sierra Nevada in the western United States as well as the great Himalayan Front that rises above the plains of India. The actual landing point of interest, however, is near the sinuous rille Rima Hadley that winds down from the mountains and meanders across the Palus Putredinis ("swamp of decay").

Hadley Rille is a v-shaped sinuous rille that essentially parallels the Apennine Mountain front along the eastern boundary of Mare Imbrium. The rille originates in an elongated depression in an area of domes, apparently volcanic in nature, and generally has a width of about 1 km and a depth of about 200 m until it merges with a second rille approximately 100 km to the north. Fresh exposures, possibly of stratified mare beds, occur along the top of the rille walls down which numerous blocks have rolled to settle on the floor of the rille. The origin of sinuous rilles is very puzzling to selenographers, and is thought by some to be caused by some type of fluid flow mechanism. The determination of the nature and origin of this sinuous rille and its associated elongated depression and deposits will provide information of an important lunar surface process and may yield data on the history of lunar volatiles.

The Apennine Mountains that rise from the area of Rima Hadley contain ancient material exposed during the excavation of the Imbrium Basin. Sampling of Apennine material should provide very ancient rocks whose origin predates the foundation and filling of the major mare basins.

An additional surface feature of interest in this landing area is a small (5.5 km in diameter) but conspicuously sharp and round crater which appears to have partially covered the rille. This crater, termed Hadley C, is characterized by a raised rim and ejecta blanket which covers the mare craters and other features in the surrounding area. The origin of this crater is a subject of interest and speculation among lunar scientists.

1.5 MISSION SCIENCE EXPERIMENTS AND OBJECTIVES

The science experiments and objectives assigned to this mission have been divided into three groupings: those to be performed from the Command Module in lunar orbit; those to be performed from the Service Module in lunar orbit; and those to be performed on the lunar surface. Command Module lunar orbital experiments and objectives are listed in Table 1-1,

Service Module lunar orbital experiments and objectives are listed in Table 1-2, and lunar surface experiments and objectives are listed in Table 1-3. These tables also list the Principal Investigator or Chairman of the Principal Investigator Team, as applicable, and the MSC/S&AD Pointof-Contact assigned to each experiment or objective. The official CCBcontrolled mission requirements (functional test objectives, test conditions, data requirements, etc.) for these experiments and objectives appear in the J-1 Mission Requirements Document.

Any questions that arise concerning the science or operational requirements of a particular experiment or objective should be directed to the S&AD Point-of-Contact who represents the science interface between MSC and the Principal Investigator. Problems that arise regarding integration of these experiments and objectives into mission and program planning should be referred to the S&AD Science Mission Manager for the J-1 Mission, Mr. Richard R. Baldwin/TMl of the Lunar Missions Office.

1.6 PRIORITY OF SCIENCE EXPERIMENTS AND OBJECTIVES

Science priorities are subject to the approval of the Associate Administrator for the Office of Space Sciences and Application (OSSA) and concurrence of the Apollo Program Director. Recommendations for this approval are submitted to OSSA by the Apollo Lunar Exploration Office (MAL). The priorities for the J-1 Mission experiments/objectives are the MSC ASPO/ S&AD recommendations presented to MAL.

Science experiments and objectives for the J-1 Mission are listed in Table 1-4 in descending order of priority. The order of priority presented is based upon such considerations as the science value of the experiment and the science benefits expected; the results obtained from previous missions; changes made in the science payload since previous missions; the science "opportunity" for the mission such as a particular landing site; "first time to fly" hardware; and the role of the experiment or objective in integrated science planning for future flights and programs.

This prioritization is of significance only when any of the experiments or objectives cannot be accomplished as planned because some contingency or abnormal situation occurs during the mission with a resulting

impact on such major mission considerations as consumables availability, crew participation in the science activities, or the mission timeline. This priority listing is provided to facilitate the assessment of the relative importance of each experiment and objective which will, in turn, aid in real-time replanning and rescheduling of science activities. The information presented is intended to maximize science return from the mission if a contingency situation arises where tradeoffs must be made and assessed quickly and efficiently in terms of crew requirements, spacecraft capabilities, and time availability.

*f*w

LUNAR ORBIT EXPERIMENT/OBJECTIVE		PRINCIPAL INVESTIGATOR	S&AD POINT-OF-CONTACT
NO.	TITLE		
-	 CM Photographic Tasks, includes use of: Hasselblad Electric Data Camera Hasselblad Electric Camera Maurer Data Acquisi- tion Camera 	CSM Orbital Science Photographic Team Mr. Frederick J. Doyle, Chairman Topographic Division U. S. Geological Survey 1340 Old Chainbridge Road McLean, Virginia 22101 (202) 343-9445	Mr. Samuel N. Hardee, Jr./TM2 Lunar Orbital Experiments Office Lunar Missions Office NASA Manned Spacecraft Center Houston, Texas 77058 (713) 483-4621
S-176	Apollo Window Meteoroid	<u>TBD</u>	TBD
S-177	UV Photography-Earth and Moon	Dr. Tobias C. Owen Department of Earth and Space Sciences The State University of New York Stony Brook, New York 11790 (516) 246-5000	Mr. Samuel N. Hardee, Jr./TM2 Lunar Orbital Experiments Office Lunar Missions Office NASA Manned Spacecraft Center Houston, Texas 77058 (713) 483-4621
S-178	Gegenschein from Lunar Orbit	Mr. Lawrence Dunkelman, Code 613.3 Planetary Optics Section NASA Goddard Space Flight Center Greenbelt, Maryland 20771 (201) 982-4988	Mr. Samuel N. Hardee, Jr./TM2 Lunar Orbital Experiments Office Lunar Missions Office NASA Manned Spacecraft Center Houston, Texas 77058 (713) 483-4621

Table 1-1. J-1 Lunar Orbit Command Module Science Experiments/Objectives and Cognizant Science Personnel

Table 1-2. J-1 Lunar Orbit Service Module Science Experiments/Objectives and Cognizant Science Personnel

Ð

LUN. NO.	AR ORBIT EXPERIMENT/OBJECTIVE TITLE	PRINCIPAL INVESTIGATOR	S&AD POINT-OF-CONTACT
	SM Orbital Photographic Tasks, includes use of: • 24-Inch Panoramic Camera • 3-Inch Mapping Camera • Laser Altimeter	CSM Orbital Science Photographic Team Mr. Frederick J. Doyle, Chairman Topographic Division U. S. Geological Survey 1340 Old Chainbridge Road McLean, Virginia 22101 (202) 343-9445 Laser Altimeter Data Analysis Dr. William M. Kaula Institute of Geophysics and Planetary Physics University of California at Los Angeles Los Angeles, California 90024 (203) 825-4363	Mr. Samuel N. Hardee, Jr./TM2 Lunar Orbital Experiments Office Lunar Missions Office NASA Manned Spacecraft Center Houston, Texas 77058 (713) 483-4621
S-160	Gamma-Ray Spectrometer	Dr. James R. Arnold Chemistry Department University of California at San Diego La Jolla, California 92037 (714) 453-2000 Ext. 1453	Mr. Leo E. James/TM2 Lunar Orbital Experiments Office Lunar Missions Office NASA Manned Spacecraft Center Houston, Texas 77058 (713) 483-4621
S-161	X-Ray Fluorescence	Dr. Isidore Adler, Code 641 Theoretical Studies Branch NASA Goddard Space Flight Center Greenbelt, Maryland 20771 (301) 982-5759	Mr. Leo E. James/TM2 Lunar Orbital Experiments Office Lunar Missions Office NASA Manned Spacecraft Center Houston, Texas 77058 (713) 483-4621

LUNAF	R ORBIT EXPERIMENT/OBJECTIVE	PRINCIPAL INVESTIGATOR	S&AD POINT-OF-CONTACT
NO.	TITLE		
S-162	Alpha Particle Spectrometer	Dr. Paul Gorenstein American Science and Engineer- ing, Inc. 11 Carleton Street Cambridge, Massachusetts 02142 (617) 868-1600 Ext. 214	Mr. Leo E. James/TM2 Lunar Orbital Experiments Office Lunar Missions Office NASA Manned Spacecraft Center Houston, Texas 77058 (713) 483-4621
S-164	<pre>S-Band Transponder Subsatellite CSM LM</pre>	Mr. William L. Sjogren Mail Code 156-251 Jet Propulsion Laboratory 4800 Oak Grove Drive Pasadena, California 91103 (213) 354-4868	Mr. Patrick E. Lafferty Lunar Orbital Experiments Office Lunar Missions Office NASA Manned Spacecraft Center Houston, Texas 77058 (713) 483-4621
S-165	Mass Spectrometer	Dr. John H. Hoffman Atmospheric & Space Sciences University of Texas at Dallas P. O. Box 30365 Dallas, Texas 75230 (214) 231-1471 Ext. 322	Mr. Vernon M. Dauphin/TM2 Lunar Orbital Experiments Office Lunar Missions Office NASA Manned Spacecraft Center Houston, Texas 77058 (713) 483-4621
S-170	Bistatic Radar	Mr. H. Taylor Howard Stanford Electronics Laboratory Stanford University Stanford, California 94305 (415) 321-2300 Ext. 3537	Mr. Patrick E. Lafferty/TM2 Lunar Orbital Experiments Office Lunar Missions Office NASA Manned Spacecraft Center Houston, Texas 77058 (713) 483-4621

Table 1-2. J-1 Lunar Orbit Service Module Science Experiments/Objectives and Cognizant Science Personnel (Continued)

LUNAR	ORBIT EXPERIMENT/OBJECTIVE	PRINCIPAL INVESTIGATOR	S&AD POINT-OF-CONTACT
NO.	TITLE		
S-173	Particle Shadows/Boundary Layer (Subsatellite)	Dr. Kinsey A. Anderson Space Science Laboratory University of California at Berkeley Berkeley, California 94726 (415) 642-1313	Mr. Patrick E. Lafferty/TM2 Lunar Orbital Experiments Office Lunar Missions Office NASA Manned Spacecraft Center Houston, Texas 77058 (713) 483-4621
S-174	Magnetometer (Subsatellite)	Dr. Paul J. Coleman, Jr. Department of Planetary and Space Science University of California at Los Angeles Los Angeles, California 90024 (213) 825-1776	Mr. Patrick E. Lafferty/TM2 Lunar Orbital Experiments Office Lunar Missions Office NASA Manned Spacecraft Center Houston, Texas 77058 (713) 483-4621

 Table 1-2.
 J-1 Lunar Orbit Service Module Science Experiments/Objectives and Cognizant Science Personnel

 (Continued)

¢

Ð

	SURFACE EXPERIMENT/OBJECTIVE	PRINCIPAL INVESTIGATOR	S&AD POINT OF CONTACT
NO. -	TITLE Contingency Sample Collection	MSC Science Working Panel Subgroup Dr. Robert O. Pepin, Chairman School of Physics and Astronomy University of Minnesota Minneapolis, Minnesota 55455 (612) 373-7874	Mr. Martin L. Miller/TM3 Lunar Surface Experiments Office Lunar Missions Office NASA Manned Spacecraft Center Houston, Texas 77058 (713) 483-2666
-	Selected Sample Collection	MSC Science Working Panel Subgroup Dr. Robert O. Pepin, Chairman School of Physics and Astronomy University of Minnesota Minneapolis, Minnesota 55455 (612) 373-7874	Mr. Martin L. Miller/TM3 Lunar Surface Experiments Office Lunar Missions Office NASA Manned Spacecraft Center Houston, Texas 77058 (713) 483-2666
S-031	Passive Seismic (ALSEP Array A-2 Experiment)	Dr. Gary V. Latham Lamont-Doherty Geological Observ. Columbia University Palisades, New York 10964 (914) 359-2900	Mr. Wilbert F. Eichelman/TM3 Lunar Surface Experiments Office Lunar Missions Office NASA Manned Spacecraft Center Houston, Texas 77058 (713) 483-2666
S-034	Lunar Surface Magnetometer (ALSEP Array A-2 Experiment)	Dr. Palmer Dyal, Code N204-4 Space Science Division/Electro- dynamics Branch NASA Ames Research Center Moffett Field, California 94034 (415) 961-1111 Ext. 2706	Mr. Timothy T. White/TM3 Lunar Surface Experiments Office Lunar Missions Office NASA Manned Spacecraft Center Houston, Texas 77058 (713) 483-2666

Table 1-3. J-1 Lunar Surface Science Experiments/Objectives and Cognizant Science Personnel

LUNAR SURFACE EXPERIMENT/OBJECTIVE		PRINCIPAL INVESTIGATOR	S&AD POINT-OF-CONTACT	
NO.	TITLE			
S-035	Solar Wind Spectrometer (ALSEP Array A-2 Experi- ment)	Dr. C. W. Snyder Jet Propulsion Laboratory 4800 Oak Grove Drive Pasadena, California 91103 (213) 354-3744 Ext. 2302	Mr. Martin L. Miller/TM3 Lunar Surface Experiments Office Lunar Missions Office NASA Manned Spacecraft Center Houston, Texas 77058 (713) 483-2666	
s-036	Suprathermal Ion De- tector (ALSEP Array A-2 Experiment)	Dr. J. W. Freeman Department of Space Science Rice University Houston, Texas 77001 (713) 528-4141 Ext. 1297	Mr. Martin L. Miller/TM3 Lunar Surface Experiments Office Lunar Missions Office NASA Manned Spacecraft Center Houston, Texas 77058 (713) 483-2666	
S-037	Heat Flow (ALSEP Array A-2 Experiment)	Dr. Marcus E. Langseth Lamont-Doherty Geological Observatory Columbia University Palisades, New York 10964 (914) 359-2900	Mr. Wilbert F. Eichelman/TM3 Lunar Surface Experiments Office Lunar Missions Office NASA Manned Spacecraft Center Houston, Texas 77058 (713) 483-2666	
S-058	Experiment)	Dr. Francis S. Johnson University of Texas at Dallas P. O. Box 30365 Dallas, Texas 75230 (214) 231-1471 Ext. 201	Mr. Martin L. Miller/TM3 Lunar Surface Experiments Office Lunar Missions Office NASA Manned Spacecraft Center Houston, Texas 77058 (713) 483-2666	

Table 1-3. J-1 Lunar Surface Science Experiments/Objectives and Cognizant Science Personnel (Continued)

*

Sec.

LUNAR SURFACE EXPERIMENT/OBJECTIVE		PRINCIPAL INVESTIGATOR	S&AD POINT-OF-CONTACT	
NO. S-059	TITLE Lunar Field Geology	Dr. Gordon A. SwannMr. Martin L. Miller/TM3Center of AstrogeologyLunar Surface Experiments OfficeU. S. Geological SurveyLunar Missions Office601 E. Cedar AvenueNASA Manned Spacecraft CenterFlagstaff, Arizona 86001Houston, Texas 77058(602) 774-1406(713) 483-2666		
S-078	Laser Ranging Retro- Reflector	Dr. James E. Faller Wesleyan University Middletown, Connecticut 06457 (203) 347-4421	Mr. Timothy T. White/TM3 Lunar Surface Experiments Office Lunar Missions Office NASA Manned Spacecraft Center Houston, Texas 77058 (713) 483-2666	
S-200	Soil Mechanics	Dr. James K. Mitchell Department of Civil Engineering 440 Davis Hall University of California at Berkeley Berkeley, California 94726 (415) 642-1262	Mr. Martin L. Miller/TM3 Lunar Surface Experiments Office Lunar Missions Office NASA Manned Spacecraft Center Houston, Texas 77058 (713) 483-2666	
M-515	Lunar Dust Detector (ALSEP Array A-2 Experiment)	Dr. Stanley C. Freden, Code 650 Laboratory for Meteorology and Earth Sciences NASA Goddard Space Flight Center Greenbelt, Maryland 20771 (301) 982-5249	Mr. Martin L. Miller/TM3 Lunar Surface Experiments Office Lunar Missions Office NASA Manned Spacecraft Center Houston, Texas 77058 (713) 483-2666	

Table 1-3. J-1 Lunar Surface Science Experiments/Objectives and Cognizant Science Personnel (Continued)

EXPERIMENT/OBJECTIVE	PRIORITY	EXPERIMENT/OBJECTIVE	PRIORITY
Contingency Sample Collection	1	Subsatellite	10
ALSEP Array A-2/Heat Flow	2	 Particle Shadows/Boundary Layer (S-173) 	10.1
• Passive Seismic (S-031)	2.1	• Magnetometer (S-174)	10.2
• Heat Flow (S-037)	2.2	• S-Band Transponder (S-164)	10.3
• Lunar Surface Magnetometer (S-034)	2.3		
• Solar Wind Spectrometer (S-035)	2.4	Mass Spectrometer (S-165)	11
• Suprathermal Ion Detector (S-036)	2.5	Soil Mechanics (S-200)	12
• Cold Cathode Ion Gauge (S-058)	2.6	Bistatic Radar (S-170)	13
• Lunar Dust Detector (M-515)	2.7		
Selected Sample Collection	3	UV Photography-Earth and Moon (S-177)	14
		CM Photographic Tasks	15
Lunar Field Geology (S-059)	4	• Hasselblad Electric Data Camera	15.1
Laser Ranging Retro-Reflector	5 [′]	Hasselblad Electric Camera	15.2
Gamma-Ray Spectrometer (S-160)	6	• Maurer Data Acquisition Camera	15.3
X-Ray Fluorescence (S-161)	7	Gegenschein from Lunar Orbit (S-178)	16
Alpha Particle Spectrometer (S-162)	8	S-Band Transponder (CSM/LM) (S-164)	17
SM Orbital Photographic Tasks	9	Apollo Window Meteoroid (S-176)	18
• 24-Inch Panoramic Camera	9.1		
• 3-Inch Mapping Camera	9.2		
• Laser Altimeter	9.3		

Table 1-4. J-1 Mission Lunar Science Experiment/Objective Priority

e 3

Ê.

SECTION II

EXPERIMENT AND EQUIPMENT DESCRIPTION

2.1 GENERAL

This section contains a brief description of the physical characteristics of the science hardware systems to be used for the scientific investigations and identifies any supporting hardware involved. These descriptions are intended only to aid in the understanding of the operational and deployment aspects of the experiments, to indicate the manner in which the experiment operates, and to show the relationship which the experiment has to the spacecraft and other experiments or equipment.

Equipment of an operational nature, such as the CM cameras used for the CM Photographic Tasks objective, are not described although such equipment is identified. Science equipment for lunar orbit activities is summarized in Table 2-1, and for lunar surface activities in Table 2.2. More detailed experiment descriptions may be found in such documents as CSM/LM Spacecraft Operational Data Book/Volume VI, CSM Experiments Data Book for J-Series Missions; Photo Equipment for Manned Space Flight Handbook; or the Apollo Lunar Surface Experiments Package (ALSEP), Flight Systems Familiarization Manual.

2.2 LUNAR ORBIT SCIENCE EXPERIMENTS AND OBJECTIVES

2.2.1 COMMAND MODULE SCIENCE EXPERIMENTS AND OBJECTIVES

2.2.1.1 CM Photographic Tasks

The purpose of the CM Photographic Tasks objective is to obtain photographs of the following:

- a) Lunar surface areas of prime scientific interest (specifically using the opportunities afforded prior to SIM door jettison).
- b) Specific segments of the lunar surface in earthshine and in low light near the terminator.
- c) Diffuse galactic light of four specified celestial subjects.
- d) Zodiacal light as the CSM approaches sunrise.
- e) The solar corona after CSM sunset and prior to CSM sunrise.

- f) A TBD lunar libration region.
- g) The earth's darkside with use of the CM sextant.
- h) The earth limb during solar eclipse by the earth.
- i) Comets, if the opportunity arises.

These tasks involve the use of the following operational CM cameras: Hasselblad electric camera with a 250-mm lens; Hasselblad electric data camera with an 80-mm lens; and the 16-mm data acquisition camera with an 18-mm lens. The crew is required to operate the cameras and to record such items as GET, frame number, magazine number, and exposure time.

2.2.1.2 Apollo Window Meteoroid (S-176)

The function of this experiment is to obtain data pertaining to the meteoroid cratering flux for masses of 10^{-12} gm and larger, i.e., those particles responsible for the degradation of surfaces exposed to the space environment.

This experiment is passive in nature and makes use only of the CM windows, composed of fused silica, as meteoroid detectors. High magnification studies of these windows conducted before and after flight will yield the data desired.

2.2.1.3 UV Photography - Earth and Moon (S-177)

The function of this experiment is to obtain photographs in the UV spectrum of the earth and moon for use in the study of planetary atmospheres and for the investigation of short wavelength radiation from the lunar surface. The photographs required are taken from the right-hand window of the CM while in earth orbit, lunar orbit, translunar coast, and transearth coast.

Photography is performed with the use of the operational Hasselblad electric camera that is mounted in a special window bracket. The CM window consists of a special quartz pane that transmits a large fraction of the incident UV radiation. The camera is to be provided a 105-mm UV transmitting lens and a ring slide containing four filters: three that admit wavelengths in different regions of the UV spectrum, and one that admits wavelengths in the visible spectrum. The crew is required to install the

special bracket, mount and operate the camera, change filters, and to record the beginning and ending times of each photographic set.

2.2.1.4 Gegenschein from Lunar Orbit (S-178)

The function of this experiment is to make photographic observations of specified directions referenced to the gegenschein and Moulton point from lunar orbit. From these photographs a determination will be made of the extent of the contribution to the gegenschein of dust particles that may have collected to the Moulton point.

Photography is performed with the use of the 16-mm data acquisition camera using an 18-mm lens and an aperture setting of T1.0. The use of special window shades will also be required to minimize the effect of stray spacecraft light. The crew is required to maneuver the spacecraft to the proper photography attitude and to record the start and stop times of each of the required nine photographic exposures.

2.2.2 SERVICE MODULE SCIENCE EXPERIMENTS AND OBJECTIVES

2.2.2.1 SM Orbital Photographic Tasks

a. 24-Inch Panoramic Camera

The function of the 24-Inch Panoramic Camera (Figures 2-1 through 2-5) is to obtain high-resolution photography incorporating stereo coverage of the lunar surface from lunar orbit. The panoramic camera also provides support photography data for the other cameras and for experiment objectives performed in lunar orbit. The camera will provide 1-meter resolution photography at an orbital altitude of 60 NM.

The panoramic camera is composed of four main components: a roll frame assembly that rotates continuously in the cross track scan direction during camera operation; a gimbal assembly which tilts fore and aft to provide stereo coverage and forward motion compensation (FMC); the main frame; and a GN_2 pressure vessel assembly (provides GN_2 for certain film roller gas bearings). The GN_2 pressure vessel assembly is used also by the 3-Inch Mapping Camera. Film for the panoramic camera is stored in a cassette which must be retrieved by a crewman EVA during the transearth portion of the mission. The panoramic camera is mounted on structural beams in the CSM SIM bay between the two SIM shelves. It is designed to operate in its SIM-installed position without the use of a deployment subsystem.

CM crew camera controls are provided to activate/deactivate camera heaters; supply/remove primary camera power; select operate/standby camera operation modes; supply film roller torque to prevent film slack during launch, TLI, and other SPS-powered flight phases; and activate the fivefilm-frame advance cycle required daily to prevent film "set" after film loading. One CM crew display of the "GO/NO-GO" talkback type is provided to verify camera operational status.

b. <u>3-Inch Mapping Camera</u>

The function of the 3-Inch Mapping Camera (Figure 2-6) is to obtain high-quality metric photographs of the lunar surface and time-correlated stellar photographs. The mapping camera also provides supporting photography for the other cameras and for experiment objectives performed in lunar orbit. The stellar camera provides star field photography for precision spacecraft experiment postflight pointing knowledge, especially for the mapping camera and for those experiments acquiring data on the lunar dark side such as the laser altimeter. The mapping camera will provide 20-meter resolution photography at an orbital altitude of 60 NM.

The mapping camera subsystem is composed of two camera systems: the terrain mapping camera and stellar camera integrated into a single unit that has the optical axis relationship necessary to satisfy the precision mapping camera attitude-determination requirement; and the laser altimeter that is hard-mounted to the mapping camera in the required optical axis relationship. This subsystem also uses a GN_2 pressure vessel assembly (shared with the panoramic camera) to supply GN_2 which provides an inert and pressurized atmosphere within the cameras to help prevent unwanted film exposure. Film for the mapping and stellar cameras is stored in a common film cassette unit which must be retrieved by a crewman EVA during the transearth portion of the mission. The inclusion of a deployment mechanism completes the mapping camera subsystem.

The mapping camera subsystem is mounted on the second (top) shelf in the CSM SIM bay, and is deployed on a rail-type mechanism when acquiring

photography data in order to provide an unobstructed field-of-view (star field clear of both the lunar horizon and the SM mold line) for the stellar camera.

CM crew camera controls are provided to activate/deactivate camera heaters and the photography sequence, to activate/deactivate the FMC control switch and to change FMC control settings, and to extend/retract the mapping camera subsystem on deployment rails. Two CM crew displays of the talkback type are provided to verify camera operational status and to indicate whether the mapping camera subsystem is fully extended or fully retracted.

c. Laser Altimeter

The function of the Laser Altimeter (Figure 2-6) is to measure spacecraft altitude in lunar orbit with high precision. Specifically, it is to support mapping camera photography, to provide precision altitude data for other lunar orbital experiments, and to relate lunar topographical features for better definition of lunar shape. The altimeter is capable of supplying precise altitude ranging data to an accuracy of 1 meter.

The laser altimeter is hard-mounted and aligned to the mapping camera subsystem that is mounted on the top shelf in the CSM SIM bay. It is deployed on a rail-type mechanism when photography data are being acquired. The altimeter can operate in one of two modes. When the mapping camera is operating, it automatically emits a laser pulse to correspond to a midframe ranging measurement for each frame taken with the mapping camera. It is also capable of operating in a decoupled mode (from the mapping camera) which allows independent ranging measurements when the mapping camera is not operating.

CM crew controls are provided to activate/deactivate the altimeter. No CM crew displays are furnished specifically for the laser altimeter although they are available for the mapping camera subsystem.

2.2.2.2 Gamma-Ray Spectrometer (S-160)

The function of the Gamma-Ray Spectrometer Experiment assembly (Figures 2-7 and 2-8) is to measure from lunar orbit the gamma radiation flux emanating from the lunar surface. A galactic gamma radiation mapping exercise as well as a spacecraft gamma radiation environment determination will also be performed during transearth coast. The energy level of gamma radiation to be detected ranges from 0.2 MeV to 10 MeV.

The experiment sensing assembly is composed of a gamma-ray detector and its associated electronics. When gathering prime data, it is deployed from the CSM SIM bay on a boom by a boom deployment mechanism to remove the detector from the influence of the CSM radiation environment. The fully deployed distance is 25 feet past the SM mold line when the detector is in its primary operational mode. Boom extension to various intermediate distances will be done during transearth coast when the gamma radiation gradient as contributed by the CSM/SIM is to be measured. The experiment assembly (including the deployment mechanism) is suspended from the bottom of the first SIM shelf above the bottom of the SIM bay.

CM crew controls are provided to extend, to retract, and to jettison the boom. Any intermediate boom position may also be selected by timing the boom extension/retraction rate which is 3 ± 1 inches per second. CM crew experiment controls are also provided to activate/deactivate the experiment, to change the experiment sensitivity gain, and to select one of two detector counting modes. Two CM crew displays are associated with boom status. They indicate the state of boom deployment (fully extended or retracted) and jettison (jettison complete or not).

2.2.2.3 X-Ray Fluorescence (S-161)

The function of the X-Ray Experiment assembly (Figure 2-9) is to measure from lunar orbit the characteristic fluorescent X-rays in the 1 KeV to 6 KeV range that are emitted as a result of the interaction of solar radiation with the lunar surface. A separate assembly (Figure 2-10), termed the solar monitor, is provided to measure the solar X-ray flux which is the excitation source for the lunar surface fluorescence produced. A data gathering period for instrument calibration is also to be performed during transearth coast.

The X-ray fluorescence sensing assembly consists of gas-filled proportional counters, passive filters, and supporting electronics which are housed in an integral package which also contains the alpha particle experiment. This combined package is mounted on the shelf forming the bottom

of the CSM SIM bay. The solar monitor is mounted in the bay of the SM (Bay IV) opposite from that of the SIM to provide a view direction 180 degrees from that of the X-ray fluorescence sensor. The solar monitor has a door shielding its sensor until it is opened in lunar orbit.

The X-Ray Fluorescence Experiment is designed to acquire data in its SIM-installed position. No deployment mechanisms are required for experiment operation. CM crew-operated controls are provided for experiment activation/deactivation and deployment of the solar monitor door. There are no CM crew displays for this experiment.

2.2.2.4 Alpha Particle Spectrometer (S-162)

The function of the Alpha Particle Experiment assembly (Figure 2-9) is to measure from lunar orbit mono-energetic alpha particles emitted from the lunar surface crust by the emission of radon gas isotopes (Rn^{220} and Rn^{222}). The energy level of alpha particles to be detected ranges from 3.5 MeV to 7.5 MeV.

The alpha particle sensing assembly is composed of an array of detectors and supporting electronics housed in the same integral enclosure as the X-ray fluorescence sensor.

The Alpha Particle Spectrometer Experiment is designed to acquire data in its SIM-installed position. No deployment mechanisms are required for experiment operation. CM crew-operated controls are provided for experiment activation and deactivation. There are no CM crew displays for this experiment.

2.2.2.5 Mass Spectrometer (S-165)

The function of the Mass Spectrometer (Figures 2-7 and 2-11) is to obtain data from lunar orbit relative to identifying the constituents of the lunar atmosphere, and to aid in the identification and understanding of transport processes that take place in a planetary exosphere. The spectrometer has the capability of identifying species with atomic mass units (AMU's) ranging from 12-28 AMU with its No. 1 ion counter and from 28-66 AMU with its No. 2 ion counter.

The spectrometer assembly consists of the mass spectrometer and its associated electronic components. When gathering prime data, the spectrometer assembly is deployed from the CSM SIM bay on a boom by a boom deployment mechanism to remove the spectrometer from the influence of CSM contaminant sources. The fully deployed distance is 24 feet past the SM mold line when the spectrometer is in its primary operational mode. The spectrometer also acquires data at various intermediate positions during transearth coast to determine the CSM contamination "gradient". The spectrometer assembly's inlet plenum is designed such that atmospheric species enter it when the spacecraft is orbiting with its "-X" axis facing in the direction of the spacecraft orbital velocity vector. The experiment assembly (including the deployment mechanism) is suspended from the bottom of the first SIM shelf above the bottom of the SIM bay. The gamma-ray and mass spectrometers are separated by about 15 feet when both are in the fully deployed position.

CM crew controls are provided to extend, to retract, and to jettison the boom. Any intermediate boom position may also be selected by timing the boom extension/retraction rate which is 3 ± 1 inches per second. CM control capability is also provided to activate/deactivate the experiment, to increase or decrease the spectrometer sensitivity (two methods provided), and to activate/deactivate the experiment ion source heaters. There are two CM crew displays associated with boom status. They indicate the state of boom deployment (fully extended or retracted) and jettison (jettison complete or not).

2.2.2.6 Subsatellite

The subsatellite (Figure 2-12), deployed from the CSM SIM bay while in lunar orbit, is the host carrier for three experiments to be conducted over a planned 1-year period. The experiments to be carried by the subsatellite are the S-Band Transponder Experiment (S-164), Particle Shadows/Boundary Layer Experiment (S-173), and the Subsatellite Magnetometer Experiment (S-174).

The basic subsatellite elements consist of the subsatellite itself, a launch platform, and a deployment mechanism to deploy the subsatellite and launch platform from the CSM SIM bay. The deployment mechanism provides for a subsatellite launch position that is about 30 inches clear of the SM mold line. The deployment mechanism is retracted after launch. The launch platform imparts to the subsatellite a spin rate of about 140 rpm for attitude stabilization and a launch velocity of about 4 fps to effect the desired launch clearance from the CSM. The subsatellite has three booms each of which automatically deploys at launch to 5 feet. The subsatellite magnetometer is mounted at the end of one boom, whereas the other two booms are provided to achieve the desired balanced spin stabilization characteristics of the subsatellite.

The subsatellite itself consists of charged particle detectors, a magnetometer, a data storage unit, a solar cell battery power system, and an S-band communications subsystem. CM crew controls are provided to deploy and to launch the subsatellite as well as to retract the deployment mechanism into the SIM bay. One multipurpose CM crew display is provided to verify launch of the subsatellite and full retraction of the deployment mechanism.

a. S-Band Transponder (S-164)

The function of the subsatellite S-Band Transponder Experiment is to obtain long-term Doppler tracking data of the unperturbed subsatellite in lunar orbit to describe the lunar gravitational field. This experiment requires no hardware or supporting equipment other than the transponder that is a part of the subsatellite S-band communications subsystem.

b. Particle Shadows/Boundary Layer (S-173)

The function of the Particle Shadows/Boundary Layer Experiment (Figure 2-13) is to obtain data on wave particle interactions occurring within the solar wind boundary layer as the solar wind flows over the moon. These data will, in turn, yield information relative to plasma flow and electric fields associated with the solar wind and the earth's magnetotail. Solar flare electron events are also to be monitored. The subsatellite charged particle detectors and corresponding subsatellite support subsystems are used for this experiment. The detectors are capable of detecting protons in the energy range of 0.3-6.0 MeV and electrons in the energy range of 0.5-1.0 KeV, 2.0-3.0 KeV, 6.5-8.5 KeV, and 13.5-16.5 KeV.

c. Subsatellite Magnetometer (S-174)

The function of the Subsatellite Magnetometer Experiment (Figure 2-13) is to obtain data on the lunar magnetic field and the earth's magnetosphere.

The subsatellite magnetometer, boom-deployed to remove itself from the magnetic environment of the subsatellite, and corresponding subsatellite support subsystems are used for this experiment. The magnetometer that acquires the prime data for this experiment is of the biaxial fluxgate type. This magnetometer is capable of measuring the magnitude and polarity of two mutually orthogonal vector components: one parallel and the other perpendicular to the spin axis of the subsatellite. Rotation of the subsatellite provides the third vector component. The dynamic range of each component can be measured up to 200 γ .

2.2.2.7 S-Band Transponder (S-164)

The S-Band Transponder Experiment uses the CSM and LM S-band transponders in much the same manner as does the S-Band Transponder Experiment conducted on the subsatellite. The S-Band Transponder Experiment acquires unperturbed (if possible) Doppler tracking data of the LM during the unpowered portions of its descent to the lunar surface impact after CSM rendezvous. These tracking data are used to better define the lunar gravitational field. The low-altitude Doppler data obtained from the LM are especially valuable. This experiment requires no hardware or supporting equipment other than the use of the spacecraft transponder that composes a part of the spacecraft S-band communications subsystem.

2.2.2.8 Bistatic Radar (S-170)

The function of the Bistatic Radar Experiment is to obtain S-band and VHF bistatic radar data on the lunar crust. These data can then be used to indicate lunar surface roughness, surface shape, and the surface

material Brewster angle (a measure of the dielectric constant of the surface material). This experiment requires no hardware or supporting equipment other than the CSM S-band and VHF communications subsystems. The crew is required to maintain a specific spacecraft attitude during the time period that measurements are being obtained.

2.3 LUNAR SURFACE SCIENCE EXPERIMENTS AND OBJECTIVES

2.3.1 ALSEP EXPERIMENTS

2.3.1.1 ALSEP Central Station

The ALSEP Central Station (Figure 2-14), though not an experiment, is important functionally to the array of surface experiments (ALSEP) with which it interfaces, in that it provides all the subsystems necessary to support these experiments. The experiments which it supports include the Passive Seismic Experiment (S-031), Lunar Surface Magnetometer Experiment (8-034), Solar Wind Spectrometer Experiment (S-035), Suprathermal Ion Detector Experiment (S-036), Heat Flow Experiment (S-037), Cold Cathode Ion Gauge Experiment (S-058), and the Lunar Dust Detector Experiment (M-515).

The central station consists of the communication subsystem transmitters and receivers (including antenna), the data subsystem, the electronics subsystem for the passive seismic experiment, thermal control provisions, shielding and housing for these subsystems, and a switch panel by which the astronaut can activate the central station if activation cannot be accomplished by MCC/MSFN ground commands. Electrical power (dc) for the data and experiment subsystems is provided by a SNAP 27 radioisotope thermoelectric generator (RTG), and a power conditioning unit. Each ALSEP experiment interfaces electrically with the central station by means of flat, ribbon-like conductor cabling.

The ALSEP central station and experiments in the undeployed and unassembled configuration (Figures 2-15 through 2-17) are stored in the LM SEQ bay; the RTG fuel capsule is attached to the outside of the LM descent stage (Figure 2-18).

Special tools used in assembly of the central station and RTG (Figures 2-19 and 2-20) include the fuel transfer tool, the universal handling tool, and the dome removal tool.

Photography requirements of the deployed central station and ALSEP experiments (Figures 2-21 and 2-22) are accomplished with the Hasselblad electric data camera and its 60-mm lens.

2.3.1.2 Passive Seismic Experiment (S-031)

The function of the Passive Seismic Experiment (PSE) is to monitor lunar seismic activity and to detect meteoroid impacts and free oscillations of the moon should they occur. Lunar surface crust (tidal) deformations can also conceivably be detected.

The Passive Seismic Experiment (Figures 2-23 and 2-24) consists of two seismic assemblies: a long-period seisometer (tri-axial, orthogonal) with a seismic frequency response of 0.004 to 3 Hertz (80 dB dynamic range); and a short-period seisometer (uniaxial, vertical motion) with a seismic frequency response of 0.05 to 20 Hertz (80 dB dynamic range). The minimum detectable signals of the PSE are 10 mµ for the SP and all LP seismic signals; 0.4 arc-sec for the LP horizontal tidal output signal; and 320 µgal for the LP vertical tidal output signal. These seisometers are housed in a drum-shaped enclosure rounded on one end. This enclosure rests on a support structure covered by a thermal shroud after deployment. The PSE electronics package located in the central station is cableconnected to the seisometers (Figure 2-25).

2.3.1.3 Lunar Surface Magnetometer (S-034)

The function of the Lunar Surface Magnetometer (LSM) is to measure the magnitude and time variations of the lunar surface magnetic field vector.

The LSM equipment (Figure 2-26) consists of three boom-mounted, fluxgate magnetometers deployed from an electronics package emplaced on the lunar surface. These sensors are capable of full-scale ranges of ± 100 Y, ± 200 Y, or ± 400 Y (earth-commanded) with a resolution and accuracy of 0.2% and 0.5% full scale, respectively. The boom-mounted sensors can be rotated by small, automatically programmed electric motors. The electronics package is cable-connected to the central station.

2.3.1.4 Solar Wind Spectrometer (S-035)

The function of the Solar Wind Spectrometer (SWS) is to measure the energies, densities, incidence angles, and temporal variations of the electron and proton components of the solar wind plasma that strikes the surface of the moon. These data will aid in establishing: the existence of the solar wind at the lunar surface; the general properties of the solar wind if it can be detected; and the properties of the earth's magnetospheric tail. Electrons can be detected in the energy range of 6.2 to 817 eV and 10.5 to 1376 eV. Protons are detected in the range of 45 to 5700 eV and 75 to 9600 eV.

The SWS equipment (Figure 2-27) consists of a sensor assembly, electronic assembly, thermal control assembly, and leg assembly. Seven Faraday cups (sensors) collect and detect the solar wind protons and electrons. These cups are provided with dust covers that are released and ejected by earth command after take-off of the LM ascent stage. The SWS is electrically connected to the ALSEP central station by a 14-foot flat cable.

2.3.1.5 Suprathermal Ion Detector (S-036)/Cold Cathode Ion Gauge (S-058)

The function of the Suprathermal Ion Detector Experiment (SIDE), composed of the suprathermal ion detector and the cold cathode ion gauge (CCIG), is to measure the ionic environment of the moon by detecting the ions resulting from the UV ionization of the lunar atmosphere and the solar wind flow/lunar surface interaction. The suprathermal ion detector will measure the flux, number density, velocity, and energy per unit charge of positive ions in the vicinity of the lunar surface. The low energy detector will count ions in the velocity range of 4 x 10^4 cm/sec to 9.35 x 10^6 cm/sec and the energy range of 0.2 eV to 48.6 eV, which will enable the determination of the distribution of ion masses up to 120 AMU. A separate detector will count higher energy ions (solar wind protons) in selected energy intervals between 10 eV and 3500 eV. The CCIG determines the pressure of the ambient lunar atmosphere $(10^{-6} \text{ to } 10^{-12} \text{ torr capability})$ by measuring the density of neutral atoms and gauge temperature at the time of measurement. The CCIG also will measure the rate loss of contaminants left in the landing area by the crewmen and the LM.

The SIDE experiment (Figure 2-28) consists of a velocity filter, a lowenergy curved plate analyzer ion detector, a high-energy curved plate analyzer ion detector, the CCIG which is classified as a separate experiment (S-058), a wire-mesh ground plane, and associated electronics. The detector and electronics are housed in an internal chassis that makes use of such devices as mirrors, coatings, and thermal spacers in addition to heaters for thermal control. The base of the chassis is supported by three foldable legs. The CCIG housing deployed separately from the SIDE is connected to it by a short cable. The ground plane is placed beneath the experiments to provide an equi-potential reference surface for control of local electric fields. The SIDE is connected to the ALSEP central station with a flat cable.

2.3.1.6 Heat Flow Experiment (S-037)

The function of the Heat Flow Experiment is to measure the net outward flux of heat from the moon's interior. To perform this function, two holes are drilled in the lunar surface by a crewman to a depth of about 3 meters by means of the Apollo lunar surface drill (ALSD) for emplacement of heat flow instrumentation (probes). This experiment can detect lunar temperatures in the following ranges with corresponding accuracies noted in parentheses: high sensitivity (gradient) measurements of $\pm 2^{\circ}$ C (0.003°C) temperature difference; low sensitivity (gradient) measurements of $\pm 20^{\circ}$ C (0.03°C) temperature difference; probe ambient temperatures in the range of 200 to 250°K (0.1°C); thermocouple reference temperature of -20° C to 60° C (0.1°C); and probe cable ambient temperatures of 90° to 350°K (0.3°C).

The Heat Flow Experiment equipment (Figures 2-29 and 2-30) consists of two probes each about 45 inches in length for insertion into each of the drilled holes, a special tool for probe insertion, and an electronics package that is cable-connected to the probes and the central station. The ALSD (Figure 2-31) is composed of the drill with core stem caps and retainers, core stems, a core bit, a treadle, and a drill string wrench.

2.3.1.7 Lunar Dust Detector Experiment (M-515)

The function of the Lunar Dust Detector Experiment is to separate and measure high-energy radiation damage to three solar cells, measure reduced solar cell output due to dust accumulation, and measure reflected infrared

energy and temperatures for use in computing lunar surface temperatures.

The dust detector (Figure 2-32) has two components: a sensor package mounted to the top of the central station sun-shield and a printed circuit board located within the central station which interfaces with the power distribution unit of the ALSEP data subsystem.

2.3.2 OTHER SURFACE EXPERIMENTS AND OBJECTIVES

2.3.2.1 Contingency Sample Collection

The function of the Contingency Sample Collection Objective is to obtain a small sample (about 2 pounds) of loose lunar soil material in the immediate vicinity of the LM during the early part of the first lunar surface EVA period. This will provide at least a minimum soil sample for later earth analysis should the EVA and the lunar stay be terminated early.

The equipment used for this objective are the contingency sampler, the contingency sample collection container, and sample return container No. 1 (Figures 2-33 and 2-34). The Hasselblad electric data camera (60-mm lens) is used to satisfy photographic requirements.

2.3.2.2 Selected Sample Collection

The function of the Selected Sample Collection Objective is to obtain geologically interesting lunar material during the first lunar surface EVA period. This will provide a greater variety of lunar soil samples for later earth analysis should the EVA and the lunar stay be terminated early.

The equipment used for this objective are the Apollo Lunar Hand Tools, documented sample bags, weigh bag, and sample return container No. 1 (Figures 2-34 and 2-35). The Hasselblad electric data camera (60-mm lens) is used to satisfy photographic requirements.

2.3.2.3 Lunar Field Geology (S-059)

The function of the Lunar Field Geology Experiment is to obtain a collection of documented lunar material samples and photographs/observations of lunar topographic features. These data will increase the knowledge and understanding of the nature and origin of the moon and the processes which have modified it.

10

The major equipment used for this experiment are: hammer; tongs; extension handle; small scoop; large scoop; brush/scribe/lens tool; gnomon; color patch; spring scale; core tubes; cap and bracket assembly (for "driving" the core tubes); sample bags; weigh bags; collection bags; and sample return containers (Figures 2-34 and 2-35). Geology core samples are also obtained with the use of the ALSD. The hand tools (hammer, tongs, etc.) used for this experiment are the standard Apollo lunar hand tools (ALHT) and will be located on the hand-tool carrier attached to the LRV (Figure 2-36).

Photography requirements for this experiment are met with the Hasselblad electric data camera (60-mm lens).

2.3.2.4 Laser Ranging Retro-Reflector (S-078)

The function of the Laser Ranging Retro-Reflector (LRRR) is to provide a corner reflector for laser energy beamed from one or more earth-based stations. These ranging data will provide information relative to lunar motion, lunar librations, and earth rotation.

The LRRR experiment (Figure 2-37) consists of a folded panel structure incorporating 300 individual fused, silica optical corner reflectors and a simple aim-handle mechanism. The LRRR becomes passive in nature after deployment. The LRV is to be used for deployment. Photography requirements for this experiment are met with the use of the Hasselblad electric data camera (60-mm lens).

2.3.2.5 Soil Mechanics (S-200)

The function of the Soil Mechanics Experiment is to obtain data pertaining to the characteristics and mechanical behavior of the lunar soil at the surface and subsurface and the variation of these properties in a lateral direction.

The equipment (Figure 2-38) for the Soil Mechanics Experiment includes the use of the trenching tool, core tube samples, and other physical data obtained from the lunar field geology activities. Additional equipment being considered are the use of a self-recording penetrometer (interfaces with the ALHT extension handle) and load plate interchangeable with a common staff-type handle. Photography requirements for this experiment are met with the use of the battery-operated 16-mm data acquisition camera (10-mm lens) and the Hasselblad electric data camera (60-mm lens).

.19,

EXP. NO.	EXPERIMENT/OBJECTIVE	SPACECRAFT LOCATION	DEPLOYMENT	EQUIPMENT
	CM Photographic Tasks	Command Module	None	 Electric Hasselblad Camera/250-mm lens Hasselblad Electric Data Camera/80-mm lens Data Acquisition Camera/ 18-mm lens
S-176	Apollo Window Meteoroid	Command Module	None	• CM Windows
S-177	UV Photography - Earth and Moon	Command Module	None	 Special CM RH quartz window (high UV trans- missivity) Electric Hasselblad Camera/105-mm lens (UV transmitting) Mounting Bracket 3 Filters - UV Spectrum 1 Filter - Visible Spec- trum
S-178	Gegenschein From Lunar Orbit	Command Module	None	 Data Acquisition Camera/ 18-mm lens CM Window Shades

Ę

EXP. NO.	EXPERIMENT/OBJECTIVE	SPACECRAFT LOCATION	DEPLOYMENI	EQUIPMENT
	SM Orbital Photographic Tasks	Service Module (SIM Bay)	None	 24-Inch Panoramic Camera Roll-Frame Assembly Gimbal Assembly Main Frame GN₂ Pressure Vessel Assembly Film Cassette CM Crew-Operated Switches (3) CM Crew Display (1)
			Rail-Type Mechanism	 3-Inch Mapping Camera Terrain Camera Stellar Camera GN₂ Pressure Vessel Assembly Film Cassette CM Crew-Operated Switches (3) CM Crew Displays (2)
			Rail-Type Mechanism (hard- mounted to Mapping Camera)	 Laser Altimeter CM Crew-Operated Switches (1)

Table 2-1. Lunar Orbit Science Equipment Summary (Continued)

靜

Ó

EXPERIMENT/OBJECTIVE	SPACECRAFT LOCATION	DEPLOYMENT	EQUIPMENT
Gamma-Ray Spectrometer	Service Module (SIM Bay)	. Boom Mechanism	 Gamma-Ray Detector and Electronics Boom Deployment Assembly CM Crew-Operated Switches (4) CM Crew Displays (2)
X-Ray Fluorescence	 Fluorescence Sensor Service Module (SIM Bay) Solar Monitor Service Module (Bay IV) 	None	 X-Ray Fluorescence Sensing Assembly and Supporting Electronics (In same housing as Alpha Particle Experi- ment) Solar Monitor CM Crew-Operated Switches (2)
Alpha Particle Spectrometer	Service Module (SIM Bay)	None	 Alpha Particle Sensing Assembly Detector Array and Supporting Electronics (in same housing as X-Ray Fluorescence Sensing Assembly) CM Crew-Operated Switches (1)
	Gamma-Ray Spectrometer X-Ray Fluorescence	Gamma-Ray SpectrometerService Module (SIM Bay)X-Ray Fluorescence• Fluorescence Sensor • Service Module (SIM Bay)Solar Monitor • Service Module (Bay IV)Alpha Particle SpectrometerService Module	Gamma-Ray SpectrometerService Module (SIM Bay)Boom MechanismX-Ray Fluorescence• Fluorescence Sensor • Service Module (SIM Bay)NoneX-Ray Fluorescence• Service Module (SIM Bay)NoneAlpha Particle SpectrometerService Module Service ModuleNone

. .

.

Table 2-1. Lunar Orbit Science Equipment Summary (Continued)

EXP. NO.	EXPERIMENT/OBJECTIVE	SPACECRAFT LOCATION	DEPLOYMENT	EQUIPMENT
S-164	S-Band Transponder (CSM/LM)	• Service Module • Lunar Module	None	 Equipment used is all operational (Spacecraft S-band Communications Subsystem)
S-165	Mass Spectrometer	Service Module (SIM Bay)	Boom Mechanism	 Mass Spectrometer Assembly Electronics Boom Deployment Mechanism CM Crew-Operated Switches (6) CM Crew Displays (2)
	Subsatellite	Stowed in Service Module (SIM Bay) Until Ejection	Ejected by spring mechanism after de- ployment from SIM on launch platform	 Launch Platform Deployment Mechanism Subsatellite Booms Charged Particle Detectors Magnetometer Data Storage Unit Solar Cell-Battery Power System S-Band Communications Subsystem CM Crew-Operated Switches (1) CM Crew Displays (1)

Table 2-1.	Lunar	Orbit	Science	Equipment	Summary	(Continued)
					-	

S. Contraction

þ

EXP. NO.	EXPERIMENT/OBJECTIVE	SPACECRAFT LOCATION	DEPLOYMENT	EQUIPMENT
S-173	Particle Shadows/Boundary Layer	Subsatellite	None	 Charged Particle De- tectors Subsatellite Support Subsystems
S-174	Subsatellite Magnetometer	Subsatellite	5-Foot Subsatel- lite Boom	 Magnetometer Subsatellite Support Sub- systems Deployment Boom
S-164	S-Band Transponder	Subsatellite	None	 Spacecraft S-band Com- munications Subsystem
S-170	Bistatic Radar	Service Module	None	 Spacecraft S-band and VHF Communications Sub- systems

Table 2-1.	Lunar	Orbit	Science	Equipment	Summary	(Continued)
------------	-------	-------	---------	-----------	---------	-------------

EXP. NO.	EXPERIMENT/OBJECTIVE	CENTRAL STATION INTERFACE	EQUIPMENT
	Contingency Sample Collection	No	 Contingency Sampler Assembly Sample Return Container No. 1 Hasselblad Electric Data Camera/ 60-mm lens
	Selected Sample Collection	No	 Apollo Lunar Hand Tools Documented Sample Bags Collection Bag Weigh Bag Sample Return Container No. 1 Hasselblad Electric Data Camera/ 60-mm lens
	ALSEP Central Station (ALSEP Array A-2/Heat Flow)		 ALSEP Communications Subsystem (including antenna) ALSEP Data Subsystem Electronics Subsystem for ALSEP Seismic Experiment Housing for Above Subsystems Astronaut Switch Panel RTG Power Source and Power Condi- tioning Unit Hasselblad Electric Data Camera/ 60-mm lens

Table 2-2. Lunar Surface Science Equipment Summary

à.

EXP. NO.	EXPERIMENT/OBJECTIVE	CENTRAL STATION INTERFACE	EQUIPMENT
S-031	Passive Seismic Experiment (ALSEP Array A-2/Heat Flow)	Yes	 Long Period and Short Period Seismic Sensing Assemblies Support Structure and Thermal Shroud Electronics Package (in Central Station) Hasselblad Electric Data Camera/ 60-mm lens
S-034	Lunar Surface Magnetometer (ALSEP Array A-2/Heat Flow)	Yes	 Boom-Mounted, Fluxgate Magnetometers (3) Electric Drive Motors Electronics Package Hasselblad Electric Data Camera/ 60-mm lens
S-035	Solar Wind Spectrometer (ALSEP Array A-2/Heat Flow)	Yes	 Sensor Assembly - Faraday Cups (7) Electronic Assembly Thermal Control Assembly Leg Assembly
S-036	Suprathermal Ion Detector (ALSEP Array A-2/Heat Flow)	Yes	 Sensor Assembly - Ion Detectors (2) Chassis with Foldable Legs Electronics Wire Mesh Ground Plane Thermal Control Components Cold Cathode Ion Gauge (see S-058)

Table 2-2. Lunar Surface Science Equipment Summary (Continue	Table 2-2.	Lunar Surface	Science	Equipment	Summary	(Continued
--	------------	---------------	---------	-----------	---------	------------

EXP. NO.	EXPERIMENT/OBJECTIVE	CENTRAL STATION INTERFACE	EQUIPMENT
S-037	Heat Flow Experiment (ALSEP Array A-2/Heat Flow)	Yes	 Apollo Lunar Surface Drill Drill Core Stem Caps and Retainers (2 Pkgs.) Core Stems (6) Core Bit Treadle Drill String Wrench (2) Heat Probes (2) Probe Emplacement Tool Electronics Package Hasselblad Electric Data Camera/ 60-mm lens
S- 058	Cold Cathode Ion Gauge (ALSEP Array A-2/Heat Flow)	Yes (Through Inter- face with S-036)	Ion DetectorHousing
M-515	Lunar Dust Detector (ALSEP Array A-2/Heat Flow)	Yes	 Sensor Package Solar Cells (3) Printed Circuit Board (Central Station PDU Interface)
S-059	Lunar Field Geology	No	 Apollo Lunar Hand Tools Carrier and Tools Hammer Extension Handle Tongs (2)

Table 2-2. Lunar Surface Science Equipment Summary (Continued)

¢

챃

EXP. NO.	EXPERIMENT/OBJECTIVE	CENTRAL STATION INTERFACE	EQUIPMENT
S-059 (Cont'd)	Lunar Field Geology	No	 Large Scoop Small Scoop Gnomon Scribe/Brush/Lens, Etc. Core Tubes (9) Cap and Bracket Assemblies (3) Documented Sample Bag Dispenser (3) 35 Sample Bags per Dispenser Ring-Type Bag Dispenser (1) 15 Documented Sample Bags Collection Bag (3) Weigh Bag (6) Apollo Lunar Sample Return Container (3) Hasselblad Electric Data Camera/ 60-mm lens Science Support Lunar Surface Color TV Camera 16-mm Data Acquisition Camera LRV ALSD
S-078	Laser Ranging Retro-Reflector	No	 Retro-Reflector Assembly Corner Reflectors (300) Aim-Handle Mechanism Hasselblad Electric Data Camera / 60-mm lens LRV (for deployment)

$T_{ablo} 2_{-2}$	Lunar Surface	Science	Equipment	Summary	(Continued)
lable 2-2.	Lunal Suitace	DUTENCE	ndarbucue	Dummary	(concrnaca)

EXP. NO.	EXPERIMENT/OBJECTIVE	CENTRAL STATION INTERFACE	EQUIPMENT
S-200	Soil Mechanics	No	 Trenching Tool Self-Recording Penetrometer Hasselblad Electric Data Camera/ 60-mm lens Battery Operated Data Acquisition Camera/10-mm lens S-059 Equipment

Table 2-2. Lunar Surface Science Equipment Summary (Continued)

ę

Į.

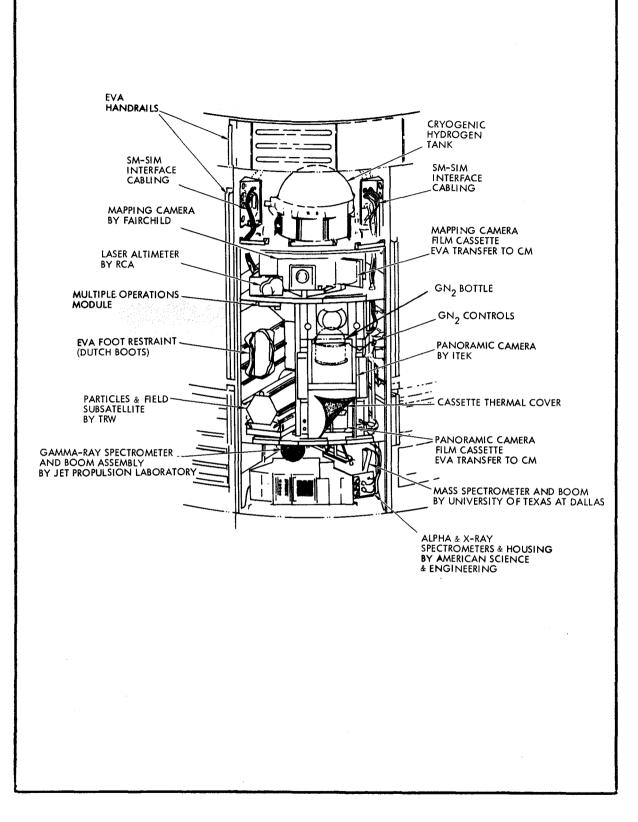
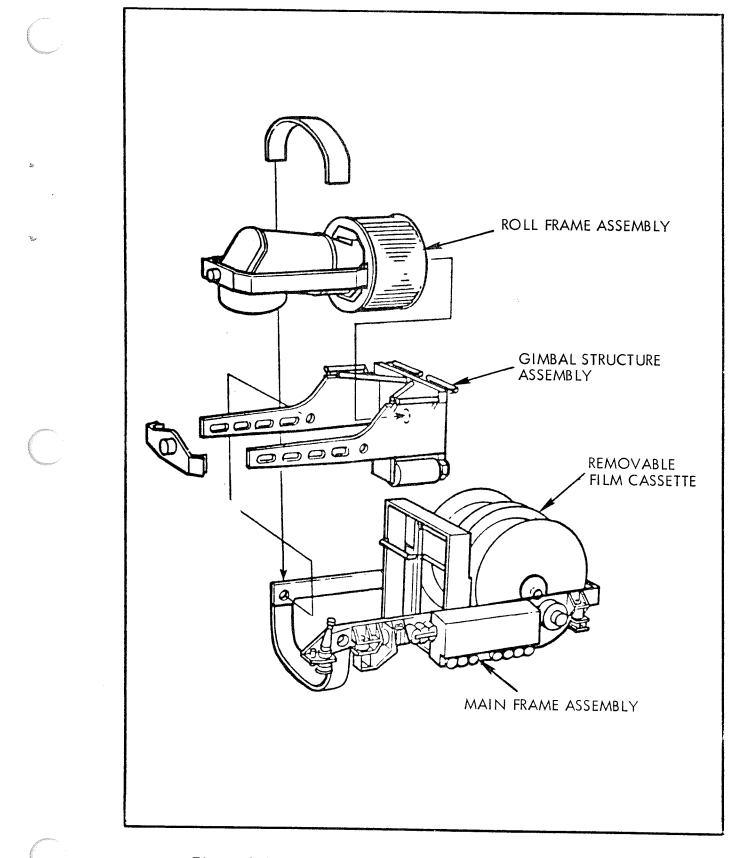
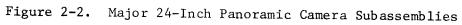




Figure 2-1. J-1 Mission SIM Bay Orbit Experiments Installation

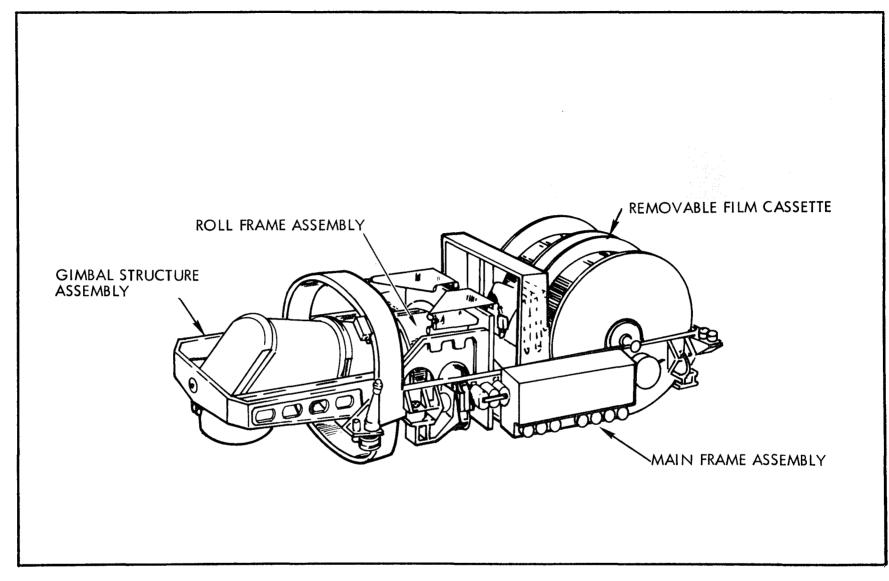


Figure 2-3. 24-Inch Panoramic Camera

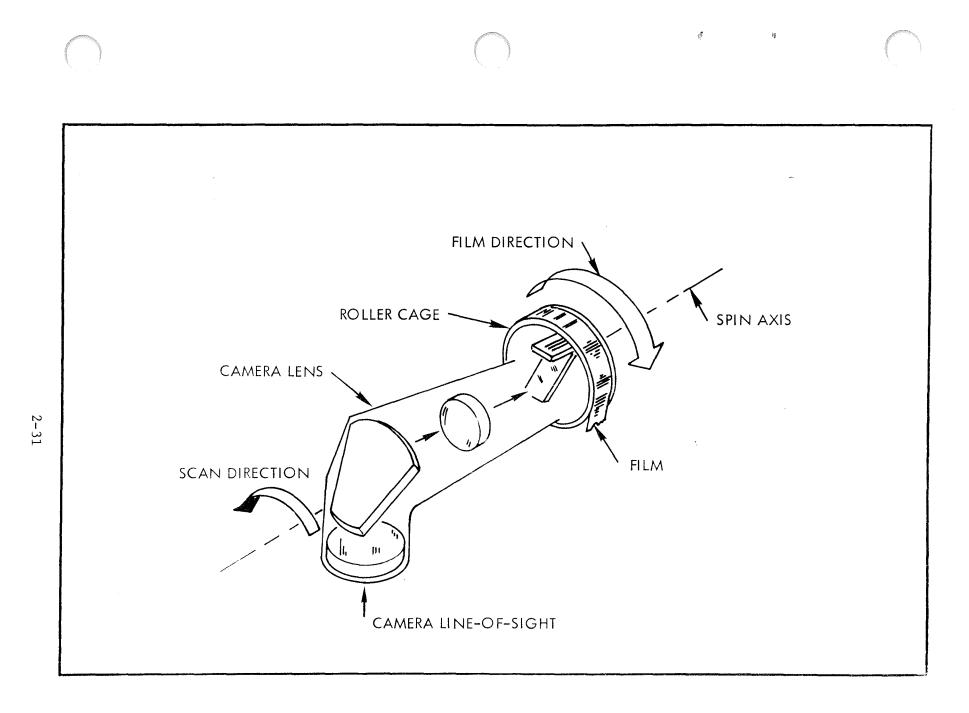


Figure 2-4. 24-Inch Panoramic Camera Optics Detail

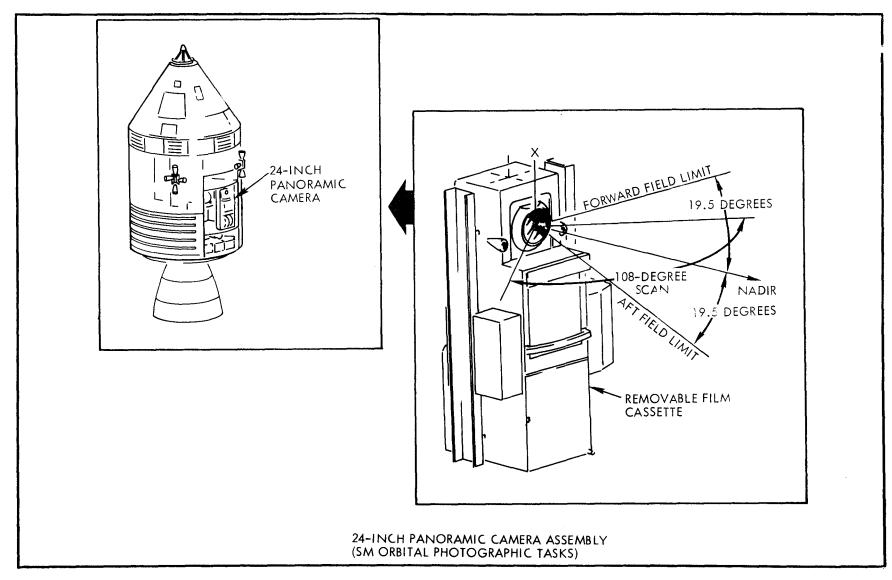


Figure 2-5. Field-of-View Detail of 24-Inch Panoramic Camera Assembly

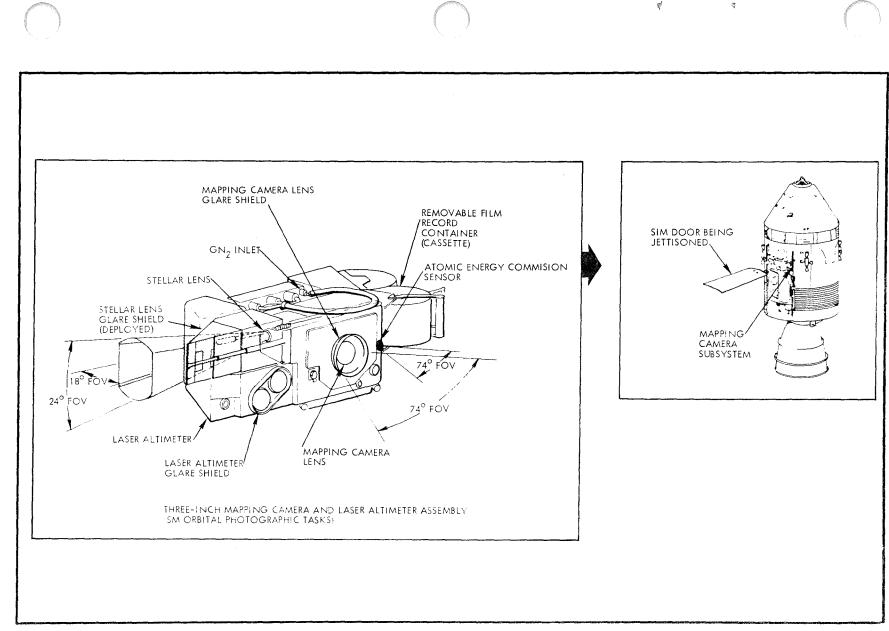


Figure 2-6. 3-Inch Mapping Camera and Laser Altimeter Assembly

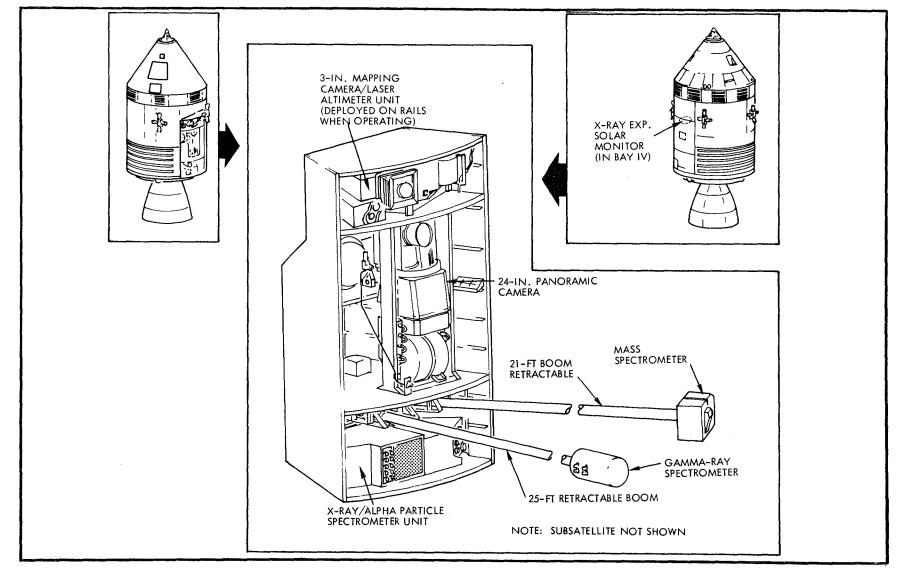


Figure 2-7. SIM Bay Boom-Mounted Experiment Deployment

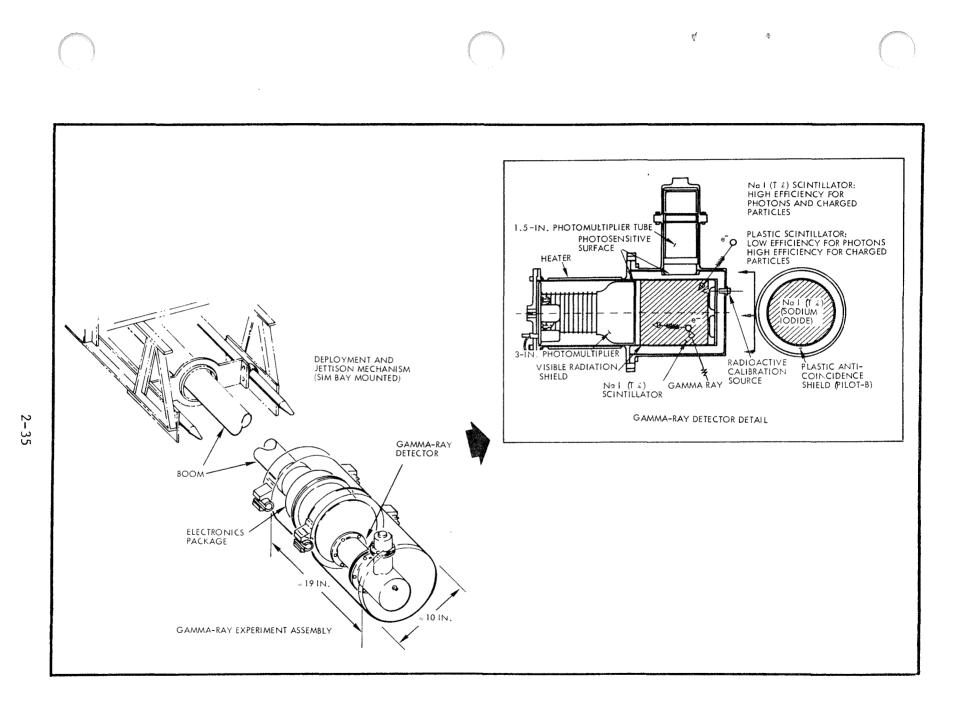
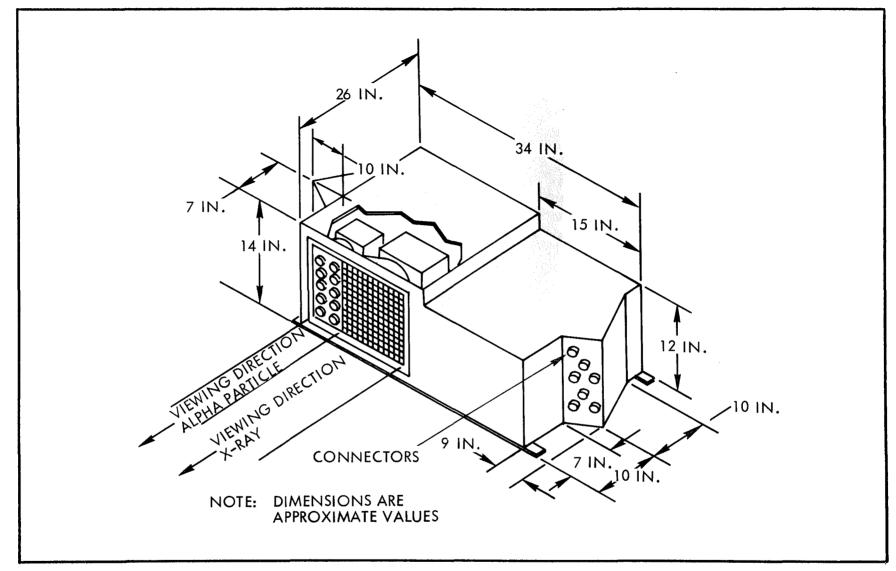
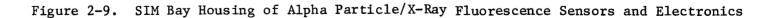
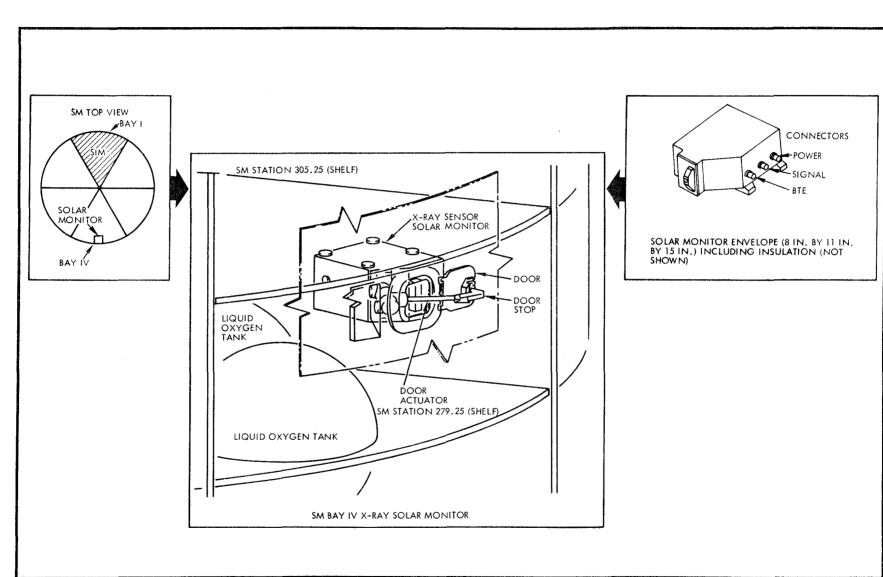
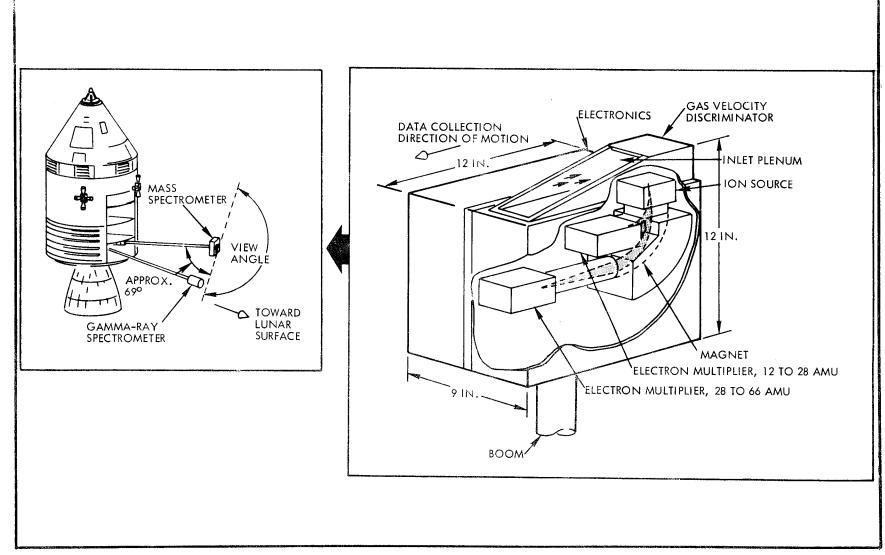
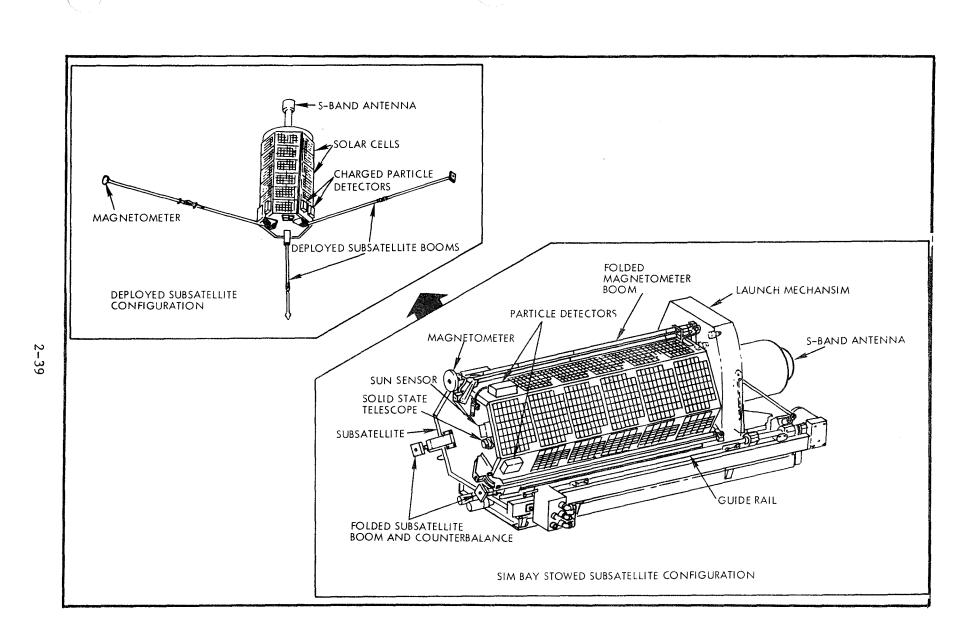





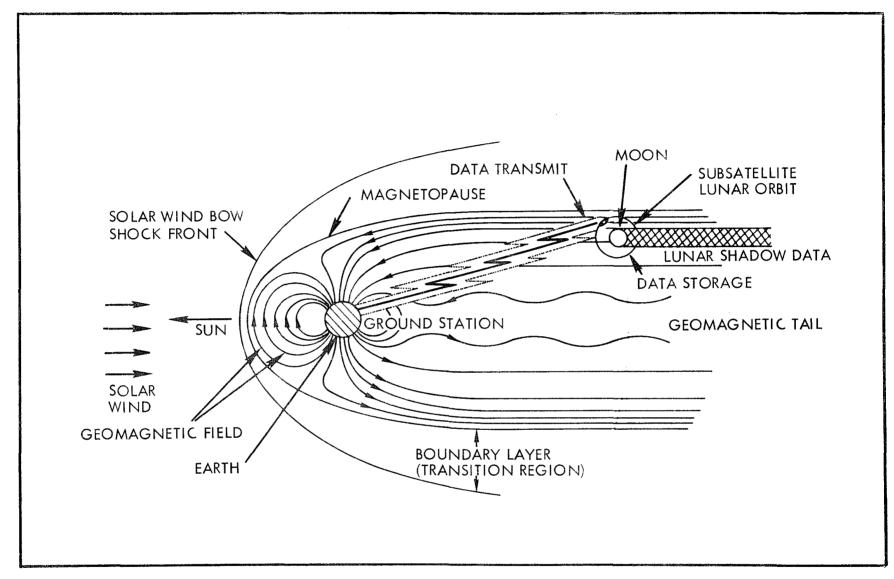
Figure 2-8. SIM Bay Gamma-Ray Spectrometer Experiment Assembly

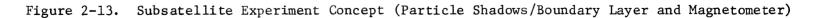
ų

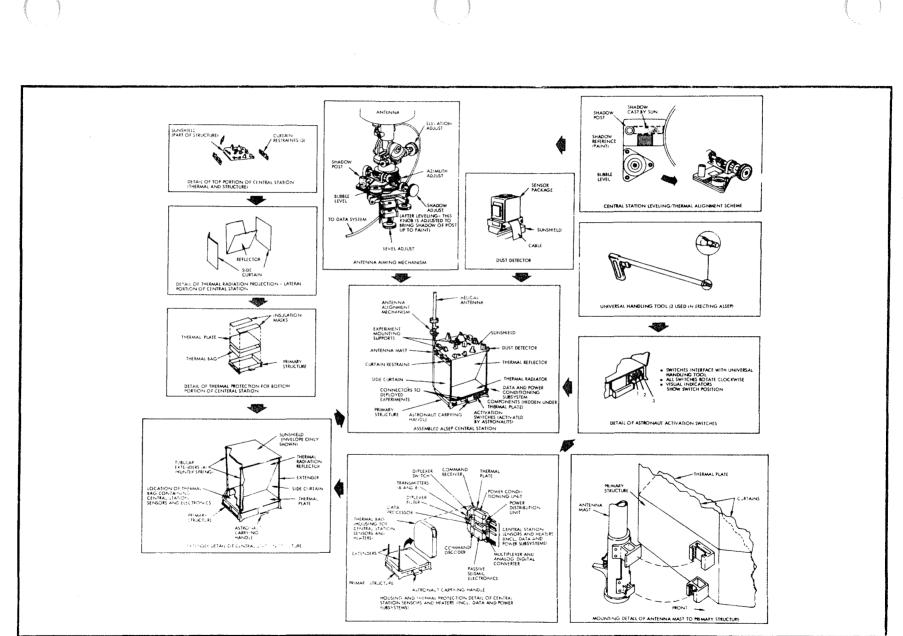
1

Figure 2-10. SM Mounting of X-Ray Fluorescence Solar Monitor


Figure 2-11. Mass Spectrometer Experiment Assembly




1

 σ_{i}^{4}

Figure 2-12. SIM Bay Subsatellite

0

¢

Figure 2-14. ALSEP Central Station Assembly Details

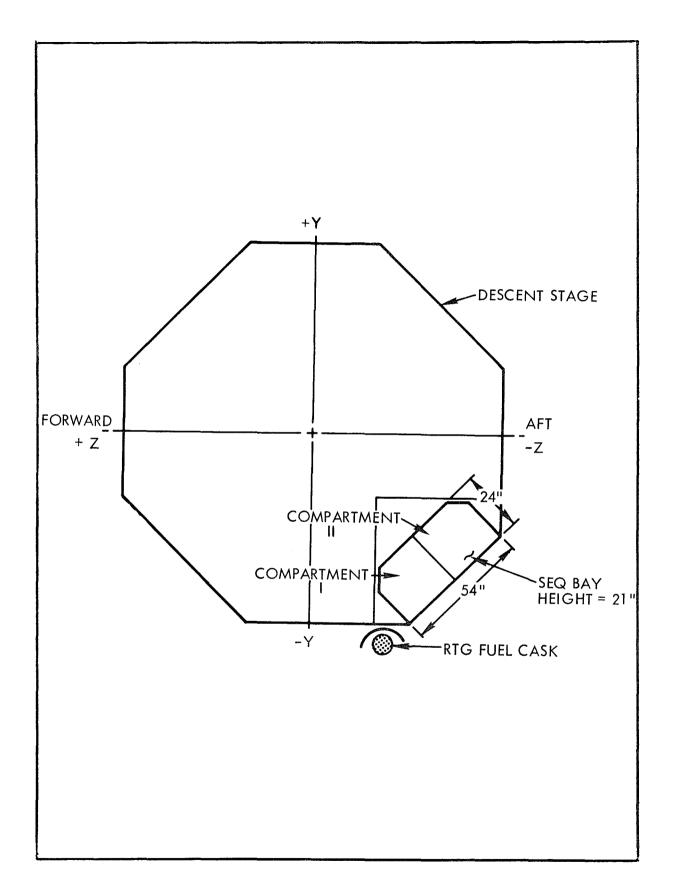
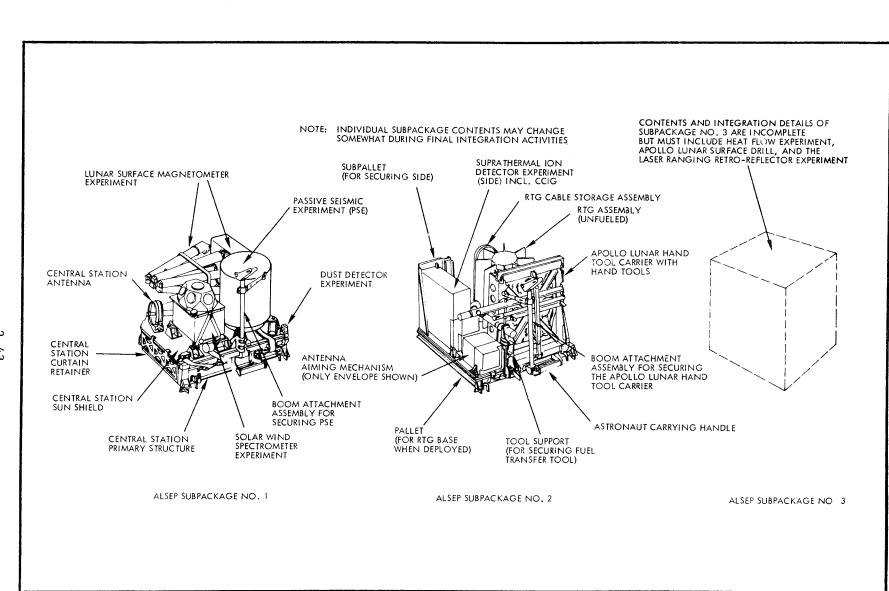



Figure 2-15. LM SEQ Bay Stowage of ALSEP Subpackages

17

di.

Figure 2-16. LM SEQ Bay Subpackages Configurations - ALSEP A-2/Heat Flow Array

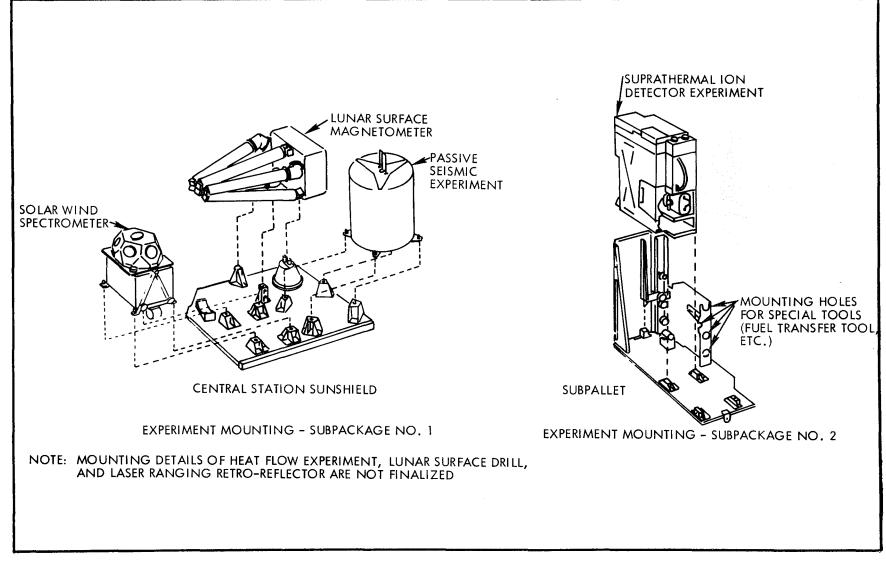
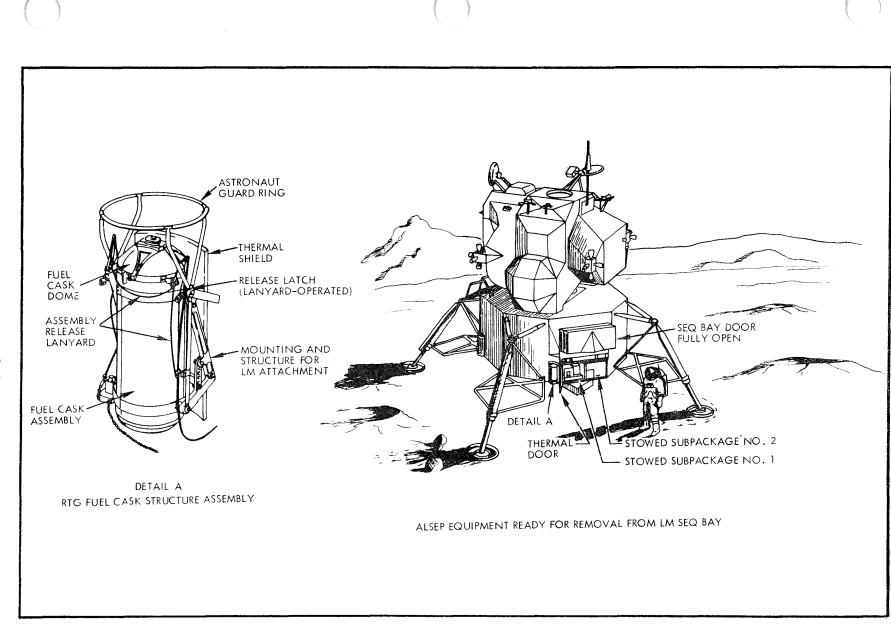



Figure 2-17. Typical ALSEP Subpackages Experiment Mounting Details

\$

Figure 2-18. RTG Fuel Cask Structure/LM Interface Detail

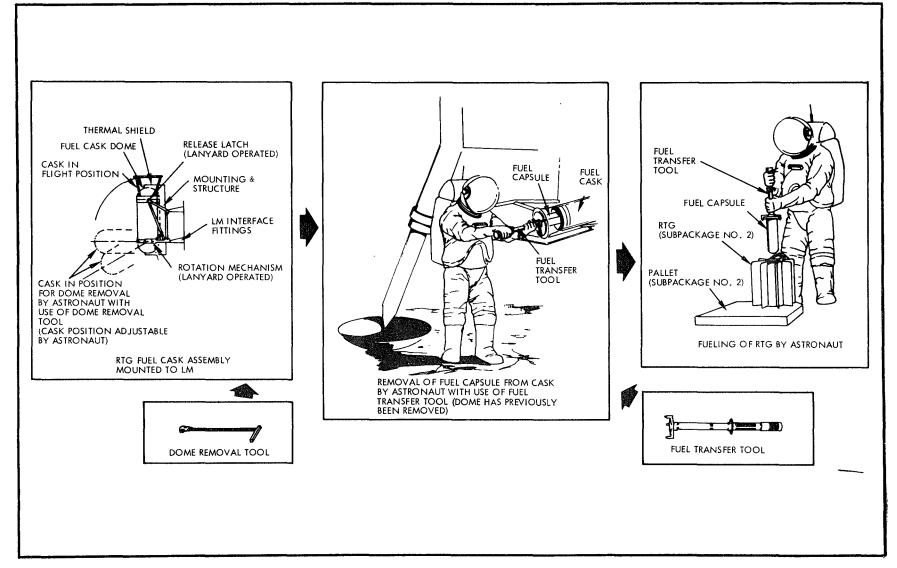


Figure 2-19. RTG Fuel Transfer Activities

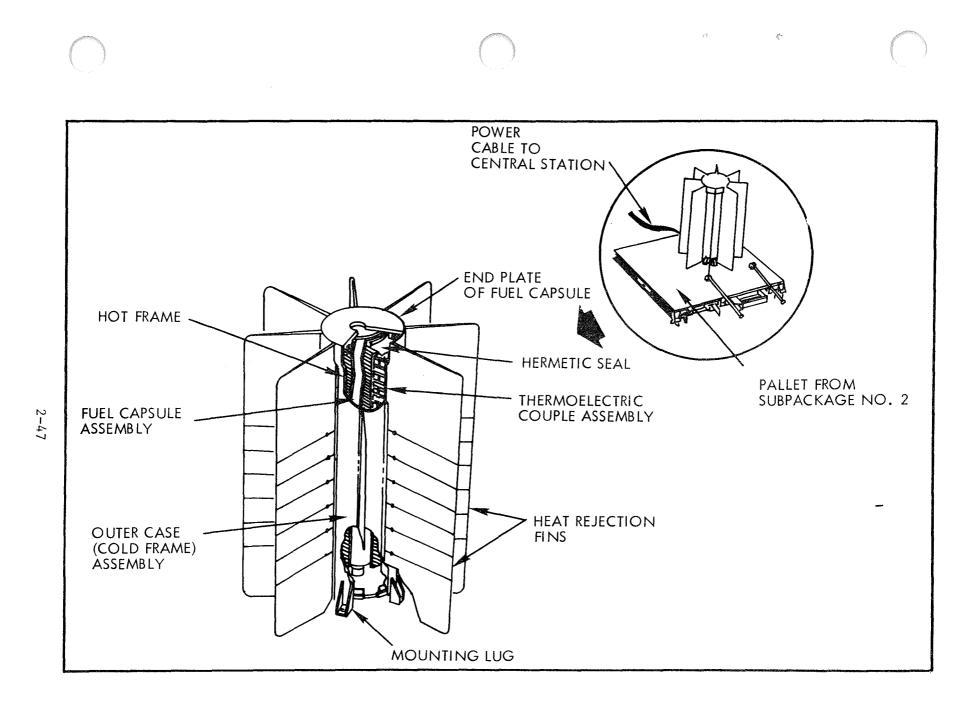


Figure 2-20. ALSEP RTG Assembly

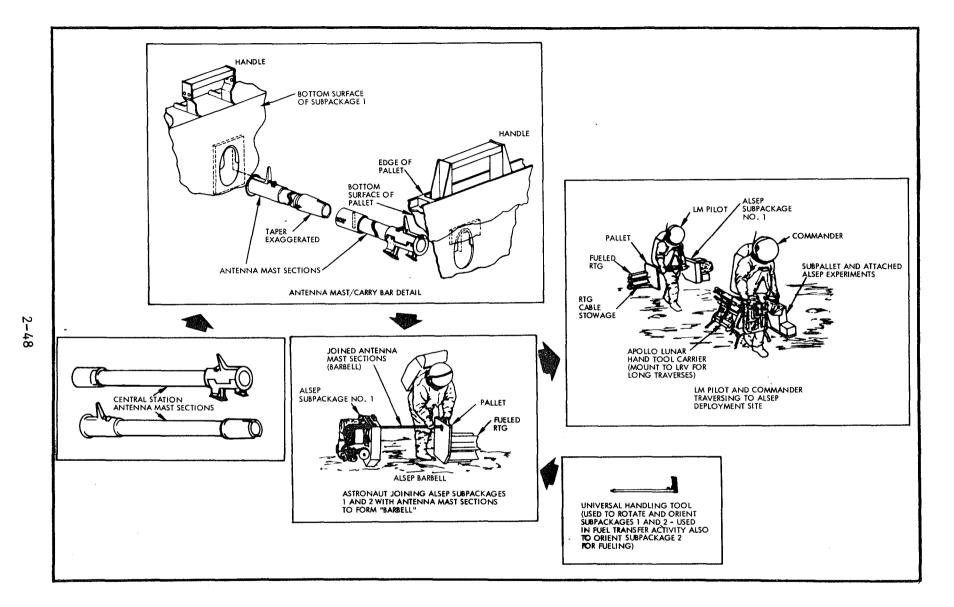
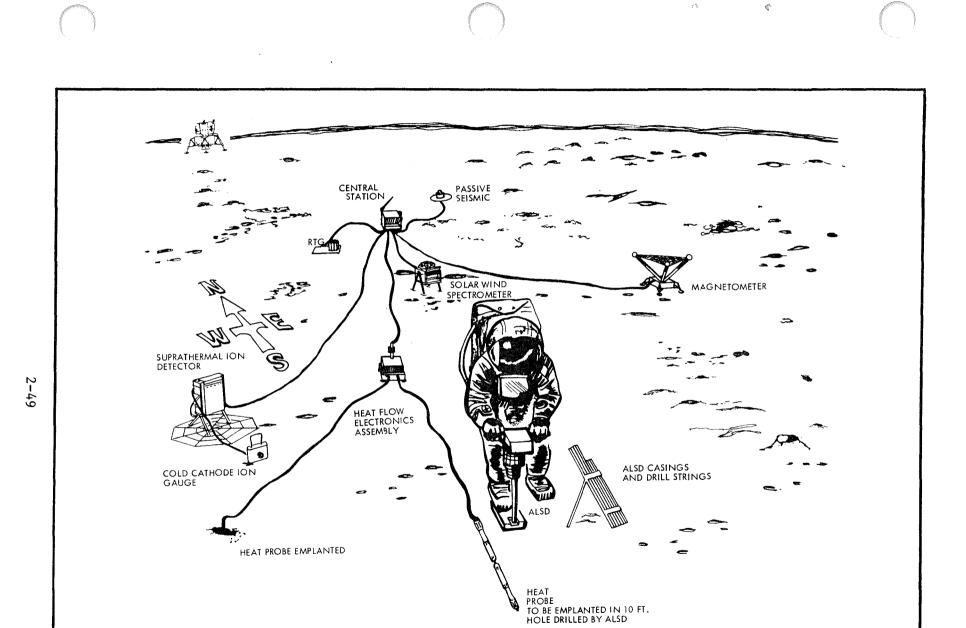
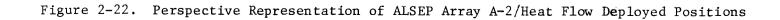




Figure 2-21. Preparation of ALSEP Subpackages for Traverse to Deployment Site

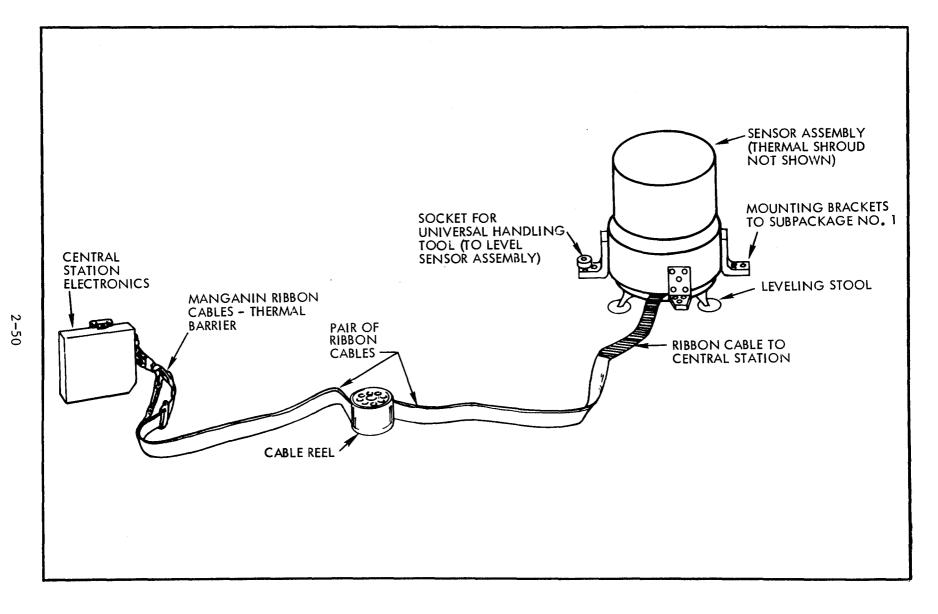
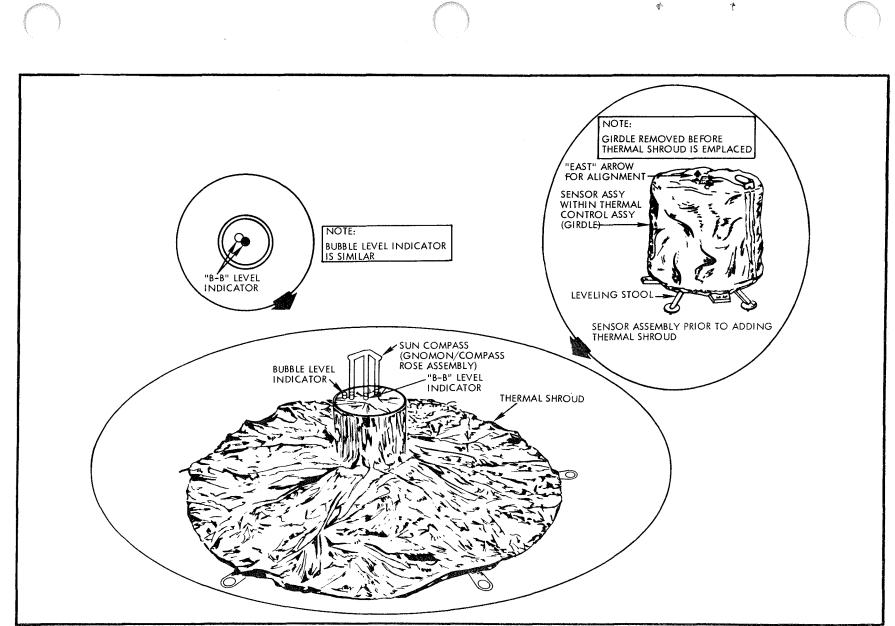
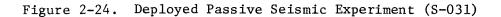




Figure 2-23. Passive Seismic Experiment (S-031)

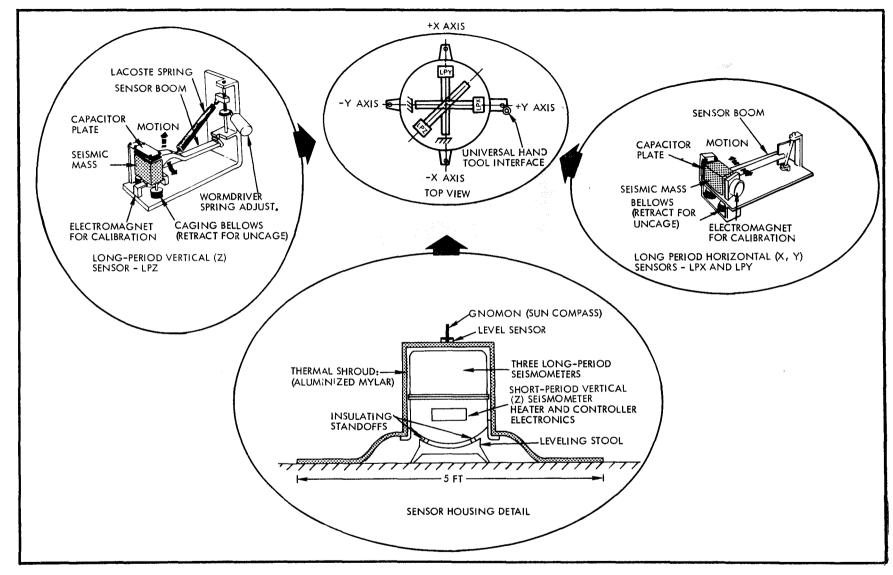
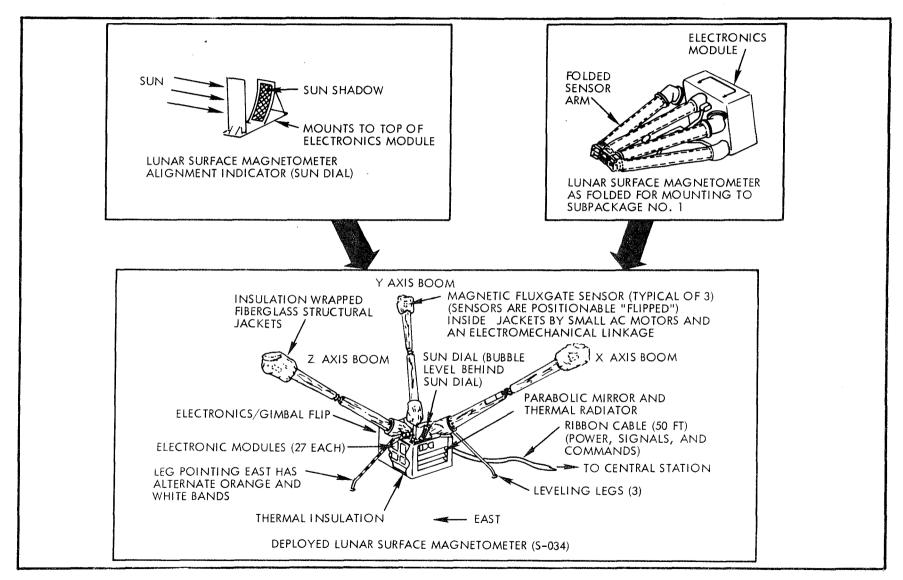



Figure 2-25. Passive Seismic Experiment Sensors

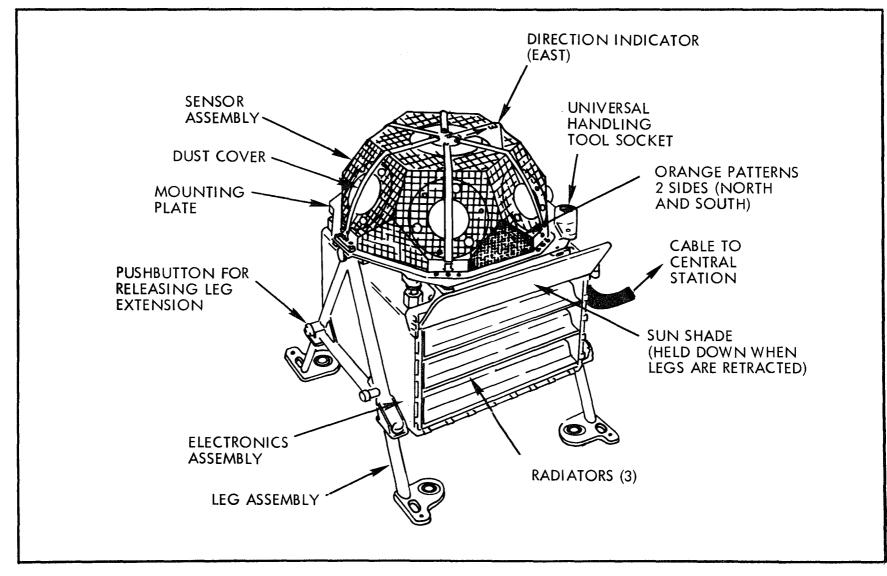
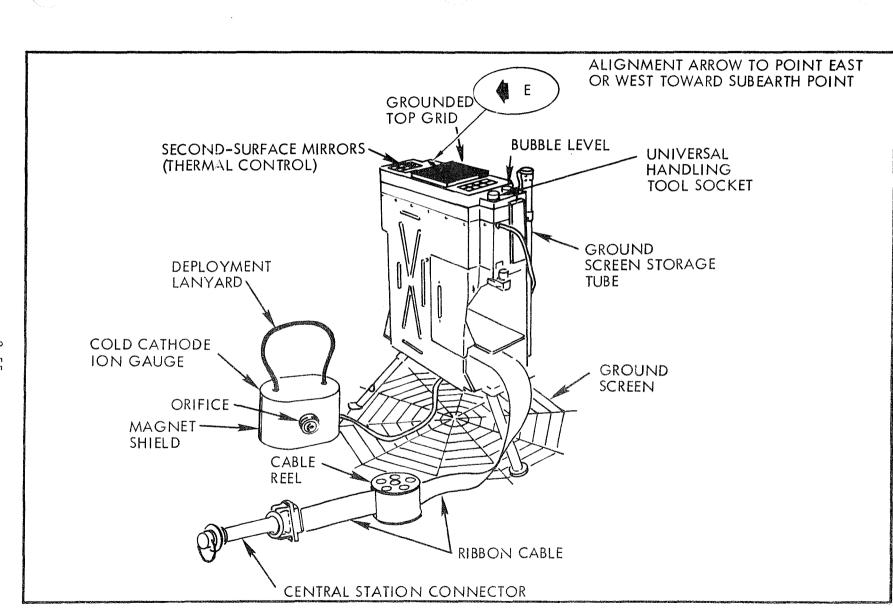
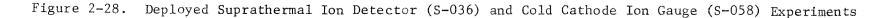




Figure 2-27. Solar Wind Spectrometer Experiment (S-035)

Ť

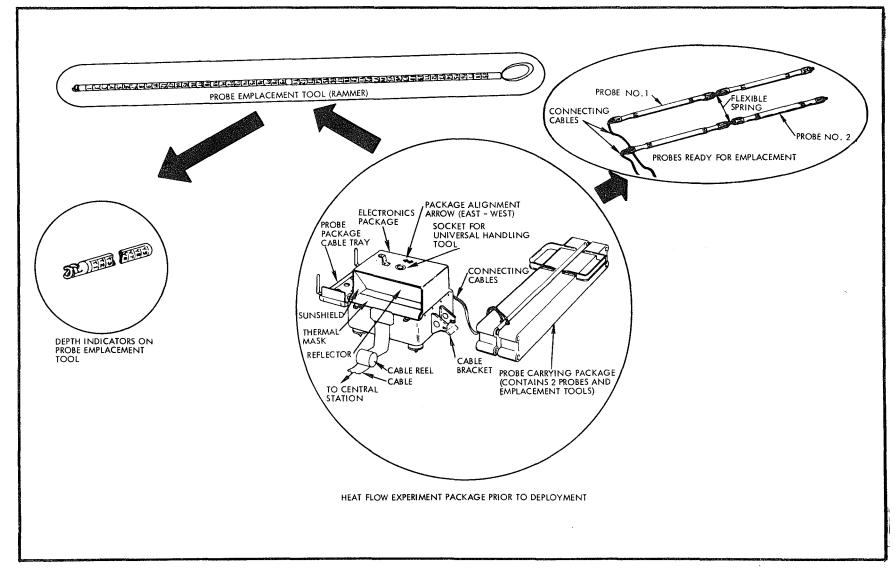


Figure 2-29. Heat Flow Experiment (S-027) Equipment

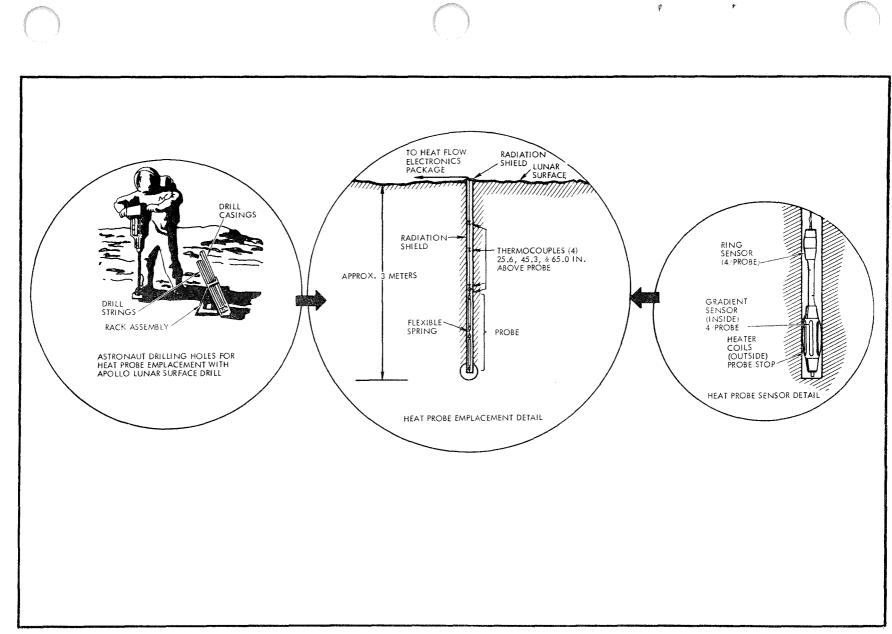


Figure 2-30. Heat Flow Experiment Probe Emplacement Detail

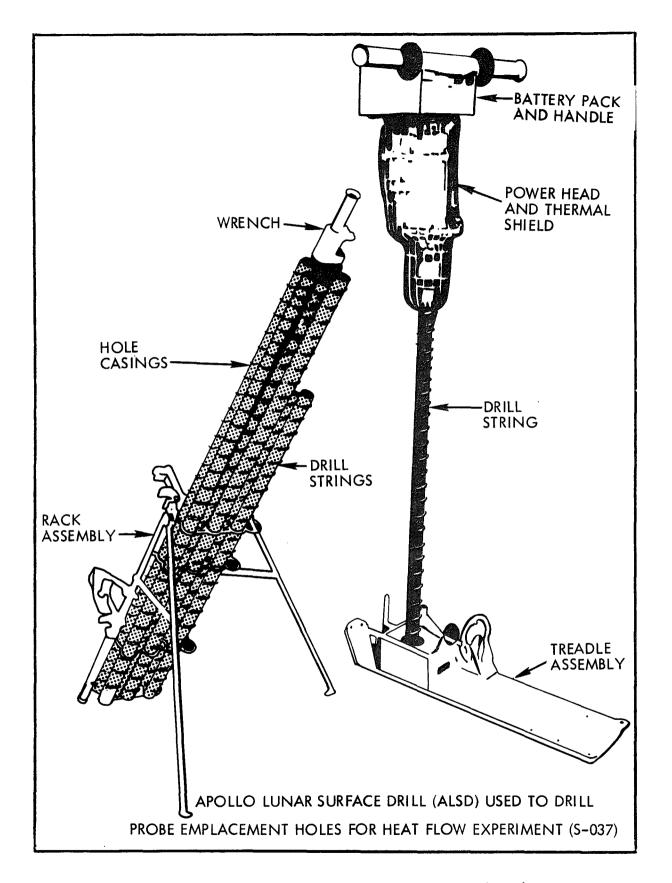


Figure 2-31. Apollo Lunar Surface Drill (ALSD)

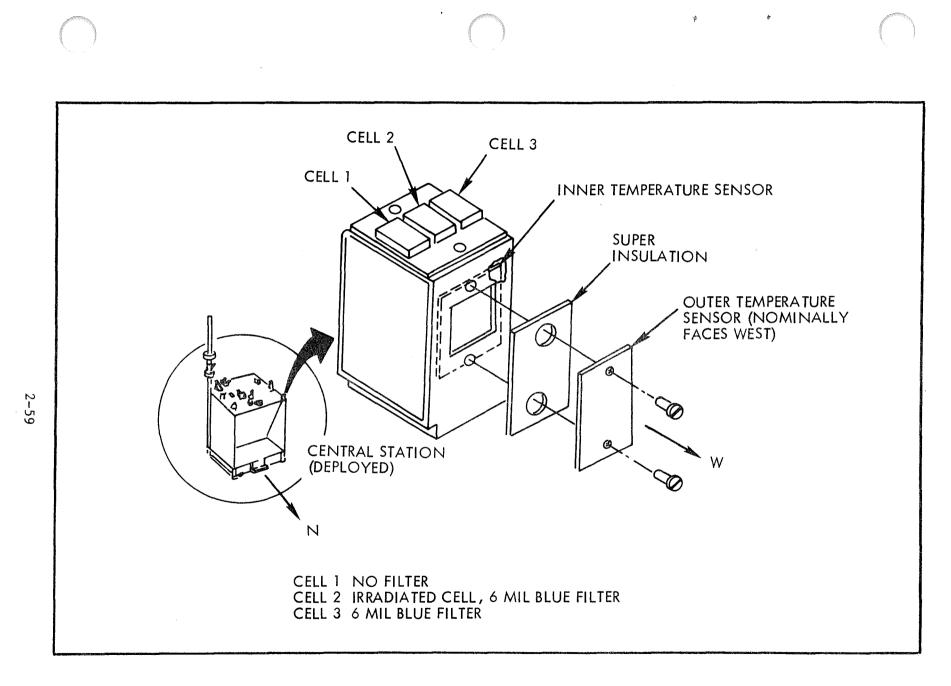


Figure 2-32. Lunar Dust Detector Experiment (M-515)

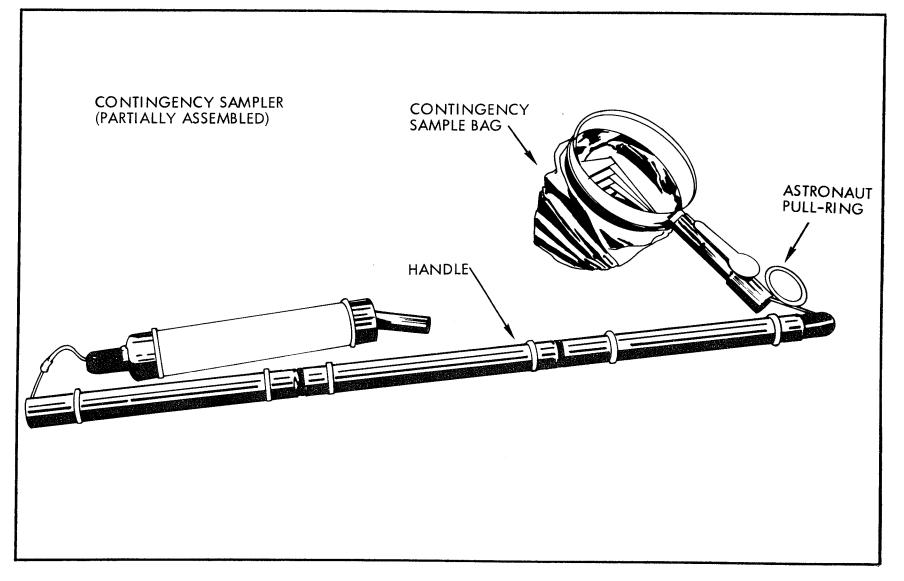


Figure 2-33. Contingency Sampler (Contingency Sample Objective)

4

ł.



Figure 2-34. Lunar Geology Sample Containers

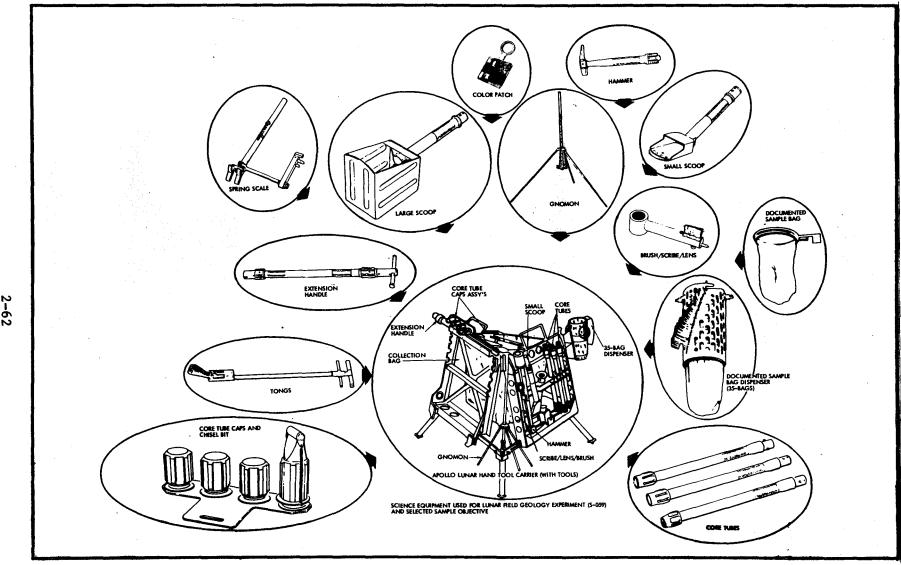


Figure 2-35. Lunar Field Geology Experiment (S-059) Equipment

١ , 1 1 1

2-62

. .

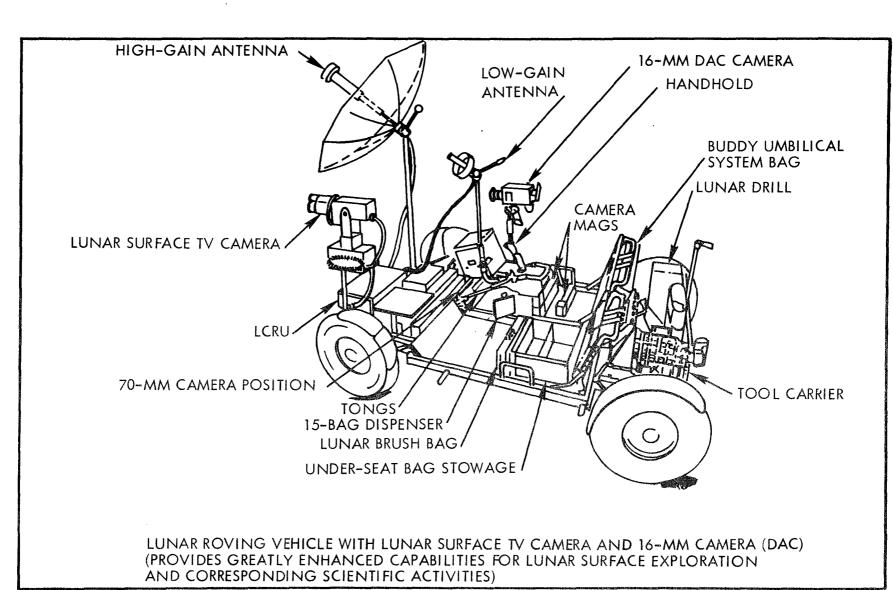


Figure 2-36. Lunar Roving Vehicle

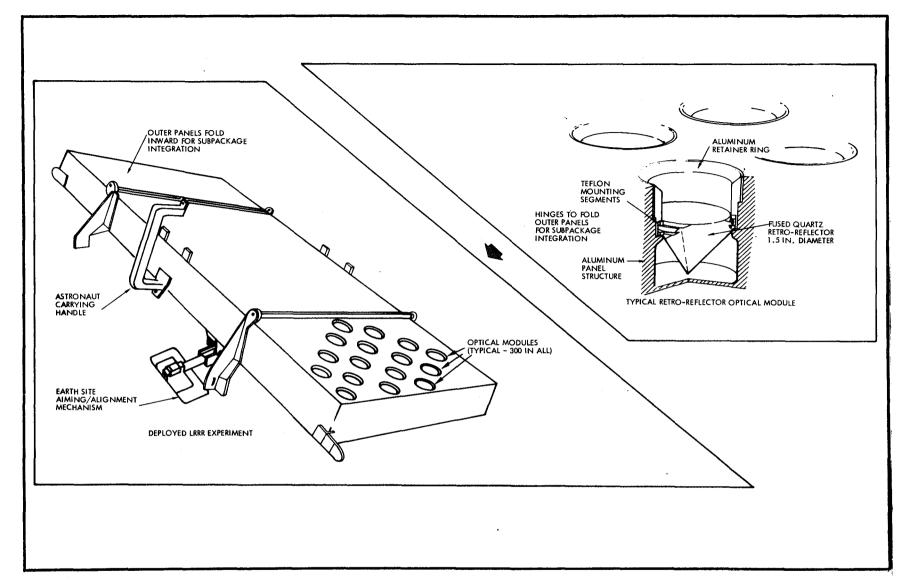
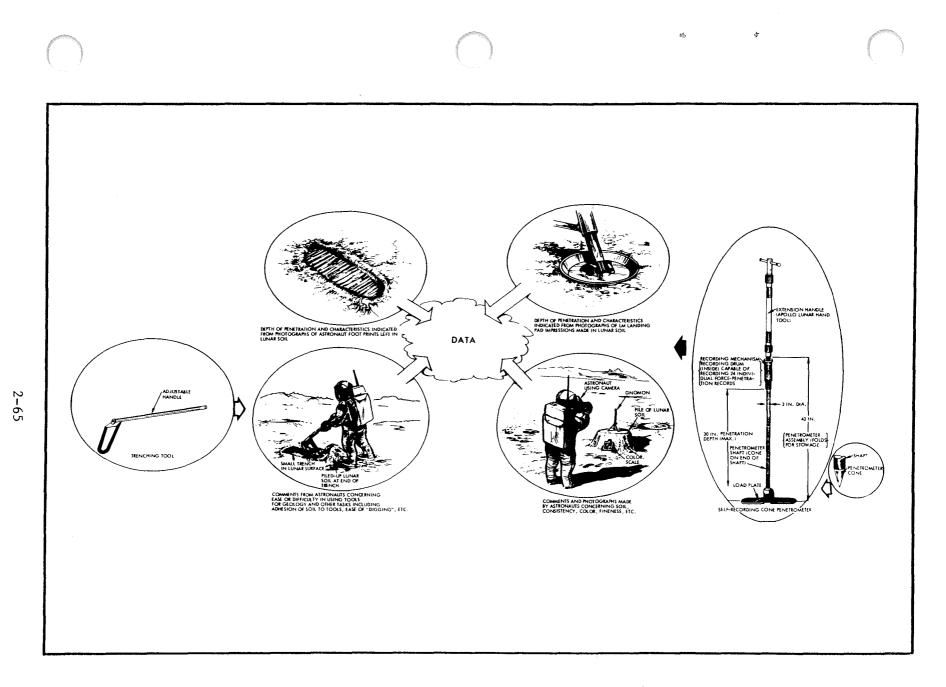
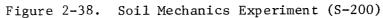




Figure 2-37. Laser Ranging Retro-Reflector Experiment (S-078)

.

2-64

SECTION III

PHOTOGRAPHIC PLAN

3.1 GENERAL

The purpose of this section is to focus attention on the science photographic requirements of the mission, to provide a central source of complete photographic planning information, and to correlate photographic requirements with individual science experiments and objectives. This section contains a list of films flown on previous Apollo missions, with a brief description of each. Detailed descriptions of these films appear in Appendix E which also contains general film properties and processing test data. Detailed photographic requirements are the major constituents of this section and are listed separately for lunar orbit and lunar surface experiments/objectives.

3.2 SUMMARY OF FILM TYPES

Table 3-1 lists the film types that have flown on previous Apollo missions, with a brief description of each. Detailed information on these films is given in Appendix E, including general film characteristics, suggested exposure indexes, image-structure properties, emulsion characteristics, and typical density-log exposure curves. These data are the results of processing tests performed for the most part by the film supplier, and reflect averages based on many different batches of each film. Thus, the data are accurate as to general film and emulsion characteristics, but should not be used for precise sensitometric comparison with any single batch of film. These detailed film descriptions should serve to indicate the capabilities of the Photographic Technology Laboratory (PTL) at MSC, and aid in the selection of film types and processing techniques for mission science photographic objectives and experiments.

3.3 PHOTOGRAPHIC/SCIENCE REQUIREMENTS CORRELATION

Tables 3-2 and 3-3 present detailed photographic requirements for lunar orbital and lunar surface experiments, respectively. Where photographic equipment and film codes are used they are identical to those used in the Mission Requirements Document. A listing of these codes is given with each table. Entries in the exposure parameters column refer to aperture stop, duration of exposure (seconds), and focus distance (feet), respectively. Film processing requirements are specified by reference to the appropriate page of Appendix E.

The Photographic Technology Laboratory (PTL) performs sensitometric exposures of the flight films for each mission, for comparison with the manufacturer's sensitometric standards and for establishment of film processing controls. The Film Sensitometric Calibration, Processing, Handling, and Equipment Capabilities document provides detailed information on sensitometric calibration, and describes a procedure for coordination of special photographic requirements with the PTL.

3.4 PHOTOGRAPHIC REPRODUCTION REQUIREMENTS

Table 3-4 presents the requirements for postmission photographic reproduction materials, which are listed separately for lunar surface photography and lunar orbital photography.

NUMBER	CHARACTERISTIC	TYPICAL FLIGHT APPLICATION
2485	Very high-speed BW	Low-light-level astronomy
3400	Intermediate-speed aerial BW	Candidate sites photography
3401	Medium-speed, fine grain aerial BW	Stellar photography
SO-121	High-resolution aerial color	Photography of earth's surface from EPO
SO-168 (ASA 160)	High-speed color exterior	Photography of ALSEP deploy- ment
3443*	False color reversal aerial, infrared sen- sitive	Multi-spectral photography from EPO
SO-246	BW and infrared sen- sitive, high-contrast aerial	Multi-spectral photography of earth and moon
2405**	High-speed BW	Lunar surface samples documentation photography
SO-349***	Medium-speed BW	Transearth lunar photography
SO-368	Medium-speed color exterior	Soil mechanics photography using the closeup stereo camera
Drugstore type	Kodacolor color negative	Experimental use
2484	Very high-speed BW	Tested for radiation effects on film

*replaces SO-180

and the second s

**formerly SO-267

***SO-349 and 3404 have been redesignated as 3414

Table 3-2.	Lunar Orbit	Science	Photographic	Requirements
------------	-------------	---------	--------------	--------------

EXPERIMENT OR OBJECTIVE	PHOTOGRAPHIC SUBJECT/ DESIRED VIEWS	CAMERA/LENS/FILTER AUXILIARY EQUIPMENT	FILM TYPE/ PROCESSING*	EXPOSURE PARAMETERS**
Bistatic Radar (S-170)	***			
Gamma-Ray Spectrometer (S-160)	***			
X-Ray Fluorescence (S-161)	***			
Alpha Particle Spectrometer (S-162)	***			

Camera Nomenclature:

- DAC 16-mm data acquisition camera
- LDAC Lunar surface 16-mm data acquisition camera (battery operated)
- HEDC 70-mm Hasselblad electric data camera
 (with reseau)
- HEC 70-mm Hasselblad electric camera
- LTC Lunar topographic camera
- MC 3-Inch mapping camera
- PC 24-Inch panoramic camera

Film Nomenclature:

- CEX Color exterior (SO-368)
- HCEX High-speed color exterior (SO-168) (ASA 160)
- CIN Color interior (SO-168) (ASA 1000)
- BW Black and white (3400)
- BW Black and white (3401)
- HBW High-speed black and white (2405, formerly S0-267)
- MBW Medium-speed black and white (SO-349)
- VHBW Very high-speed black and white (2485)

*Film processing is specified by reference to the page in Appendix E which contains the appropriate processing information.

**Exposure parameters are preliminary based on previous mission photography-final values are <u>TBD</u> by FCSD and PTL.

***Copies of appropriate Mapping Camera and/or Panoramic Camera photographs taken of the ground track overflown during periods of experiment operation.

EXPERIMENT OR OBJECTIVE	PHOTOGRAPHIC SUBJECT/ DESIRED VIEWS	CAMERA/LENS/FILTER AUXILIARY EQUIPMENT	FILM TYPE/ PROCESSING	EXPOSURE PARAMETERS
SM Orbital Photo- graphic Tasks	High-resolution photo- graphs with stero cover- age (25-degree conver- gence angle) of potential landing sites (<u>TBD</u>) and exploration areas on the moon (<u>TBD</u>)	PC/24-Inch Lens	MBW(3414, formerly 3404)/ <u>TBD</u>	Automatic Exposure Control
	High-quality metric photographs of the lunar surface, based on 78 per- cent forward overlap on each photographic revolution and 55 per- cent sidelap between consecutive photographic revolutions	MC(terrain)/3-Inch Lens	BW(3400)/ <u>TBD</u>	Automatic Exposure Control
	Stellar photographs time-correlated with the metric photographs of the lunar surface		BW(3401)/ <u>TBD</u>	f/1.8, 2, ∞
S-Band Transponder (CSM/LM) (S-164)	None			
Subsatellite (S-164, S-173, S-174)	Photographs of the sub- satellite after its launch, showing the condition of its external	TBD	TBD	TBD

EXPERIMENT OR OBJECTIVE	PHOTOGRAPHIC SUBJECT/ DESIRED VIEWS	CAMERA/LENS/FILTER AUXILIARY EQUIPMENT	FILM TYPE/ PROCESSING	EXPOSURE PARAMETERS
Subsatellite (S-164, S-173, S-174) (Continued)	surface, confirming proper deployment of experiment booms, and determining subsatellite orientation			
Mass Spectrometer (S-165)	<pre>1 photograph of boom at sunrise, noon, and sun- set on each revolution of mandatory experiment operation; 1 lightside pass of terrain photo- graphy coincident with "+X" operation of the experiment</pre>	МС	BW(3400)/ <u>TBD</u>	Automatic Exposure Control
Apollo Window Meteoroid (S-176)	None			
UV Photography - Earth and Moon	13 sets of 5 photographs as follows: One photograph with each of three UV filters and one photograph with a visual range filter	HEC/105-mm UV trans- mitting Lens/UV band- pass filters centered at 3750 Å, 3250 Å, and 2600 Å, visual range filter 4000- 6000 Å/ring slide for filters and window mounting bracket	/ <u>TBD</u>	<u>TBD</u> , <u>TBD</u> , ∞

.

Table 3-2. Lunar Orbit Science Photographic Requirements (Continued)

ц.

EXPERIMENT OR OBJECTIVE	PHOTOGRAPHIC SUBJECT/ DESIRED VIEWS	CAMERA/LENS/FILTER AUXILIARY EQUIPMENT	FILM TYPE/ PROCESSING	EXPOSURE PARAMETERS
UV Photography (Continued)	One photograph of ap- proximately same scene as taken with filters <u>In earth parking orbit</u> : 1 set showing clouds	HEC/80-mm Lens	CEX (SO-368)/ <u>TBD</u>	<u>TBD</u> , <u>TBD</u> , ∞
	l set showing land and water			
	During translunar coast: 1 set of the earth disc from each of the approx- imate distances 60,000 NM, 120,000 NM, and 180,000 NM from the earth In lunar orbit: 2 sets of the earth 1 set of the earth 1 set of the earth and lunar horizon 1 set of lunar terra 1 set of lunar maria			
	During transearth coast: 1 set of the earth disc from each of the approx- imate distances 180,000 NM, 120,000 NM, and 60,000 NM from the earth			

EXPERIMENT OR OBJECTIVE	PHOTOGRAPHIC SUBJECT/ DESIRED VIEWS	CAMERA/LENS/FILTER AUXILIARY EQUIPMENT	FILM TYPE/ PROCESSING	EXPOSURE PARAMETERS
Gegenschein from Lunar Orbit (S-178)	9 photographs, 3 each in the antisolar direc- tion, in the direction of the Moulton point, and in the direction midway between the anti- solar direction and the direction of the Moulton point. The photographs are to be taken while the spacecraft is in the shadow of the moon.	DAC/18-mm Lens/ window mounting bracket, light shield	VHBW (2485)/ E-15	T1.0, approximately 60,∞
CM Photographic Tasks*	Photographs of <u>TBD</u> areas of the lunar surface, providing 60 percent forward overlap	HEC/250-mm Lens	TBD	TBD
	Photography of <u>TBD</u> areas of the lunar surface, providing 60 percent forward overlap	HEDC/80-mm Lens/ window mounting bracket		
	Photographs of <u>TBD</u> areas in low light levels in earthshine and near the terminator	DAC/18-mm Lens	TBD	TBD

*This entry contains an extensive list of dim light photography objectives which may be modified as a result of Apollo Mission H-3 or because of operational impact on other higher-priority orbital experiments.

.چ/

EXPERIMENT OR OBJECTIVE	PHOTOGRAPHIC SUBJECT/ DESIRED VIEWS	CAMERA/LENS/FILTER AUXILIARY EQUIPMENT	FILM TYPE/ PROCESSING	EXPOSURE PARAMETERS
CM Photographic Tasks (Cont'd)	Photographs of TBD areas in low light levels in earthshine and near the terminator, providing stereo strips with 60 percent forward overlap	HEDC/80-mm Lens/ window mounting bracket	<u>TBD</u>	T1.0 (F.95), <u>TBD</u> , <u>TBD</u> , frame cycle rate of 1 frame per second
	<pre>12 photographs, 3 taken of each of 4 points on the celestial sphere: Subject (<u>R. Asc. Decl.</u>) North Galactic Pole (12^h 50^m, +27.3°) North Ecliptic Pole (18^h 0^m, +66.5°) North Celestial Pole (- , +90.0°) Northernmost Milky Way</pre>	DAC/18-mm Lens/ window mounting bracket	VHBW (2485)/ E-15	T1.0, (20, 20, 5)*,∞
	(0 ^h 40 ^m , +60.0°)			

*Exposure times for the three photographs are 20 seconds, 20 seconds, and 5 seconds, respectively.

EXPERIMENT OR OBJECTIVE	PHOTOGRAPHIC SUBJECT/ DESIRED VIEWS	CAMERA/LENS/FILTER AUXILIARY EQUIPMENT	FILM TYPE/ PROCESSING	EXPOSURE PARAME TERS
CM Photographic Tasks (Cont'd)	25 photographs of zodia- cal light, taken at the following times prior to CSM sunrise:*	DAC/18-mm Lens/ mounting bracket	VHBW (2485)/ E-15	Aperture T1.0, focus at ∞ for all 25 photo- graphs, shutter speeds as shown below for different times prior to sunrise:
	(<u>Min:Sec</u>)			
	-25:00 -21:40 -18:20 -15:00 -11:40 - 8:20 - 5:00 - 1:00 - 0:45 - 0:30 - 0:15 2 series of solar corona photographs, one after CSM sunset and one prior to CSM sunrise*, each series to consist of:			20, 10, 5 20, 10, 5 16, 8, 4 16, 8, 4 8, 4, 2 8, 4, 2 4, 2, 1 1/60 1/125 1/250 1/500
	(a) Seven photographs taken at the following times:	HEC/80-mm Lens/ window mounting bracket	VHBW (2485)/ E-15	Aperture of f2.8 and focus of ∞ for all photographs, shutter speeds variable with times of photographs, as follows:

*For these photographs the CSM attitude will be matched to the lunar orbital rate, holding the +X axis aligned near the forward-looking local horizontal such that approximately one-eighth of the camera's field-of-view is fixed on the lunar surface.

-et

.

EXPERIMENT OR OBJECTIVE	PHOTOGRAPHIC SUBJECT/ DESIRED VIEWS	CAMERA/LENS/FILTER AUXILIARY EQUIPMENT	FILM TYPE/ PROCESSING	EXPOSURE PARAMETERS
CM Photographic Tasks (Cont'd)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$			- 1/125 1/60 1/30 1/15 1/8 1/4 1.0
	(b) approximately 180 frames, during the follow ing intervals: Time from to CSM <u>CSM Sunset</u> <u>Sunrise</u> (Sec) (Sec)	bracket	VHBW (2485)/ E-15	T1.0, (as given below), ∞, frame cycle rate of 1 frame per second
	0 to 80 -80 to 0 80 to 180 -180 to -80 180 0			1/500 1/125 OFF
-	Four photographs of a lunar libration region	DAC/18-mm Lens/ window mounting bracket	VHBW (2485)/ E-15	T1.0, (60, 20, 20, 5), ∞

f				
EXPERIMENT OR OBJECTIVE	PHOTOGRAPHIC SUBJECT/ DESIRED VIEWS	CAMERA/LENS/FILTER AUXILIARY EQUIPMENT	FILM TYPE/ PROCESSING	EXPOSURE PARAMETERS
CM Photographic Tasks (Cont'd)	Six photographs of the earth darkside,two series of 3 photographs, as follows:			
	3 photographs of the earth's darkside, taken near the translunar mid-distance point when PTC is not scheduled	DAC/18-mm Lens/ optical adapter to the CSM sextant	VHBW (2485)/ E-15	T1.0, (60, 20, 5),∞
	3 photographs of the earth's darkside, taken near the transearth mid-distance point when PTC is not scheduled	DAC/18-mm Lens/ optical adapter to the CSM sextant	VHBW (2485)/ E-15	T1.0, (60, 20, 5),∞
	Two series of photographs of the earth's limb dur- ing solar eclipse by the earth, each series to consist of the following:			
	Beginning when the sun appears to set:			
	7 photographs of the earth's limb	HEC/80-mm Lens/ window mounting bracket	VHBW (2485)/ E-15	f2.8, <u>TBD</u> , ∞

-W-

7

EXPERIMENT OR OBJECTIVE	PHOTOGRAPHIC SUBJECT/ DESIRED VIEWS	CAMERA/LENS/FILTER AUXILIARY EQUIPMENT	FILM TYPE/ PROCESSING	EXPOSURE PARAMETERS
CM Photographic Tasks (Cont'd)	Approximately 180 frames of the earth's limb	DAC/18-mm Lens/ window mounting bracket	VHBW (2485)/ E-15	T1.0, TBD, ∞ , frame cycle rate of 1 frame per second
	Beginning 3 minutes prior to computed sun- rise: same as above			
	Three photographs of a comet, if one is in a favorable position	DAC/18-mm Lens/ optical adapter to the CSM sextant	VHBW (2485)/ E-15	T1.0 (60, 20, 5),∞

EXPERIMENT OR OBJECTIVE	PHOTOGRAPHIC SUBJECT/ DESIRED VIEWS	CAMERA/LENS/FILTER AUXILIARY EQUIPMENT	FILM TYPE/ PROCESSING*	EXPOSURE PARAMETERS**	
Passive Seismic (S-031) (ALSEP)	PSE deployed - one photo- graph cross-sun from 3 feet, showing position of bubble and gnomon shadow on compass rose		HCEX (SO-168)/ E-40, E-41	f11, 1/250, 3	
	One photograph showing C/S in background, taken 7 feet from PSE	HEDC/60-mm Lens	HCEX (SO-168)/ E-40, E-41	f11, 1/250, 5	
Camera Nomenclature:			Film Nomenclature:		
 DAC - 16-mm data acquisition camera LDAC - Lunar surface 16-mm data acquisition c. (battery operated) HEDC - 70-mm Hasselblad electric data camera (with reseau) HEC - 70-mm Hasselblad electric camera LTC - Lunar topographic camera MC - 3-Inch mapping camera PC - 24-Inch panoramic camera 		camera HCEX - CIN - BW - BW - HBW - MBW -	 Color exterior (SO-368) High-speed color exterior (SO-168) (ASA 160) Color interior (SO-168) (ASA 1000) Black and white (3400) Black and white (3401) High-speed black and white (2405, fmerly SO-267) Medium-speed black and white (3414 formerly SO-349 and 3404) Very high-speed black and white (2405) 		

Table 3-3. Lunar Surface Science Photographic Requirements

*Film processing is specified by reference to the page in Appendix E which contains the appropriate processing information.

**Exposure parameters are preliminary based on previous mission photography - final values are <u>TBD</u> by FCSD and PTL.

EXPERIMENT OR OBJECTIVE	PHOTOGRAPHIC SUBJECT/ DESIRED VIEWS	CAMERA/LENS/FILTER AUXILIARY EQUIPMENT	FILM TYPE/ PROCESSING	EXPOSURE PARAMETERS
Lunar Surface Magnetometer (S-034) (ALSEP)	One photograph taken 3 feet from the LSM and focused on shadowgraph	HEDC/60-mm Lens	HCEX (SO-168)/ E-40, E-41	f11, 1/250, 3
	One photograph cross-sun showing the three LSM sensor heads	HEDC/60-mm Lens	HCEX (SO-168)/ E-40, E-41	f11, 1/250, <u>TBD</u>
	One photograph taken 7 feet from the LSM, show- ing the LSM with the C/S in the background	HEDC/60-mm Lens	HCEX (SO-168)/ E-40, E-41	f11, 1/250, 5
Heat Flow (S-037) (ALSEP)	One photograph of each bore hole, cross-sun looking toward the C/S - view to show a 10-foot diameter about each hole	HEDC/60-mm Lens	HCEX (SO-168)/ E-40, E-41	f11, 1/250, 10
	One photograph cross-sun of HFE electronics package from 7 feet to include C/S in the back- ground	HEDC/60-mm Lens	HCEX (SO-168)/ E-40, E-41	f11, 1/250, 7
	One photograph of each bore stem, taken from 7 feet, showing the maximum deviation from the vertical of the stem	HEDC/60-mm Lens	HCEX (SO-168)/ E-40, E-41	f11, 1/250, 7

•					
Table 3-3.	Lunar Surface	Science	Photographic	Requirements	(Continued)

EXPERIMENT OR OBJECTIVE	PHOTOGRAPHIC SUBJECT/ DESIRED VIEWS	CAMERA/LENS/FILTER AUXILIARY EQUIPMENT	FILM TYPE/ PROCESSING	EXPOSURE PARAMETERS
Solar Wind Spectrometer (S-035) (ALSEP)	One photograph cross-sun taken 3 feet from SWS, looking north	HEDC/60-mm Lens	HCEX (SO-168)/ E-40, E-41	TBD
	One photograph cross-sun taken 3 feet from SWS, looking south	HEDC/60-mm Lens	HCEX (SO-168)/ E-40, E-41	
ALSEP/Central Station	One photograph of the C/S taken from 7 feet behind the C/S looking north	HEDC/60-mm Lens	HCEX (SO-168)/ E-40, E-41	f11, 1/250, 7
	At least one photograph showing entire ALSEP deployed	HEDC/60-mm Lens	HCEX (SO-168)/ E-40, E-41	f11, 1/250, <u>TBD</u>
	One photograph of the C/S taken from 3 feet looking south to show the positions of the switches	HEDC/60-mm Lens	HCEX (SO-168)/ E-40, E-41	fl1, 1/250, <u>TBD</u>
Radioisotope Thermoelectric Generator (RTG) (ALSEP)	One photograph of the RTG on the subpackage, taken 7 feet from the RTG	HEDC/60-mm Lens	HCEX (SO-168)/ E-40, E-41	f11, 1/250, 3

EXPERIMENT OR OBJECTIVE	PHOTOGRAPHIC SUBJECT/ DESIRED VIEWS	CAMERA/LENS/FILTER AUXILIARY EQUIPMENT	FILM TYPE/ PROCESSING	EXPOSURE PARAMETERS
Suprathermal Ion Detector Experi- ment (SIDE)	One photograph cross-sun 7 feet from the SIDE looking south	HEDC/60-mm Lens	HCEX (SO-168)/ E-40, E-41	TBD
(S-036)/Cold Cathode Ion Gauge (CCIG) (S-058) (ALSEP)	One photograph cross-sun 7 feet from the SIDE looking north, showing the aperture of the CCIG	HEDC/60-mm Lens	HCEX (SO-168)/ E-40, E-41	<u>TBD</u>
	One photograph showing SIDE and CCIG with C/S in background	HEDC/60-mm Lens	HCEX (SO-168)/ E-40, E-41	TBD
	One photograph of the SIDE bubble level from 3 feet, showing the deviation of the SIDE from the local vertical	HEDC/60-mm Lens	HCEX (SO-168)/ E-40, E-41	<u>TBD</u>
Laser Ranging Retro-Reflector (S-078)	One photograph of the top of the LR ³ from 3 feet, showing bubble level and shadow marker	HEDC/60-mm Lens	HCEX (SO-168)/ E-40, E-41	f11, 1/250, 3
	One photograph of the LR ³ taken at a 45 degree angle between the front and side, from 11 feet and including the LM or other identifiable ob- ject	HEDC/60-mm Lens	HCEX (SO-168)/ E-40, E-41	f11, 1/250, 10

清

EXPERIMENT OR OBJECTIVE	PHOTOGRAPHIC SUBJECT/ DESIRED VIEWS	CAMERA/LENS/FILTER AUXILIARY EQUIPMENT	FILM TYPE/ PROCESSING	EXPOSURE PARAMETERS
Soil Mechanics (S-200)	One photograph of each of the eight LM secon- dary strut assemblies; line-of-sight approxi- mately perpendicular to plane of strut as- sembly; field-of-view as small as possible but including all of secon- dary strut and all of primary strut below the attachment of the secon- dary strut. These photographs must also be taken prior to the mission		HBW (2405, formerly SO-267)/ E-25	• <u>TBD</u>
	Photographs of the LM exterior showing any soil accumulation on the vertical surface, cross- sun (if possible) at a distance of 7 to 15 feet depending on the surface to be photographed		HBW (2405, formerly SO-267)/ E-25	<u>TBD</u>
	Photographs of the lunar surface showing DPS exhaust impingement erosion crater, one photograph to be taken cross-sun from 11 feet	HEDC/60-mm Lens	HBW (2405, formerly SO-267)/ E-25	TBD

Į.,

EXPERIMENT OR OBJECTIVE	PHOTOGRAPHIC SUBJECT/ DESIRED VIEWS	CAMERA/LENS/FILTER AUXILIARY EQUIPMENT	FILM TYPE/ PROCESSING	EXPOSURE PARAME TERS
Soil Mechanics (cont'd)	Eight photographs, two of each LM footpad and sur- rounding lunar soil ex- hibiting evidence of LM footpad-lunar soil inter- action			
	-Y pad, cross-sun -Z pad, up-sun -Y pad, cross-sun -Z pad, down-sun	HEDC/60-mm Lens	HCEX (SO-168)/ E-40, E-41	f8, 1/250, 5
	Photographs of the course traversed before and after traverses for ALSEP deployment	HEDC/60-mm Lens	HCEX (SO-168)/ E-40, E-41	TBD
	Photographs of an astro- naut's footprint during traverse for ALSEP de- ployment, cross-sun from 11 feet	HEDC/60-mm Lens	HCEX (SO-168)/ E-40, E-41	TBD
	Before trench excavation (a) One photograph of trench site up-sun from 10 feet, showing gnomon placed near trench site (up-sun)	HEDC/60-mm Lens	HBW (2405, formerly SO-267)/ E-25	TBD

f	· · · · · · · · · · · · · · · · · · ·	······································		
EXPERIMENT OR OBJECTIVE	PHOTOGRAPHIC SUBJECT/ DESIRED VIEWS	CAMERA/LENS/FILTER AUXILIARY EQUIPMENT	FILM TYPE/ PROCESSING	EXPOSURE PARAMETERS
Soil Mechanics (Cont'd)	(b) A stereo pair of trench site cross-sun from 7 feet			
	Sequence photographs down-sun during excava- tion	LDAC/10-mm Lens	CEX (SO-368)/ E-34, E-35	f8, 1/250, ∞, 24 frames per second
	The following photographs of the excavated trench:	HEDC/60-mm Lens	HBW (2405, formerly	TBD
	(a) A stereo pair of the trench interior up-sun from 7 feet		SO-267)/ E-25	
	<pre>(b) Two stereo pairs, one cross-sun from each side of the trench, from 7 feet</pre>			
	(c) A stereo pair of the trench, down-sum from 7 feet			

EXPERIMENT OR OBJECTIVE	PHOTOGRAPHIC SUBJECT/ DESIRED VIEWS	CAMERA/LENS/FILTER AUXILIARY EQUIPMENT	FILM TYPE/ PROCESSING	EXPOSURE PARAMETERS
Soil Mechanics (Cont'd)	The following photographe of the excavated mater- ial:	HEDC/60-mm Lens	HBW (2405, formerly SO-267)/ E-25	TBD
	(a) A stereo pair cross- sun from 7 feet			
	(b) A stereo pair from 7 feet after an astro- naut has stepped on the pile of excavated material			
	Photographs of soil sur- face adjacent to pene- trometer and plate load tests, both before and after the tests are per- formed, cross-sun from 7 feet	HEDC/60-mm Lens	HBW (2405, formerly SO-267)/ E-25	TBD
	Photograph at each pene- trometer test site show- ing depth to any impene- trable stratum or the maximum depth to which the astronaut was able to push penetrometer, cross-sun from 7 feet	HEDC/60-mm Lens	HBW (2405, formerly SO-267)/ E-25	<u>TBD</u>

 $\langle T \rangle$

÷

de la

EXPERIMENT OR OBJECTIVE	PHOTOGRAPHIC SUBJECT/ DESIRED VIEWS	CAMERA/LENS/FILTER AUXILIARY EQUIPMENT	FILM TYPE/ PROCESSING	EXPOSURE PARAMETERS
Soil Mechanics (Cont'd)	Photographs of the area where each penetrometer/ plate load test was con- ducted, showing location relative to LM or a prominent terrain feature	HEDC/60-mm Lens	HBW (2405, formerly SO-267)/ E-25	TBD
	Photographs of natural slopes, boulders, ridges, rills, crater walls and embankments in the vicinity of the landing site	HEDC/60-mm Lens	HBW (2405, formerly SO-267)/ E-25	TBD
	A stereo pair of the lunar soil-LRV inter- action at each of four locations cross-sun from 7 feet	HEDC/60-mm Lens	HBW (2405, formerly SO-267)/ E-25	TBD
	Photographs of the LRV in motion	LDAC/10-mm Lens	CEX (SO-368)/ E-34, E-35	f8, 1/250, ∞, 24*

*frames per second

Table 3-3. Lunar Surfac	e Science	Photographic	Requirements	(Continued)
-------------------------	-----------	--------------	--------------	-------------

× .

4

EXPERIMENT OR OBJECTIVE	PHOTOGRAPHIC SUBJECT/ DESIRED VIEWS	CAMERA/LENS/FILTER AUXILIARY EQUIPMENT	FILM TYPE/ PROCESSING	EXPOSURE PARAMETERS
Contingency Sample Collection	One photograph cross-sun of the sample while it is on the lunar surface and one photograph cross sun of the sample area after the sample is taken	HEDC/60-mm Lens	HCEX (SO-168)/ E-40, E-41	f8, 1/250, 5
Selected Sample* Collection	One stereo pair, showing sample and gnomon, cross sun from 7 feet	HEDC/60-mm Lens	HCEX (SO-168)/ E-40, E-41	f11, 1/250, 7
	One photograph down-sun from 11 feet, including gnomon	HEDC/60-mm Lens	HCEX (SO-168)/ E-40, E-41	f11, 1/250, 11
	One photograph cross- sun of sampled areas, from 7 feet	HEDC/60-mm Lens	HCEX (SO-168)/ E-40, E-41	f11, 1/250, 7
	One photograph approxi- mately cross-sun, in- cluding an identifiable object, from 15 feet	HEDC/60-mm Lens	HCEX (SO-168)/ E-40, E-41	f11, 1/250, 74
Lunar Field Geology (S-059)	For each documented geological sample, the following 5 photographs:			

*Photographic requirements for the Selected Sample are preliminary.

EXPERIMENT OR OBJECTIVE	PHOTOGRAPHIC SUBJECT/ DESIRED VIEWS	CAMERA/LENS/FILTER AUXILIARY EQUIPMENT	FILM TYPE/ PROCESSING	EXPOSURE PARAMETERS
Lunar Field Geology (Cont'd)	<u>Before Sampling:</u> One down-sun from 11 feet, including gnomon One stereo pair cross-sur from 7 feet	HEDC/60-mm Lens HEDC/60-mm Lens	HBW (2405, formerly SO-267)/E-25 HBW (2405, formerly SO-267)/E-25	<u>TBD</u> , 1/250, 11 <u>TBD</u> , 1/250, 7
	After Sampling: One cross-sun from 7 feet	HEDC/60-mm Lens	HBW (2405, formerly SO-267)/E-25	<u>TBD</u> , 1/250, 7
	One approximately cross- sun from 15 feet, in- cluding an identifiable object or landmark	HEDC/60-mm Lens	HBW (2405, formerly SO-267)/E-25	<u>TBD</u> , 1/250, 74
	For diametric sampling of a fresh crater: two partial panoramas, one before and one after sampling	HEDC/60-mm Lens	HBW (2405, formerly SO-267)/E-25	
	For each large rock sample: same as for documented geological samples			
	One photograph before and after the exhaust contamination sample	HEDC/60-mm Lens	HBW (2405, formerly SO-267)/E-25	TBD

-

3-24

EXPERIMENT OR OBJECTIVE	PHOTOGRAPHIC SUBJECT/ DESIRED VIEWS	CAMERA/LENS/FILTER AUXILIARY EQUIPMENT	FILM TYPE/ PROCESSING	EXPOSURE PARAMETERS
Lunar Field Geology (Cont'd)	For the fillet sample: 4 photographs equally spaced around the rock, from 3 feet	HEDC/60-mm Lens	HBW*(2405, formerly SO-267)/E-25	<u>TBD</u> , 1/250, 3
	For each core tube sample: One stereo pair cross-sun of core tube in contact with surface, from 7 feet	HEDC/60-mm Lens	HBW (2405, formerly SO-267)/E-25	<u>TBD</u> , 1/250, 74
	One photograph of tube and horizon, from 15 feet	HEDC/60-mm Lens	HBW (2405, formerly SO-267)/E-25	<u>TBD</u> , 1/250, 74
	For the 4-kilogram soil sample: same as for doc- umented geological samples			
	For the trench sample: same as for the soil mechanics trench or, if soil mechanics trench is used, photographs in sup- port of soil mechanics will suffice			
	For the lunar environ- ment soil sample: same as above			

Table 3-3. Lunar Surface Science Photographic Requirements (Continued)

4

*On one of the latter two EVA's, the film will be HCEX(SO-168)/E-40, E-41.

	EXPERIMENT OR OBJECTIVE	PHOTOGRAPHIC SUBJECT/ DESIRED VIEWS	CAMERA/LENS/FILTER AUXILIARY EQUIPMENT	FILM TYPE/ PROCESSING	EXPOSURE PARAMETERS
3–26	OBJECTIVE Lunar Field Geology (Cont'd)	For the gas analysis sample and the residual magnetic rock sample: same as for the docu- mented geological samples For large examples of lunar surface features and field relationships: same as for documented geological samples but with extended stereo photography Up to 12 sets of pano- ramic photographs, each set containing 12 over- lapped photographs for 360-degree coverage, taken with horizon near, top of picture - sets to be taken from: a) 20 feet from LM quad	AUXILIARY EQUIPMENT HEDC/60-mm Lens	PROCESSING HBW (2405, formerly SO-267)/E-25	PARAMETERS <u>TBD</u> , <u>TBD</u> , 74
		2 b) 20 feet from LM quad 3 c) 20 feet from LM +Z strut d) geological features of interest along traverse			

4

 $\tilde{h}_{\rm sca}^{\rm c}$

EXPERIMENT OR OBJECTIVE	PHOTOGRAPHIC SUBJECT/ DESIRED VIEWS	CAMERA/LENS/FILTER AUXILIARY EQUIPMENT	FILM TYPE/ PROCESSING	EXPOSURE PARAMETERS
Lunar Field Geology (Cont'd)	e) high elevation pointsf) points with items of crew interest			
	For near field polari- metric measurement:			ant 1/050 11
	One photograph down-sun (10-degree phase angle), from 10 feet, taken of a rock sample area, includ- ing gnomon	HEDC/60-mm Lens	HBW (2405, former1y SO-267)/E-25	f11, 1/250, 11
	Three photographs of area from 7 feet, one through each of three polarizing filters, at a phase angle of 90 degrees	HEDC/60-mm Lens	HBW (2405, former1y SO-267)/E-25	f5.6, 1/125, 7
	Same 3 photographs at phase angle of 110 degrees			
	Same 3 photographs at phase angle of 130 degrees			
	One photograph down-sun from 10 feet after sample collection	HEDC/60-mm Lens	HBW (2405, formerly SO-267)/E-25	f11, 1/250, 11

3-27

EXPERIMENT OR OBJECTIVE	PHOTOGRAPHIC SUBJECT/ DESIRED VIEWS	CAMERA/LENS/FILTER AUXILIARY EQUIPMENT	FILM TYPE/ PROCESSING	EXPOSURE PARAMETERS
Lunar Field Geology (Cont'd)	For distant polarimetric measurement:			
	Three photographs from at least 12 feet, approxi- mately cross-sun, one each at the left, center, and right settings of the polarizing filter		HBW (2405, formerly SO-267)/E-25	£5.6, 1/125, 74
	Three photographs as above, but from about 20 degrees down-sun from first position	HEDC/60-mm Lens	HBW (2405, formerly SO-267)/E-25	f5.6, 1/125, 74
	For each near-field colorimetric survey:			
	Four photographs down- sun from 7 feet, showing rock with color chart (chart facing up-sun) and gnomon	HEDC/60-mm Lens	HBW (2405, formerly SO-267)/E-25	f18, f11, f8 and f5.6, respectively <u>TBD</u> , 7
	One photograph from 7 feet, at a phase angle of 45 degrees, showing same scene	HEDC/60-mm Lens	HBW (2405, formerly SO-267)/E-25	fll, <u>TBD</u> , 7
	One photograph down-sun from 7 feet, of same scene <u>after</u> sampling	HEDC/60-mm Lens	HBW (2405, formerly SO-267)/E-25	fll, <u>TBD</u> , 7

ITEM	LUNAR SURFACE ONLY	ORBITAL AND LUNAR SURFACE	ORBITAL ONLY	TOTAL
70-mm Photography				
Positive Transparencies (Rolls)	13	28	0	41
Masters (Rolls) - From Original O/B Film***	5	5	0	10
8 X 10 In. Prints - Color And BW (Set)	21	25	0	46
Proof Books (Set)	2	8	0	10
16-mm Photography				
16-mm - Optical Masters - B-Wind (Set)	0	2	2*	4
16-mm - Working Prints (Set)	13	15	0	28
35-mm Photography				
Positive Transparencies (Rolls)	8	0	0	8
Masters (Rolls) - From Original O/B Film	2	0	0	2
Slides (Set)	27	о	0	27
8 X 10 In. Prints (Set)	12	0	0	12
Proof Books (Set)	1	0	0	1
Television				
Kinescope (16-mm)	0	0	0	0
Working Print (Set)	3	0	о	3
Lunar Topographic Camera (Hycon)				
Positive Transparencies (Rolls)	0	0	30	30
Strip Prints 4-1/2 X 4-1/2 In. (Set)	0	0	22	22
8 X 10 In. Prints (Set)	0	0	9	9
Masters (Rolls) - From Original O/B Film	0	0	5	5

Table 3-4. Photographic Reproduction Requirements

See.

÷

nentramer.

and and a second

Table 3-4. Photographic Reproduction Requirements (Continued)

ITEM	LUNAR SURFACE ONLY	ORBITAL AND LUNAR SURFACE	ORBITAL ONLY	TOTAL
24-In. Panoramic Camera**				
Positive Transparencies (Rolls)	0	0	3	3
Masters (Rolls) - From Original O/B Film	0	0	5	5
3-In. Mapping Camera**				
Positive Transparencies (Rolls)	0	0	10	10
Masters (Rolls) - From Original O/B Film	0	0	5	5
35-mm - Positive Transparencies (From 3-Inch Camera)	0	0	10	10
35-mm - Masters (Rolls) From Original O/B Film	0	0	5	5
* Dim Light Photography only - Gegenschein Experiment S-178				,
**Printing and distribution of material from the 3-Inch and 24-Inch camera systems, the method of reproduction, and the facility to be used are <u>TBD</u> .				
***0/B Film - Onboard Film				

, ·

SECTION IV

LUNAR TRAVERSE PLAN

4.1 GENERAL

This section is intended to provide information for use in the planning of lunar traverses for Apollo Mission J-1. Included are a brief geological description of the landing site and a listing of the detailed activities required for the science experiments scheduled to be performed on the lunar surface. These activities have not been correlated to traverses for the three planned EVA's because the landing site was not identified until recently and traverse data have not been available. However, detailed traverses and the activities for each will be provided in the next issue of this document scheduled for publication at L-5 months.

4.2 GEOLOGICAL DESCRIPTION

The two major features of the Hadley-Apennines landing site are the Apennine Mountains and Hadley Rille (Figure 4-1). The Apennine Mountains, rising up to 2 km above the lunar surface, are the most imposing of the lunar mountain ranges and form the southeastern boundary of Mare Imbrium. The front of these mountains is probably composed of materials that predate the excavation of the Imbrium and may include pre-Imbrium rocks. These mountains offer opportunities to collect samples of ancient material from the lunar surface, deep lunar samples at the base of the highest scarp on the moon, and subsurface ejecta and surface rocks from both a major ringed mare and mascon region.

Hadley Rille is a meandering channel much like river gorges on earth. About 1 km wide and 200 m deep, this rille runs parallel to the Apennine Mountains in a northeasterly direction. The nature and origin of Hadley Rille and its associated elongate depression and deposits are expected to provide information on important lunar surface processes and may yield data on the history of lunar volatiles.

Significant features in the Hadley-Apennines area, shown in Figure 4-1 with letter designations corresponding to those below, are as follows:

- a) Apennine Ridge
- b) Hadley C Crater
- c) Apennine Front
- d) Apennine Spur
- e) Elongate Depression

4.3 EXPERIMENT ACTIVITIES

The ALSEP Array A-2/Heat Flow is a family of experiments assigned to the mission. A typical deployment arrangement is shown in Figure 4-2. Required activities associated with these and other assigned experiments are listed in Table 4-1. Data listed under each column heading are described below. Detailed procedures and the timeline for these activities are defined in the Lunar Surface Procedures, those for photographic activities are defined in the Photographic and Television Procedures.

a) <u>Experiment (Number) and Activity (Priority)</u>. Includes each activity and its priority.

b) <u>Astronaut Activities</u>. Lists activities required by the astronauts to support the experiment activity. The "Sample ID" in the column indicates that an astronaut voice comment is required to identify the prenumbered bag used, the serial number and order of the multiple core tubes used, and the type of sample (e.g., "small rocks showing erosion"). This information is for postmission correlation with samples and sample photography. A description of the hand tools and equipment available to accomplish these activities appears in Section II of this document.

c) <u>Traverse/Station No</u>. Identifies the particular station number on the traverse map where activity will occur. An entry in the column will indicate whether the activity is left to the astronaut's discretion.

d) <u>Photographs</u>. Indicates the general photographic activity required. Detailed photographic requirements are defined in Section III of this document.

e) <u>Sample Stowage</u>. Indicates appropriate container on the LRV in which the sample is to be stowed.

f) <u>Remarks</u>. Provides additional information pertinent to the development of detailed timelines and procedures.

4.4 TRAVERSES

Experiment activities for each of the three planned traverses will be provided in the next issue of this document. Traverses will be plotted on maps. Supplementary traverse data will be provided in a format similar to that shown by Table 4-2. Data to be listed under each column heading are described below.

a) <u>Station, From and To</u>. The route and activities can be followed by reading the station designations and referring to the traverse map (Figure 4-3).

b) <u>Distance</u>. Shows the computed map distance between the two stations in kilometers.

c) <u>Geologic Feature</u>. Describes the major geological feature at the "To Station." Data in parentheses indicates whether the station stop is a "long" or "short" stop.

d) <u>Activities</u>. Indicates the "enroute" phase as well as the science activity for the particular station.

e) <u>Duration</u>. Indicates the time in minutes for both the enroute phase and the station science activities. The latter time includes both science time and the required overhead time.

f) <u>Cumulative Distance and Time</u>. Indicates the estimated cumulative totals of both distance (kilometers) and time (hours:minutes) as the traverse progresses from station to station. The sum of the science time, overhead time, and enroute time is the total traverse duration. Time and distance are only estimates and are preliminary. Official timelines will be provided in the Lunar Surface Procedures.

4.5 GROUND RULES AND CONSTRAINTS

Data in this paragraph are TBD.

EXPERIMENT (NUMBER) ACTIVITY (PRIORITY)	ASTRONAUT* ACTIVITIES	TRAVERSE/ STATION NO.	PHOTOGRAPHS**	STOWAGE	REMARKS
Lunar Geology/Sample Collection (S-059) l large fresh crater (HD)	Collect samples of different types of rocks and soil; sample ID.	<u>TBD</u>	5 photographs: 3 before sampling 2 after sampling	In prenumbered bags in SRC No. <u>TBD</u> . If too large, store in SRC or collec- tion bag.	Different types showing varia- tion in color, texture, shape and degree of rounding. When rocks are too large, chips should be taken.
l small fresh blocky crater (HD)	Collect samples of bedrock; sample ID.	<u>TBD</u>	Same as above.	Same as above.	Same as above.
l subdued crater (HD)	Collect samples of different types of rocks and soil; sample ID.	<u>TBD</u>	Same as above.	Same as above.	Same as above.
Each major geological site (M)	Collect samples of different types of rocks and soil; sample ID.	<u>TBD</u>	Same as above.	Same as above.	Same as above.
Compr ehensive sample (M)	Collect all rocks within this sampling site larger than 1/2 in. diameter; sample ID.	Astronaut discretion	Same as above.	Same as above.	Flat region of up to 100 square feet desirable.
Radial sampling of a fresh crater (HD)	Collect soil plus rock samples: l on crater rim, l one-half crater diameter outward on ejector field, l one crater diameter outward on ejector field. Perform diametric sampling, time permitting: a) crater center, b) diametrically opposite crater rim, c) one-half crater diameter outward from this crater rim, d) one crater diameter outward form the second		2 partial pano- ramas, before and after sampling.	Loose in an SRC or a collection bag.	
•	from this crater rim.				

-)

Table 4-1.	Experiments	Activities
------------	-------------	------------

EXPERIMENT (NUMBER) ACTIVITY (PRIORITY)	ASTRONAUT* ACTIVITIES	TRAVERSE/ STATION NO.	PHOTOGRAPHS**	STOWAGE	
Additional samples (HD)	Collect samples in order of priority: a) small rocks, b) rock chips, c) soil.	Astronaut discretion	For each sample, 5 photographs: 3 before sampling 2 after sampling.	Loose in an SRC or in a collec- tion bag.	a) Size of documented samples b) ≤ 1 in. diameter
Lunar surface features and field relationships (M)	Examine and describe following type field relationships: a) surface patterns of small grooves or linear features, b) rock surfaces that show tex- tures and structures too large to return, c) craters that show the range of size, freshness and degradation, d) rock-soil junc- tions such as fillets banked against rocks, e) disturbed and undisturbed surface material.	Astronaut discretion	Small features: 3 photographs Large features: Extend stereo photographs.	N/A	
3 panoramic photograph sequences at LM (M)	Take photographs	At LM	12 photographs to provide 360 degree coverage.	N/A	20 ft. from Q_2 , Q_3 and +Z struts.
Up to 9 panoramic photographic sequences (HD)	Take photographs	<u>TBD</u>	12 photographs to provide 360 degree overlapped coverage.	N/A	Based on following criteria: a) geological features of inter- est along traverse, b) from high elevation points from which unobstructed horizon can be seen, c) items of clear interest.
Near-field polarimetric measurement photographs (M)	Take photographs in an area of several rocks.	Astronaut discretion	10 photographs	N/A	In area where at least 4 rock samples will be collected.
4 rock samples (M)	Collect samples.	Astronaut discretion (from area where near- field polari- metric measure- ment taken).	l of area after samples collected.	In prenumbered bags in an SRC.	

Table 4-1. Experiments Activities (Continued)

6

. jeor

EXPERIMENT (NUMBER) ACTIVITY (PRIORITY)	ASTRONAUT* ACTIVITIES	TRAVERSE/ STATION NO.	PHOTOGRAPHS**	STOWAGE	REMARKS
Far-field polarimetric measurement photographs (M)	Take photographs in a rocky area or an inner crater wall.	<u>TBD</u>	6 photographs	N/A	Crater diameter >12 m.
Near-field colorimetric survey photographs (M)	Take photographs of a rocky area with different color materials.	Astronaut discretion	2 photographs	N/A	In area where 4 rock samples will be collected.
4 rock samples (M)	Collect samples	Astronaut discretion (from area where near- field color- imetric sur- vey photo- graphs taken).	l of area after samples collected	In prenumbered bags in an SRC.	
l triple core tube sample (M)	Obtain core tube sample; sample ID.	TBD (In vicin- ity of S-200 trench).	3 photographs: 1 stereo pair 1 localization	Core tubes will be stored in SRC No. <u>TBD</u> . Bit will be individually bagged and stored in SRC No. <u>TBD</u> .	Between craters at distant point on traverse.
l dou ble core tube sample (M)	Obtain core tube sample; sample ID.	<u>TBD</u>	Same as above.	Core tubes will be stored in SRC No. <u>TBD</u> .	From multiple layer area, e.g., bottom of a subdued crater.
Single core tube samples (M)	Obtain core tube samples; sample ID.	Astronaut discretion	Same as above.	Core tubes will be stored in an SRC.	Targets of opportunity.

þ.

Table 4-1. Experiments Activities (Continued)

EXPERIMENT (NUMBER) ACTIVITY (PRIORITY)	ASTRONAUT* ACTIVITIES	TRAVERSE/ STATION NO.	PHOTOGRAPHS**	STOWAGE	REMARKS
4 kg soil sample (M)	Collect sample.	Astronaut discretion (from within comprehensive sample area).	5 photographs: 3 before sampling 2 after sampling	Single collec- tion bag.	
3 soil/small rock samples (M)	Collect samples from trench; sample ID: a) from bottom, b) from side, c) from top.	TBD (may be from S-200 trench.)	Sample area to be documented photo- graphically same as S-200 trench.	In prenumbered bags in SRC No. <u>TBD</u> .	Location far away from LM.
1 three-meter drill core (M)	Collect sample using Apollo lunar surface drill.	TBD (In vicin- ity of ALSEP deployment site).	TBD	Store six drill items in SRC No. 1	
2 large rocks (M)	Collect rocks, preferably show- ing evidence of erosion, from flat area.	Astronaut discretion	5 photographs: 3 before sampling 2 after sampling	Collection bag.	Equidimensional, 6 to 8 in. on a side; crystalline if distin- guishable.
Several small rocks (about 5 in number) (M)	Collect samples, representing various stages of erosion.	Astronaut discretion	Same as above.	In prenumbered bags in an SRC.	Equidimensional, should include most angular and most rounded; crystalline if distinguishable.
l fillet sample (M)	Sample fillet along with one large rock or one small rock; sample ID.	Astronaut discretion (with rock).	4 photographs: 1 from each quad- rant of fillet.	In prenumbered bag in an SRC.	Sample just fillet material, not deeper soil under fillet.
l exhaust contaminated sample (M)	Collect sample; sample ID.	From under LM.	2 photographs: 1 before sampling 1 after sampling	Special environ- mental sample container; SRC No. <u>TBD</u> .	Collect only top layer; if mater ial too hard to scoop, delete sample.

Table 4-1. Experiments Activities (Continued)

6

Þ

EXPERIMENT (NUMBER) ACTIVITY (PRIORITY)	ASTRONAUT* ACTIVITIES	TRAVERSE/ STATION NO.	PHOTOGRAPHS**	STOWAGE	REMARKS
l gas analysis rock sample (M)	Collect sample of spherules, glass-splattered rocks, or com- binations of different rocks; sample ID.	Astronaut discretion	5 photographs: 3 before sampling 2 after sampling	Special environ- mental sample container; SRC No. <u>TBD</u> .	≥300 ft from LM; sample should be free of soil; SESC should be filled.
l lunar environmental soil sample (M)	Collect from bottom of S-200 trench; sample ID.	<u>TBD</u>	Sample area to be documented photo- graphically same as S-200 trench.	Special environ- mental sample container; SRC No. <u>TBD</u> .	≥300 ft from LM.
l micro-breccia rock (M)	Collect sample; sample ID.	Astronaut discretion	5 photographs: 3 before sampling 2 after sampling	Magnetic sample container; SRC No. 2.	≥300 ft from LM.
l crys talline rock (M)	Collect sample; sample ID.	Astronaut	Same as above.	Magnetic sample container; SRC No. 2.	≥300 ft from LM.
Soil Mechanics (S-200)					
Trench (M)	Excavate a narrow trench; pile excavated material to determine its natural slope.	TBD	15 photographs: 3 of site before trenching; 4 stereo-pairs of trench; 2 stereo- pairs of excava- ted material. Sequence photo- graphs of trench- ing operation.	N/A	Aligned 10 degrees off sun-line; 6 to 8 in. deep; adjacent to penetrometer and plate load test.
l penetrometer and plate load test (M)	Perform test.	Trench exca- vation site (<u>TBD</u>).	4 photographs of each penetrometer and plate load test: 1 to show	N/A	Prior to excavation of trench.

Table 4-1. Experiments Activities (Continued)

4-8

1

EXPERIMENT (NUMBER) ACTIVITY (PRIORITY)	ASTRONAUT* ACTIVITIES	TRAVERSE/ STATION NO.	PHOTOGRAPHS**	STOWAGE	REMARKS
			depth of penetra- tion; l localiza- tion; l of soil surface adjacent to test, both before and after test.		
2 penetrometer and plate load tests (M)	Perform tests: 1 at trench bottom; 1 adjacent to trench to cause wall failure.	Trench exca- vation site (<u>TBD</u>).	Same as above.	N/A	If wall failure occurs during trench excavation, second test is not don2.
<u>TBD</u> penetrometer and plate load tests (M)	Perform tests.	One at each core tube sample station under S-059 (<u>TBD</u>).	Same as above.	N/A	A total of at least 15 tests will be made.
4 penetrometer and plate load tests (M)	Perform tests.	Astronaut discretion	Same as above.	N/A	At locations where LRV perfor- mance dats are available.
Photographs of LM, lunar surface, etc. (M)	Take photographs	itii	**	N/A	See Photographic Plan for speci- fics.
Comments on the following (M): ability to dig in lunar soil and estimates of depths of any layers detected;	Make comments.	At trench site (<u>TBD</u>)	N/A	N/A	
estimate of the excavated depth, description of excava- tion, and time required to complete excavation;		At trench site (<u>TBD</u>)	N/A	N/A	
on effort required to push the penetrometer and bearing plate into surface and depth and firmness of any subsurface obstructions.		At penetrome- ter and plate load test sites (<u>TBD</u>).	N/A	N/A	

Table 4-1. Experiments Activities (Continued)

þ.

þ54

EXPERIMENT (NUMBER) ACTIVITY (PRIORITY)	ASTRONAUT* ACTIVITIES	TRAVERSE/ STATION NO.	PHOTOGRAPHS**	STOWAGE	REMARKS
<u>Contingency Sample</u> <u>Collection (M)</u>	Collect sample of about 2 lb.	Immediate vicinity of LM	2 photographs: l of sample on surface; l of sample area after sample is taken.	Contingency sam- ple return con- tainer.	As early as practical during initial EVA.
<u>Selected Sample</u> <u>Collection (M)</u>	Collect samples: a) 3/4 of quan- tity, rocks of varied texture and mineralogy, b) 1/4 of quan- tity, fine-grained fragmented material, c) 1 large rock of <u>TBD</u> size.	discretion	5 photographs: 3 before sampling 2 after sampling	SRC No. 1	During first EVA.
Laser Ranging Retro-Reflector (S-078) (M) ALSEP Array A-2/Heat Flow	Deploy LR ³ ; emplace, level and orient it.	<u>TBD</u>	2 photographs: 1 of top of array 1 between front and side of array.		Deploy: ≥300 ft. from LM such that ascent plume does not impinge on array face.
Central Station (C/S) and Padioisotope Thermoelectric Generator (RTG) (M)	Deploy and activate the C/S and RTG: subpackages 1 and 2 and the radioisotope fuel source will be removed from the LM; the fuel source will be placed in the RTG on subpackage 2; subpackages 1 and 2 will be attached to the antenna mast and carried bar- bell style to the deployment site; subpackage 3, the heat flow experiment and lunar sur- face drill will be be trans- ported on the LRV;		4 photographs: 2 of the c/s 1 of the RTG 1 of the entire deployed ALSEP	N/A	≥300 ft. from LM; as early as possible in first EVA. The transmitter is turned ON by the astronaut if it was in the ON condition at launch; if not, the ground will command transmitter ON. The ground will command individual experiments ON; if this fails, or if the transmitter fails to ge ON by ground command, the astronauts will manually activate the appropriate switches on the C/S.

)

2.

Table 4-1. Experiments Activities (Continued)

EXPERIMENT (NUMBER) ACTIVITY (PRIORITY)	ASTRONAUT* ACTIVITIES	TRAVERSE/ STATION NO.	PHOTOGRAPHS**	STOWAGE	REMARKS
	the experiments will be removed from the subpackages, assembled, and cables connected at the deployment site; the antenna on subpackage 1 will be erected on the C/S and pointed toward earth; the transmitter will be turned on.				
<u>Passive Seismic</u> <u>(S-031) (M)</u>	Deploy, coarse level and rough align the sensor assembly. De- ploy the thermal shroud. Per- form a fine alignment and report readings to MCC.	<u>TBD</u>	2 photographs: 1 showing bubble level and gnomon shadow on compass rose; 1 with C/S in background.	N/A	Part of ALSEP A-2/Heat Flow Array.
<u>Heat Flow (S-037) (M)</u>	Deploy, level, and align the electronics package. Drill 2 holes 3 meters deep in surface with the lunar surface drill; insert 1 sensor probe into each hole and report the appro- priate marking to determine the probe depth.	<u>TBD</u>	5 photographs: 1 of each drilled hole with probes inserted; 1 of the electro- nics package; 1 of each bore stem.	N/A	Part of ALSEP A-2/Heat Flow Array.
<u>Lunar Surface Magnetometer</u> <u>(S-034) (M)</u>	Deploy, level and align the sensor assembly. Report shadow- graph readings to MCC.	<u>TBD</u>	3 photographs: 1 of shadowgraph 1 of sensor heads 1 with C/S in background.	N/A	Part of ALSEP A-2/Heat Flow Array.
<u>Solar Wind Spectrometer</u> <u>(S-035) (M)</u>	Deploy on a relatively smooth, flat surface; level and align and report on leveling and alignment.	<u>TBD</u>	2 photographs: 1 looking North 1 looking South	N/A	Part of ALSEP A-2/Heat Flow Array.

Table 4-1. Experiments Activities (Continued)

ka.

 \diamond

-**4-11**

EXPERIMENT (NUMBER) ACTIVITY (PRIORITY)	ASTRONAUT* ACTIVITIES	TRAVERSE/ STATION NO.	PHOTOGRAPHS**	STOWAGE	REMARKS
Suprathermal Ion Detector (SIDE) (S-036) (M) and Cold Cathode Ion Gauge (CCIG) (S-058) (M)	Select a relatively smooth sur- face; the CCIG is removed from the SIDE housing and both exper- iments are deployed, leveled and aligned.	TBD	4 photographs: 1 of SIDE look- ing North; 1 of SIDE look- ing South; (one of above to show CCIG aper- ture); 1 of SIDE and CCIG with C/S in background; 1 of SIDE bubble level to show deviation from local vertical.	N/A	Part of ALSEP A-2/Heat Flow Array. CCIG and SIDE are pysically attached.
<u>Lunar Dust Detector (LDDE)</u> <u>(M-515) (M</u>)	Deployed with C/S; located on top of C/S.	On top of C/S	None	N/A	Part of ALSEP A-2/Heat Flow Array.
	*A description of hand activities can be foun **Detailed photographic	d in Section II o	of this document.		
	document.				

3

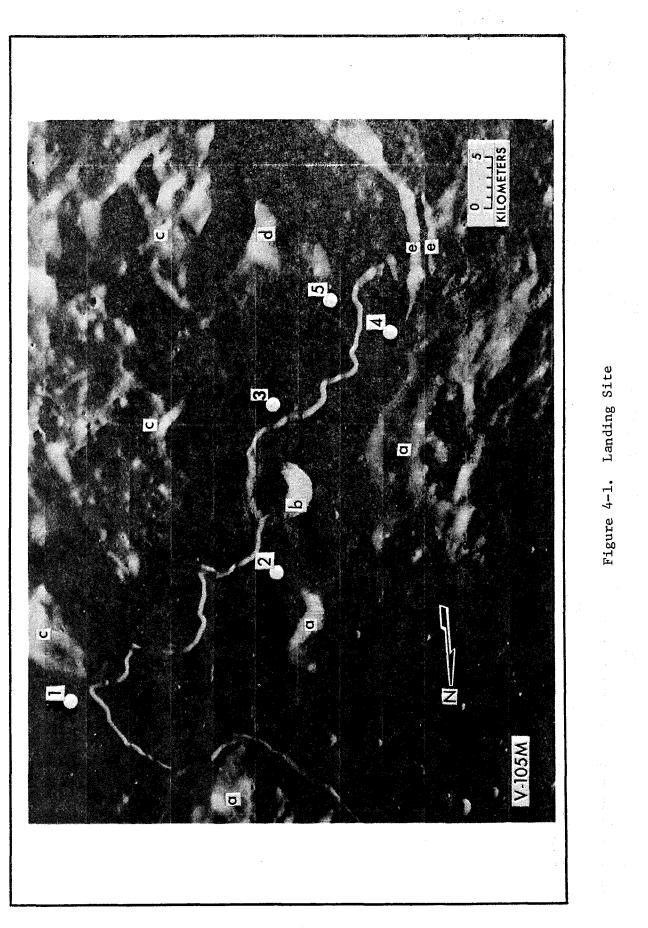

1.

Table 4-1. Experiments Activities (Continued)

Table 4-2.	Traverse	Data	for	Hadley-Apennines

54

						Cumu1	ative
Stat From	ion To	Distance (km)	Geologic Feature	Activities	Duration (min)	Distance (hr)	Time (hr:min)
From	10	(KIII)	Teacure				
				(To Be Provided)			
	٨.						
-							

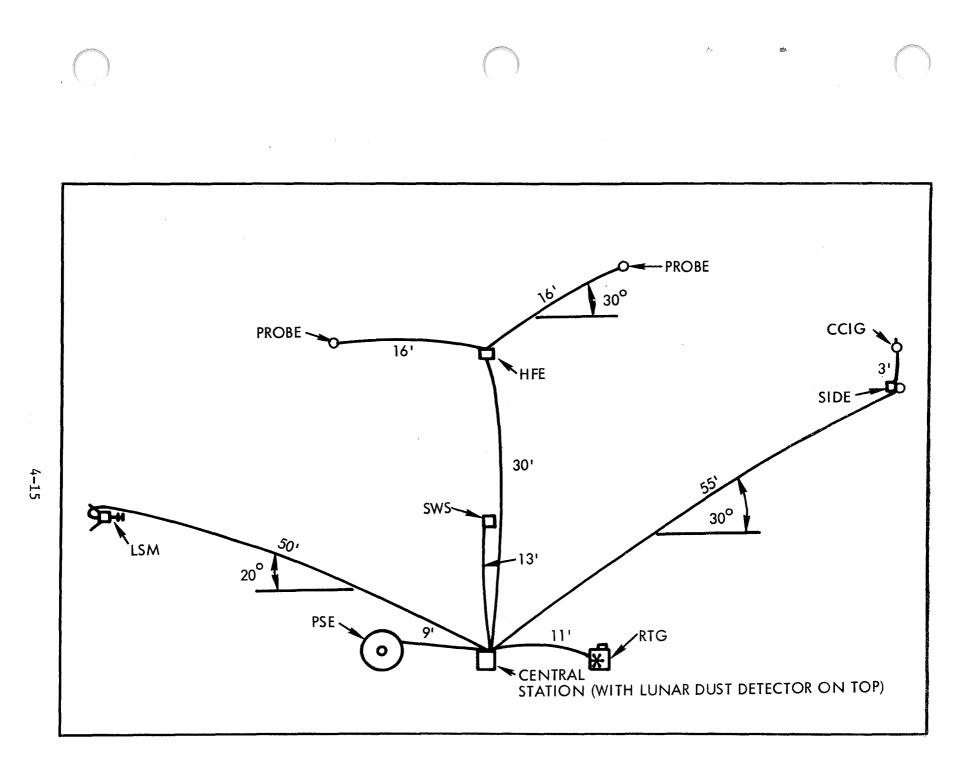
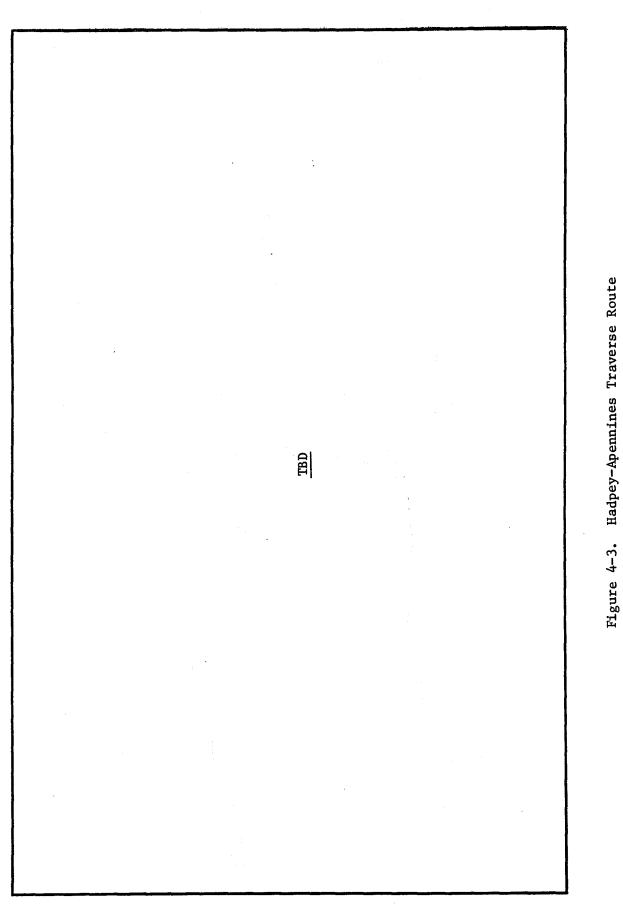



Figure 4-2. ALSEP Array A-2/Heat Flow Layout

SECTION V

SCIENCE OPERATIONS SUPPORT PLAN

5.1 GENERAL

for

This section defines the science operational procedures as set forth by the Principal Investigators and the Science and Applications Directorate. These procedures are for use by mission planners and controllers in satisfying the experiment requirements contained in the Mission Requirements Document, SA-511/CSM-112/LM-10, J-1 Type Mission.

Included in this section are pertinent data resulting from the Principal Investigator's Operational Interface Meetings. These data define the scientific experiments operations, the lunar geology traverse, and the crew activities during the lunar surface operation phases. Reference should be made as necessary to these other sections in this document: Section II, which identifies and describes science experiments and equipment; Section III, which details the photographic requirements for both lunar orbit and lunar surface experiments; and Section IV, which presents the requirements for science lunar traverse activities.

Reference should also be made as applicable to other MSC documents which provide necessary procedures in a chronological sequence (timeline) for all science activities. These documents include the Flight Plan, Lunar Surface Procedures, Photographic and Television Procedures, and CSM Solo Book. Detailed operational data not included in this section or other sections of this document may be found in the CSM/LM Spacecraft Operational Data Book, Volumes V (ALSEP Data Book) and VI (CSM Experiments Data Book for J-Missions).

5.2 MISSION PHASES

The mission operational timeline consists of five phases as defined in the following paragraphs. Specific events for each of the phases are identified in Figure 5-1.

5.2.1 PHASE I (LUNAR SURFACE EVA PHASE)

Phase I is outlined in Table 5-1, and covers the period during which the astronauts are available for specific deployment activities, backup operations, and lunar geology investigations. Refer to Figures 5-2, 5-3, and 5-4 for supplemental information.

5.2.2 PHASE II (LUNAR SURFACE OPERATION CHECKOUT PHASE)

Phase II is outlined in Table 5-2, and covers the period from LM ascent through the checkout of all subsystems.

5.2.3 PHASE III (FORTY-FIVE DAY PHASE)

Phase III is outlined in Table 5-3, and covers the period.from power turn-on and experiment checkout through the first 45 calendar days of ALSEP operation.

5.2.4 PHASE IV (ONE-YEAR PHASE)

Phase IV is outlined in Table 5-4, and covers the period from day 45 through the first year of ALSEP operation.

5.2.5 PHASE V (LUNAR ORBIT PHASE)

Phase V is outlined in Table 5-5, and covers all scientific activities after earth orbit except those related to experiments performed on the lunar surface.

EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	NOMINAL VALUE	REMARKS
L. Contingency Sample Collection	Collect a contingency sample.			Sample should be taken as soon as possible after egress and placed in the Contingency Sample Return Container.
2. Selected Sample	Collect samples of lunar material.			Typical Selected Samples are documented as follows:
Collection				a. Photograph area before collecting sample.
				b. Collect sample and pl in prenumbered collection bag
				c. Photograph area after collecting sample.
				d. Store samples in the Sample Return Containers.
				NOTE: For more detailed pro- cedures reference the Mission Requirements Document, SA-511, CSM-112/LM-10.
				1

Table 5-1. Phase I (Lunar Surface EVA Phase)

18 m.

扒

EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	NOMINAL VALUE	REMARKS
3. Central Sta- tion Deploy- ment				This distance is required to keep ALSEP out of the LM ascen blast area and the astronaut within the time/distance limi- tations for the PLSS. Easterly site acceptable only if Wester site is unaccessible.
	b. Level Central Station to within 5° as indicated by the bubble level with the sun shield in the stowed position.			·
	c. Align Central Station to within + 5° of East- West, using partial com- pass rose.			Central Station, as with most ALSEP subsystems, requires clear field-of-view for therma control. Central Station must not be shaded from the sun on the lunar surface prior to deployment. ALSEP design allows deployment when sun angle is between sunup and 45 degrees.
	d. Level Central Station antenna to within 0.5 as indicated by bubble level.			The bubble at the sdge of the indicators means 0.7 off leve
	e. Align Central Station antenna to within $\pm 0.5^{\circ}$ of East-West line, with reference to sun line.			Astronaut should use sun dial to align.

Table 5-1. Phase I (Lunar Surface EVA Phase) (Continued)

5-4

.

• ¹

	EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	NOMINAL VALUE	REMARKS
4.	Radioisotope Thermoelectric Generator Deployment	a. Deploy the RTG 9 to 12 feet from Central Station.			Limited by 13-foot cable. Hot RTG should be away from Centra Station to maximize heat radia tion to free space.
		b. Orient RTG to within + 20° East-West of Cen- tral Station.			Orient as visually determined astronaut to minimize thermal load on Central Station. Astr
		$\begin{split} & = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n$			naut should orient RTG so as to favor RTG cable exit toward Central Station.
		c. Level RTG Pallet to within $\pm 10^{\circ}$ of horizon-tal.			Level as visually determined by astronaut. Astronaut will avo- craters and slopes which impede dissipation of heat from RTG.
					NOTE: Astronaut should read ammeter on shorting switch box and connect RTG cable to Centra Station after completion of
					RTG deployment.

Table 5-1.	Phase I	(Lunar	Surface	EVA	Phase)	(Continued)

₽5.

畿.

ASTRONAUT ACTIVITY	MCC ACTIVITY	NOMINAL VALUE	REMARKS
a. Deploy PSE 8 to 9 feet West of Central Station.			Limited by 10-foot cable, 8 feet minimum separation from RTG. Separation is necessary to avoid heat input from RTG. Must be out of field-of-view of Central Station radiator.
b. Coarse level the PSE to within 5 of vertical utilizing the bubble level.			PSE should be placed in an approximately level spot, free from loose material. Five degrees is the limit of the automatic leveling gimbal system.
c. Rough align the PSE to within <u>+</u> 20° of lunar East, before opening PSE shroud, by pointing arrow on the sensor girdle away from the sun.			
d. Fine align the PSE after removing girdle and spreading the thermal shroud.			Astronaut should read and repo to the nearest degree, the int section of the shadow of the g mon on the compass rose. Fina azimuth alignment must be know within ± 5 accuracy with refe ence to sun line utilizing sha
	·		graph.
	 a. Deploy PSE 8 to 9 feet West of Central Station. b. Coarse level the PSE to within 5 of vertical utilizing the bubble level. c. Rough align the PSE to within + 20 of lunar East, before opening PSE shroud, by pointing arrow on the sensor girdle away from the sun. d. Fine align the PSE after removing girdle and spreading the thermal 	 a. Deploy PSE 8 to 9 feet West of Central Station. b. Coarse level the PSE to within 5 of vertical utilizing the bubble level. c. Rough align the PSE to within ± 20 of lunar East, before opening PSE shroud, by pointing arrow on the sensor girdle away from the sun. d. Fine align the PSE after removing girdle and spreading the thermal 	 a. Deploy PSE 8 to 9 feet West of Central Station. b. Coarse level the PSE to within 5 of vertical utilizing the bubble level. c. Rough align the PSE to within ± 20 of lunar East, before opening PSE shroud, by pointing arrow on the sensor girdle away from the sun. d. Fine align the PSE after removing girdle and spreading the thermal

÷.

5-6

.

EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	NOMINAL VALUE	REMARKS
 Suprathermal Ion Detector Experiment/ Cold Cathode * Gauge Experi- 	 a. Deploy the SIDE/CCGE 50 to 60 feet from Cen- tral Station. b. Level SIDE to within 			Limited by 60-foot cable. Astronaut will utilize bubble
ment Deployment		·		Astronaut will utilize bubble level during emplacement. Align with respect to sun line to satisfy SIDE thermal and scientific data-gathering requirements. Astronaut should align unit utilizing direction marking indicating which end of the experiment must face the sub- earth point. The large side areas of the experiment must face in a N-S direction for proper thermal control. Final alignment by astro- naut utilizing shadows on long sides of SIDE.
	 d. Deploy CCGE*3.5 to 4 feet from SIDE. e. Level CCGE to within + 20° of vertical as visually determined by 			Limited by length of cable. CCGE must be off the SIDE ground screen. Shadow of UHT covers "E".
	astronaut. f. Align CCGE orifice within <u>+</u> 20 ⁰ of Luner North so that it has a clear field-of-view.			The CCGE gauge aperture must point away from the LM and ALSEP.

5-7

Table 5-1. Phase I (Lunar Surface EVA Phase) (Continued)

办

1

*The terms Cold Cathode Gauge Experiment (CCGE) and Cold Cathode Ion Gauge Experiment (CCIG) are used interchangeably in Section V, Tables 5-1 through 5-5.

	EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	NOMINAL VALUE	REMARK S
7.	Solar Wind Spectrometer Deployment	a. Deploy SWS 12 to 15 feet from Central Station.			Limited by 15-foot cable.
		b. Orient SWS approxi- mately due North or South of Central Station as visually determined by astronaut.			
		c. Level the SWS to within <u>+</u> 5° of vertical about E-W hinge axis. (eyeball)			SWS should be placed in an approximately horizontal spot to avoid thermal perturbations. Due to A-frame construction, there is a pendulum effect about E-W axis; SWS should swing freely. No leveling about N-S axis is necessary since N-S orientation is determined from sun sensor TM data. Astronaut can estimate level of instrument by observing shadows cast by triangular sur- faces on the sensor mounting plate.
		d. Rough align the SWS to within + 5 of East- West by making arrow point East or West with respect to sun line.			

r yr r gwar y synasti y Newsong r

Table 5-1. Phase I (Lunar Surface EVA Phase) (Continued)

EVENT		ASTRONAUT ACTIVITY	MCC ACTIVITY	NOMINAL VALUE	REMARKS
7. Solar V Spectro Deployn (Cont'd	ometer 1 ment -	e. Fine align the SWS by setting N-S orange triangular faces equally in shade.			Louvered side (radiator) shoul be away from RTG and Central Station due to thermal control requirements.
		-			
		- -			
-					
Ň					

.

\$

È.

EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	NOMINAL VALUE	REMARKS
Lun ar Surface Magnetometer Deployment	a. Deploy ISM to 45 to 53 feet from Central Station.			Limited by 55-foot cable. Separation required to minimize EMI effects on LSM sensors.
	b. Orient LSM on oppo- site side of Central Station from LM within + 20° as visually deter- mined by astronaut.			Required to minimize magneti and EMI influence on LSM.
	c. Level the LSM to within $\pm 3^{\circ}$ of vertical.			ISM should be placed in an approximately level spot, for from loose material.
	d. Align the ISM to within + 3° of East-West sun line.			Astronaut should read the shadowgraph within + 1°. Alignment is critical becaus thermal control is critical and exact alignment is requi to interpret LSM scientific data.

3

5

Table 5-1. Phase I (Lunar Surface EVA Phase) (Continued)

	EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	NOMINAL VALUE	REMARKS
9.	Heat Flow Experiment Deployment	a. Deploy the HFE Elec- tronics Package 25 to 30 feet from Central Station.			Limited by 30-foot cable.
		b. Level the HFE Elec- tronics Package to within + 12° of vertical for maximum utilization of the thermal sunshield.			HFE Electronics Package should be placed in an approximately level area, removed from any surface irregularities or rock that might reflect sunlight directly onto the sunshield reflector of the electronics package.
	·	 c. Align the HFE Electronics Package to within + 5 of the plane of the ecliptic or lunar equator. d. Deploy the Probe 16 to 20 feet from the Electronics Package. 			Limited by length of cable.

ø

e

Table 5-1. Phase I (Lunar Surface EVA Phase) (Continued)

¢.

20.

EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	NOMINAL VALUE	REMARKS
Heat Flow Experiment Deployment (Cont'd)	e. Align the HFE Probe to within <u>+</u> 15° of vertical.			The HFE Probes should be placed at least 200 feet from fresh craters with surrounding strewn fields of stones.
				The HFE Probes should be at least 5 diameters from large isolated blocks (boulders) exposed at the surface.
				Try to avoid topographic featur greater than a meter in diameter such as craters or hummocks the have an aspect ratio greater th 1 to 10, (slopes of 10).
				On the scale of 10's of meters topographic highs should be avo and depressions preferred to as sure thickest possible regolith
	f. HFE Probe-to-Probe separation should be approximately 34 to 36 feet.			The HFE should be at least 10 feet from all other experiments and at least 20 feet from the PSE.
				Reference Figure 5-3 for typics HFE deployment arrangement.

×.

	EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	NOMINAL VALUE	
10.	ALSEP Turn-On	a. Astronaut will notify MCC of readiness status via voice link and actu- ate Switches S-1 and S-5.	 a. Start Data Recorders. b. Acknowledge readiness message via voice link. c. Verify reception of RF signal from ALSEP. 		If ALSEP does not respond, initiate command octal 013, "Transmitter On". If ALSEP still does not respond astronaut will actuate Switches SW-2 and SW-3.
			d. Verify transmission of 1060 bps telemetry.		Verify all data are within operational limits (Word 33).
		b. Acknowledge MCC receipt of RF signal and useful data via voice link.	e. Advise astronaut via voice links that ALSEP transmitter is functioning.		

Table 5-1. Phase I (Lunar Surface EVA Phase) (Continued)

戲

 \mathbf{v}_{i}

EVENT		ASTRONAUT ACTIVITY	MCC ACTIVITY	NOMINAL VALUE	REMARKS
ll. Passive mic Exp ment Tu	peri-		 a. Check experiment status telemetry AB-04, AB-05 and CS-02 for correct indica- tion and Shunt Reg #1 cur- rent status telemetry AE-05 for indication lower than octal 267. b. Initiate command octal 036, PSE Operational Power ON. c. Check experiment status telemetry, AB-04, AB-05 and CS-02 for correct indi- 		If telemetry data are inter- rupted for more than 5 minutes, command PSE to Standby (Octal 03)
			cation.		
			d. PSE Housekeeping Data Check (Word 33)		
	ł		(1) Long period gain X and Y AL-01.	3.0 volts	Preset condition: - 30 db
			(2) Long period Z amplifier gain AL-02.	3.0 volts	Preset condition: - 30 db
			(3) Level direction and speed AL-03.	0 volts	Preset condition: + low
			(4) Short period am- plifier gain Z, AL-04.	3.0 volts	Preset condition: - 30 db
			(5) Leveling mode and coarse sensor mode AL-05.	0 volts	Auto, Coarse Sensor Out
			(6) Ihermal control status AL-06.	0 volts	Auto, On

ý

Table 5-1.	Phase I (Lunar Surfa	ce EVA Phase) (Continued)	
ASTRONAUT ACTIVITY	MCC ACTIVITY		

	EVENT	ASTRONAUT ACTIVITY	MCC	ACTIVITY	NOMINAL VALUE	REMARK S
11.	Passive Seis- mic Experi- ment Turn-On (Cont'd)		(7) (8)	Calibration status (L.P. and S.P.) AL-07. Uncage status AL-08.	3.0 volts	All Off Caged
			e. Unca mometer.	ge Passive Seis-		
	-		(1)	octal 073, Uncage Arm/Fire.		
			(2)	Verify change in uncage status AL-08.		Uncage/Arm.
				Reinitiate command octal 073.		Wait 30 seconds between re- initiation of command octal 07
			(4)	Verify change in uncage status AL-09.		Uncage/Fire.
			(5)	Observe short period scientific data on drum re- corder for evi- dence of physical		Consult PI before adjusting a gains. Adjust gain to visible signal.
			f. Leve nometer.	uncaging. 1 Passive Seis-		
		·	(1)	Verify that feed- back filter is switched OUT (present position) by comparing LP		During initial leveling or when all LP components are off level verify feedback position during Step f(7).
				Seismic and LP Tidal data on recorders.		If filter is IN, execute comman octal 101, feedback filter IN/C and note response.

¢.

E	EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	NOMINAL VALUE	REMARK S
m: Tu	assive Seis- ic Experiment urn-On Cont'd)		 f. Level Passive Seismometer (Cont'd) (2) Initiate command octal 102, COARSE LEVEL SENSOR IN/OUT (3) Check telemetry AL-05 for change in status of COARSE LEVEL SENSOR and verification of AUTO Leveling mode. (4) Initiate command octal 070 LEVEL-ING POWER X MOTOR 		Switch as required to obtain COARSE LEVEL SENSOR and AUTO status by commands octal 102 and octal 103.
			ON. (5) Observe recording of long period, tidal X-axis data as leveling pro- ceeds.		During initial leveling, verify that feedback filter is switch out. This can be done by veri- ing the time lag between tidal seismic data. If filter is in execute command octal 101 and
			 (6) Observe S.P. Z Seismic data on recorder. (7) When X tidal out- 		Construction of the second sec
			put reaches a value of + 5 micro radians or less, initiate command octal 070 LEVELING POWER X MOTOR OFF.		If tidal outputs are not within ± 5 micro radians, repeat steps $f(1)$ to $f(7)$ deleting step $f(2)$

.....

4

Table 5-1. Phase I (Lunar Surface EVA Phase) (Continued)

EVE	NT	ASTRONAUT ACTIVITY	MCC ACTIVITY	NOMINAL VALUE	REMARKS
	sive Seis- Experiment		f. Level Passive Seis- mometer (Cont'd)		
Turr	n-On ht'd)		 (8) Repeat Event 13, steps f(4) thru (7) for Y-axis, initiating and verifying command octal 071 LEVELING POWER Y MOTOR while monitoring appropriate recorder. (9) Initiate and verify command octal 102 COARSE LEVEL SENSOR. (10) Check AL-05 for change of status. (11) Verify that X and Y tidal outputs 		Auto, Coarse Sensor OUT.
			are within + 5 micro radians. (12) Initiate and veri- fy command octal 072 LEVELING POWER Z MOTOR ON. (13) When a zero cross- ing is observed on Z tidal output, initiate command octal 103, levelin mode AUTO.		Leveling of Z axis requires: Level mode: Manual (103) Leveling speed: High (075) Leveling direction: Positive (

Table 5-1. Phase I (Lunar Surface EVA Phase) (Continued)

觑

 ξ^{γ}_{i}

1

	EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	NOMINAL VALUE	REMARKS
11.	Passive Seis- mic Experiment Turn-On (Cont'd)	·	<pre>f. Level Passive Seis- mometer (Cont'd) (14) When Z tidal out put reaches a value of ± 0.5 milli gals, init and verify comma: octal 072 LEVEL- ING POWER Z MOTO: OFF.</pre>	iace nd R	
5-18			 (15) Verify that X and tidal outputs are within + 5 micro radians and Z tid output is within + 0.5 milli gals (16) Initiate and versify command PSE 	e 1a. •	
			FILTER IN octal 101. (17) Verify that filte has been switched IN by comparison of LP Seismic and LP Tidal data on recorders.	1	
			(18) Execute command octal 076 THERMAN CONTROL MODE SELECT as require to keep within limits.		

Table 5-1.	Phase	Ι	(Lunar	Surface	EVA	Phase)	(Continued)

	EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	NOMINAL VALUE	REMARKS
11.	Passive Seis- mic Experiment		g. Passive Seismometer Calibration		
	Tu rn- On (Cont'd)	1 • •	(1) Initiate and veri- fy command octal 066 CALIBRATION		
			LP ON/OFF (2) Check for status		LP On.
			change in AL-07. (3) Initiate and veri- fy command octal		SP Off. Approximately 60 seconds afte:
			066 CALIBRATION LP ON/OFF.		step (2).
			 (4) Check for status change in AL-07. (5) Initiate and veri- 		All Off.
			fy command octal 065 CALIBRATION SP ON/OFF.		
			(6) Check for status change in AL-07.		LP Off. SP On.
			(7) Initiate and veri- fy command octal 065 CALIBRATION		
			SP ON/OFF. (8) Check for status change in AL-07.		All Off.
			h. Thermal Stabilization of Passive Seismometer		
	trak Tanggaran		(1) Monitor sensor unit temperature and verify that trend is toward	126 <u>+</u> 1 ⁰	Relevel as required.
			126°F, determine gradient.		

Table 5-1. Phase I (Lunar Surface EVA Phase) (Continued)

P

歇

EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	NOMINAL VALUE	REMARKS
<pre>11. Passive Seis- mic Experi- ment Turn-On (Cont'd)</pre>		 i. Collection of Baseline Passive Seismic Data. (1) Record data with- out further trans- mission of com- mand for determi- nation of back- ground noise level frequency and magnitude of de- tectable seismic events. (2) Fix gains at level determined from Step i(1) above. 		
	1	1	<u> </u>	1

j (

Table 5-1. Phase I (Lunar Surface EVA Phase) (Continued)

rathermal /Detector eriment/ d Cathode ge Experi- t Turn-On	a.	 Turn-On Checks (1) Check experiment status telemetry AB-04, AB-05 and CS-02 for correct indication. (2) Initiate and veri- fy command octal 045 SIDE/CCGE OPERATIONAL POWER ON. (3) Check experiment status telemetry 	•	Consult PI before initiating commands. SIDE/CCGE average thermal temperature must be below 25°C for initial operation. Do not initiate any commands to the channeltron high voltag supply or the gauge high volta
		AB-04. AB-05 and		
	ъ.	AB-04, AB-05 and CS-02 for correct indication. Telemetry Checks		
		<pre>(1) Examine telemetry data and insure that SIDE frame counter (SIDE Word 1) cycles from 0-127.</pre>		
			(1) Examine telemetry data and insure that SIDE frame counter (SIDE Word 1) cycles	(1) Examine telemetry data and insure that SIDE frame counter (SIDE Word 1) cycles

ę.)-

部

EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	NOMINAL VALUE	REMARKS
12. Suprathermal Ion Detector Experiment/ Cold Cathode Gauge Experi- ment Turn-On (Cont'd)		 Telemetry Checks (Cont') (2) Check the reference and calibration voltages in SIDE Word 2. (3) Check the power supply output and performance parameters in SIDE Word 2. (4) Check the experiment temperatures in SIDE Word 2. (5) Check the status parameters on 	l	DI-21, DI-22, DI-23, DI-25, DI-26, DI-27, DI-28, DI-30 DI-2, DI-13, DI-14, DI-15, DI-16, DI-17, DI-18, DI-20, DI-29 DI-4, DI-5, DI-6, DI-9, DI-10, DI-19 DI-12, DI-24, DF-29
		 SIDE Word 2. (6) Check for appropriate cycling of the Ground Plane Voltage in SIDE Word 2. (7) Check for appropriate cycling of High Energy Curved Plate Analyzer Filter Voltage, SIDE Word 3. (8) Check the status parameters in SIDE Word 6. (9) Check for appropriate cycling of Velocity Filter Voltage in SIDE Word 7. 		DI-11 DI-40 thru DI-60 DI-63, DI-64, DI-65, DI-66, DI-68, DI-69, DI-70 and DI-71 DI-72 thru DI-99 and DJ-00 thru DJ-97

¥5

Table 5-1. Phase I (Lunar Surface EVA Phase) (Continued)

EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	NOMINAL VALUE.	REMARKS
12. Suprathermal Ion Detector Experiment/ Cold Cathode Gauge Experi- ment Turn-On		b. Telemetry Checks (Cont (10) Check for approp- riate cycling of Low Energy Curved Plate Analysis		DJ-98, DJ-99 and DF-00 thru DF-04
(Cont'd)		Filter Voltage in SIDE Word 8. (11) Check High Energy data in SIDE Word 4 and 5 for base-	s	DI-61 and DI-62.
		line level with Dust Cover On. (12) Check Low Energy data in SIDE Word 9 and 10 for base		DF-05 and DF-06
		line level. (13) Check Central Sta tion housekeeping parameters (AI-01 and AI-02) for baseline levels o Low Energy and High Energy De-	5. f	AI-Ol and AI-O2
		tector Count Rate respectively. (14) Check telemetry associated with CCGE performance in SIDE Word 2.	s,	DI-03, DI-08 and DI-67

Table 5-1. Phase I (Lunar Surface EVA Phase) (Continued)

 ζ_2

.

.

<u></u>	EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	NOMINAL VALUE	REMARKS
12.	Suprathermal Ion Detector Experiment/ Cold Cathode Gauge Experi- ment Turn-On (Cont'd)		b. Telemetry Checks (Cont'd) (15) Transmit and veri- fy command octal 046, SIDE Standby Power.		SIDE should be in this condi- tion during lunar ascent burn. The 4.5 KV and 3.5 KV source should be OFF.
	ľ		1	1	I

i y

Table 5-1. Phase I (Lunar Surface EVA Phase) (Continued)

5-24

ż

	EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	NOMINAL VALUE .	REMARK S
13.	Lunar Surface Magnetometer		a. Initiate Command octal 042, LSM Opera- tional Power SELECT.		
	Turn-On		b. Check telemetry word 46 for verification of command reception and		
			parity check.		
			c. Check for appropriate change in reserve power.		
			d. Check experiment status telemetry, AB-4 for cor- rect indication.		
			e. LSM Range Determination		
			(1) Observe baseline scientific data for X, Y and Z axis on analog recorder.		Consult PI for proper range setting.
			(2) Initiate and veri- fy Command (octal 123) RANGE SELECT.	1	Check parity bit 1, ALSEP Word 46 for command verifi- cation.
			(3) Check for response in science data or analog recorders.		Should indicate a range change from 400 to 100 gammas.

Ç7

•

盐

	EVENT	ASTRONAUT ACTIVITY	MCC	ACTIVITY	NOMINAL VALUE	REMARKS
13.	Surface		e. LSM (Cont'd)	Range Determination		
	Magnetometer Turn-On (Cont'd)		(4)	Check for status change in ALSEP Word 5, LSM Frame 7, bits 9 and 10.		
			(5)	If required, repeat event 14, steps e(2), e(3), and e(4).		Step e(3) should indicate a range change from 100 to 200 gammas.
			(6)	Set range to opti- mum by repetition, as required of com- mand octal 123 RANGE SELECT.		
			(7)	Confirm proper set- ting by examination of data on analog recorders.		
			f. LSM No. 1	Flip Calibrate		SM Flip Calibrate No. 1 to be Initiated one hour before LM
			(1)	Check status of Bulova timer for automatic 12 hour FLIP/CAL Command (from running log)		ascent.
			(2)	Initiate and veri- fy Command octal 127 FLIP/ CAL INHIBIT.		Check PSE scientific data during flip period for crosstalk and detection of motion.

å ý

Table 5-1. Phase I (Lunar Surface EVA Phase) (Continued)

	EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	NOMINAL VALUE	REMARKS
-	Lunar Surface Magnetometer Turn-On (Cont'd)		<pre>f. LSM Flip Calibrate No. 1 (Cont'd) (3) Check telemetry : status of calibra tion inhibit gata LSM Frame 15, bit 10.</pre>	a- ∋,	
			 (4) Check for availability of reserve power, AE-05 (shunt regulator current). Adjust PDR's if necessar Monitor during this sequence. 	9 	-
			(5) Check status of Delayed Command Sequencer to pre- clude initiation of conflicting commands.		
			(6) Initiate and versify Command octal 131 FLIP, CAL INITIATE.		Consult PI before initiating the command. This command to be initiated 1 hour before LM asce Record in running log.
			(7) Observe calibrati rasters on analog recorder.		Record as FLIP/CAL No. 1 in Flight Controller's log.

.

놀

Ŷ

EVENT		ASTRONAUT ACTIVITY	MCC ACTIVITY	NOMINAL VALUE	REMARK S
Lunar Surfac Magnet Turn-O (Cont'	ometer n		f. LSM Flip Calibrate No. 1 (Cont'd) (8) Verify that se Flip Positions have changed, ALSEP Word 5, frames 1-3, bi 9-10, and that Y and Z offset have reversed. (9) Verify that mo state telemetr Frame 13, bit has changed.	LSM ts X, s de y,	
			(10) Monitor mode s telemetry for to original st in approximate 7 minutes.	return atus	
			(11) Initiate and w Command octal 127 FL CAL INHIBIT.		
			(12) From LSM data, print out 5 minutes prior to, during and 5 minutes quent to the Final CAL sequence.	nutes ng, subs e-	Use either real-time data on tape recorder data for this requirement.
			(13) Verify change status on LSM frame 15, bit 2	1 1	

2

7

Table 5-1. Phase I (Lunar Surface EVA Phase) (Continued)

5-28

EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	NOMINAL VALUE	REMARKS
14. Heat Flow Experiment Turn-On		a. Check Heat Flow reserve power status.		Reserve Power CS-02 > 8 watts
		b. Initiate Command 055 HF. Operational Power On.	5	
		c. Check experiment status for correct indications AB-04, AB-05, CS-02.		
		d. Check HFE data channels as shown below:		
		(1) +5V supply AH-01	+5⊽	-
		(2) -5V supply AH-02	-5V	
		(3) +15V supply AH-03	+15V	
		(4) -15V supply AH-04	-15V	
		(5) Low Conductivity Heater AH-06	ON/OFF	
		(6) High Conductivity Heater AH-07	on/off	
	ļ	I	I	

Ÿ

战

5-29

.

EVENT	ASTRONAUT ACTIVITY		MCC	ACTIVITY	NOMINAL VALUE	REMARK S
4. Heat Flow Experiment Turn-On (Cont'd)		f.	Ther (1)	mal check of HFE: Check telemetry data word 21 for subsystem mode in- dications (bit 3, 4, 5, of frames 3 and 11).	100 mode 1 010 mode 2 001 mode 3	Should turn-on in Mode 1. Gradient Mode Low Conductivity Mode High Conductivity Mode
			(2)	If system is not in mode 1, initiate and verify Command octal 135, HFE mode/Select.		Refer to HFE command descript.
			° (3)	Initiate and verify commands HF-8 and HF-9 in that order.		This sequence of commands selects an operating subseques which includes ambient temperatures at both probes and at the electronic package.
			(4)	Check telemetry indication of HFE thermocouple reference and probe cable temperature (word 21 subcom- mutated).		
			(5)	Continue to monitor until stabilization of temperatures has been confirmed.		

 \mathcal{Y}

Table 5-1. Phase I (Lunar Surface EVA Phase) (Continued)

EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	NOMINAL VALUE	REMARKS
15. Dust Detector Turn-On		 a. If necessary, initiate and verify reception of command octal 027 Dust Detector - ON. b. Verify Dust Detector status by observing data in AX-04, AX-05 and AX-06 (cell voltages). c. Check temperature of Dust Detector cells in parameters AX-01, AX-02 and AX-03. 		May be in "ON" condition from SIT. The Dust Detector remains in the "ON" condition throughout the life of ALSEP and is monitored as part of the Centre Station format, Word 33.

٠

\$

曼

<u></u>	EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	NOMINAL VALUE	REMARKS
6.	Experiments Turn-On Verification	Acknowledge report.	a. Advise crewmen that the PSE, SIDE/CCGE, LSM and HFE experiments have been turned ON.	1	PSE Power ON SIDE/CCGE Standby ON LSM Power ON HFE Power ON, Mode 1 If experiments cannot be turn on by ground command, astrona will actuvate ALSEP backup switch #3.
			b. Monitor PSE data.		
			c. Monitor LSM data.		
			d. Monitor HFE data.		

a. .

17. Laser Ranging Retro-Reflector to 1000 feet Southwest Experiment Deployment	Deployment_distance required to keep LR ³ out of the LM ascent blast area.
b. Level LR ³ to within + 2.5° as indicated by bubble level. c. Align the LR ³ to within + 2.5°, using the partial compass rose.	Craters and slopes which would degrade thermal control should be avoided.

Table 5-1. Phase I (Lunar Surface EVA Phase) (Continued)

.

. P

k

5-33

.

EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	NOMINAL VALUE	REMARKS
3.				······································
		·		
				,
		This page intentionally	left blank.	
j				
1				
			, I	•

.

EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	NOMINAL VALUE .	REMARKS
18.				
		This page intentionall	v left blank	
		11110 Page		
•				
	1			

.

Table 5-1. Phase I (Lunar Surface EVA Phase) (Continued)

Þ

췽

EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	NOMINAL VALUE	REMARKS
.8.				
		This page intentional	ly left blank	
			·	

f `-

5-36

ŗ

EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	NOMINAL VALUE	REMARKS
9. Field Geology Investigation		The MSC activity consists of managing the incoming geologic information in various ways.		
		a. Encode data for input into computer.		
		b. Make real-time notes and sketches of descrip- tions to transmit over closed circuit TV.		
		c. Make hard copy of Apollo TV images.		
		d. Annotate large scale versions of the astronaut data package maps.		
		e. Keep track of photos taken as a check on photo coverage.		
		f. Prepare specific ques- tions to ask if and when appropriate.		
	a. Sample and describe the morphological fea- tures of small but pre- dominant craters in the near area of the landing site.			Photograph sample site in ster
	b. Take scoop samples at scattered points along traverse.			Describe texture and compositi compare to other areas; photog each sample site in stereo.

e

br

	EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	NOMINAL VALUE	REMARK S
19.	Field Geology Investigation (Cont'd)	c. Dig several trenches parallel to sun's rays at different points along traverse.			Photograph trench in stereo and show details of wall texture such as:
					Color Change Chemical Alterations Textural Changes Compositional Changes Fragment Type and Concentration
		d. Collect fragments of rocky material which ap- pears to be representa- tive types.			Try to move the large objects or pry beneath them after photo- graphing their original positions.
		e. Take core tube samples, preferably where layering is known to exist.	• •		Check for layering with chisel end of harmer along traverse. Take one photograph of surface before driving tube, then stereo photographs with tube and exten- sion handle in place. Give brief statement of impressions on:
					Origin of Material How Emplaced How Distributed or Affected Since Emplacement Mechanical Properties

EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	NOMINAL VALUE	REMARK S
19. Field Geology Investigation (Cont'd)	f. Observe Morphologic type craters on horizon (sharp-rimmed to subdued, pan-craters, funnel- shaped, dimple craters, chain and loop craters, secondary craters, etc.)			Briefly identify Morphologic type, then photograph general shape in stereo with baseline approximately 1/3 to 1/2 dis- tance to points of interests, such as far wall. Give impressions or origin ar mechanism of the craters' formation (impact, volcanic, other); relative age of crate Activities a through f will the performed consistent with the Apollo 15 Flight Plan. These activities are not necessaril listed in order or priorities

Table 5-1. Phase I (Lunar Surface EVA Phase) (Continued	Table 5 -1.	Pha se I	(Lunar	Surface	EVA	Phase) (Continued)
---	--------------------	-----------------	--------	---------	-----	-------	---------------

\$.

EVENT	MCC ACTIVITY	NOMINAL VALUE	REMARKS
L. LM Ascent	Monitor all scientific and engi- neering telemetry during and after launch noting any changes attributable to LM activity.	•	Note significant trends. SIDE/CCGE, should be in Standby Power.
			 No A static static static static

Table 5-2. Phase II (Lunar Surface Operation Checkout Phase)

EVENT	MCC ACTIVITY	NOMINAL VALUE	REMARKS
2. Power Supply Check	 a. Check the following parameters: (1) 0.25 Vdc Calibration AE-01 (2) 4.75 Vdc Calibration AE-02 (3) Converter Input Voltage AE-03 (4) Converter Input Current 	0.24 volts 4.78 volts 15.94 volts 4.62 amps	When telemetry indicates the need for adjust- ment of the DC load, the necessary control can be accomplished by switching power dumps in or out through use of the following commands: PDR Load #1 ON Octal 017 PDR Load #1 OFF Octal 021 PDR Load #2 ON Octal 022 PDR Load #2 OFF Octal 023
	AE-04 b. Verify that system is operat- ing on PCU #1. (1) Shunt Regular #1 current AE-05. (2) Power Oscillator #1 AT-36 (3) Regulator #1 AT-38	84 ⁰ F 125 ⁰ F	Optimize Central Station thermal environment by dumping reserve power into the external power dissipation resistors. Initiate com- mands in accordance with the following table:If AE-5 Shunt Current is:Command PDR0.6 to 1.1 AmpsOctal 017 PDR #1 ON1.1 to 1.5.AmpsOctal 022 PDR #2 ON1.5 AmpsOctal 017 and 022 Both PDR #1 & #2 ON0.6 AmpsOctal 021 and 023 Both PDR #1 & #2 OFF

Table 5-2. Phase II (Lunar Surface Operation Checkout Phase) (Continued)

.

יייק דיי

2.		MCC ACTIVITY b. Verify that system is	NOMINAL VALUE	REMARK S
	Check (Cont'd)	operating on PCU #1. (Cont'd) (4) Output Voltage +29V AE-07 +15V AE-08 +12V AE-09 + 5V AE-10 -12V AE-11 - 6V AE-12) +28.72 Volts +15.22 Volts +12.12 Volts + 5.11 Volts -12.08 Volts - 5.95 Volts	If either the temperatures or the parameters of Event 2, Step b, are out of limits, switc to PCU #2 by transmission of octal command O62 PCU #2 Select.
		c. Check RTG temperatures as follows:	S	
		(1) Hot Frame #1 AR-0 (2) Hot Frame #2 AR-0 (3) Hot Frame #3 AR-0 (4) Cold Frame #1 AR-0 (5) Cold Frame #2 AR-0 (6) Cold Frame #3 AR-0	02 1146°F 03 1146°F 04 455°F 05 455°F	
-				
	, · .			
		•	•	

Table 5-2. Phase II (Lunar Surface Operation Checkout Phase) (Continued)

	EVENT	MCC	ACTIVITY		NONINAL VALUE	REMARK S	
3.	Temperature Check and Thermal Control	as indic	k telemetry para ated below for p ure measurements	ertinent			
			Location		-		
		(1) (2)	Sunshield Thermal Plate	AT-01,02 AT-03,04 05	38 ⁰ F , 61 ⁰ F	If necessary turn Central Station Back-u Heater (DSS-3) On and Off by initiation verification of following commands:	
		(3)		AT-08,09	163 ⁰ f, 35 ⁰ f	DSS HTR 3 ON Octal 024	
		(4)		AT-10,11	109 ⁰ F, 216 ⁰ F	DSS HTR 3 OFF Octal 025	
		(5)			62 ⁰ F		
		(6)	Insulation	r AT-13	126 ⁰ F		
		(7) (8)	Processor Base	AT-27	60 ⁰ f		
			Processor Internal	A T- 28	76 ⁰ f		
		(9)	Digital Data Processor Base	AT-29	57 [°] F		
		(10)	Digital Data Pr cessor Internal		70 ⁰ f		
		(11)	Base	AT-31	56 ⁰ f		
	•	(12)	Internal	Ат . 32	57 ⁰ F		
		(13)	Command Demodu- lation VCO	AT-33	62 ⁰ F		
		(14)	Power Distribu- tion Unit Base	ልሞ- 34	69 ⁰ f		
		(15)			93 ⁰ F	I	

EVENT	MCC ACTIVITY	NOMINAL VALUE	REMARK S
4. Transmitter Checks	a. Monitor the following transmitter parameters:		
	(1) Transmitter A Crystal Temperature	65°F	
	AT-23 (2) Transmitter A Heat Temperature Sink	б7 ^о ғ	
	AT-24 (3) Transmitter A AGC Voltage AE-15	.90V @ +67 ⁰ F 153 ma @ 67 ⁰ F	
	(4) Transmitter A Power Doubler Current AE-17	153 ma @ 67°F	
	•	1	•

5-44

-

EVENT	MCC ACTIVITY	NOMINAL VALUE	REMARK S
5. Receiver Check	a. Check Local Oscillator Crystal A Temperature AT-21	+144°F	
	b. Check Local Oscillator Level AE-14	6.4 dbm	
	c. Check Receiver Prelimiting Level AE-13	-70 dbm	
	d. Check Command Demodulation, l kHz Present AB-01		No modulation0 to 76 pcModulation77 to 127 pcNo carrier128 to 255 pc
	· · · · ·		

Table 5-2. Phase II (Lunar Surface Operation Checkout Phase) (Continued)

	EVENT	MCC ACTIVITY	NOMINAL VALUE	REMARKS
6.	······	MCC ACTIVITY Monitor all science data measure- ments on a continuous basis. Level as required.	- <u>,</u>	REMARKS Note significant trends, especially during the turn-on period for the other experiments. During LM ascent, PSE Scientific Data must be monitored continuously so as to measure any seismic disturbance due to ascent engine blast.

5-46

	EVENT	MCC ACTIVITY	NOMINAL VALUE	REMARKS
7.	Suprathermal Ion Detector Experiment/ Cold Cathode Gauge Experi- ment	 a. Check experiment status telemetry AB-04, AB-05 and CS-02 for correct indications. b. Initiate command octal 045, SIDE Operational Power ON. 		SIDE/CCGE Standby ON. NOTE: SIDE/CCGE must remain in the standby mode until the end of the first lunar day or until the average internal experiment tempera- ture is 25 C or less.
		c. Check experiment status telemetry AB-04, AB-05 and CS-02 for correct indications.		SIDE/CCGE Power ON.
		d. Initiate the following commands in sequence:		Consult PI before sending this command sequence.
		(1) CCGE High Voltage OFF Octals 104, 106, 107 and 110		NOTE: CCGE Seal and SIDE Dust Cover removal have been blown.
		(2) Channeltron High Voltage OFF - Octals 105, 106, 107 and 110.		
		e. Check science data for con- figuration of Dust Cover re- moval.		
		f. Monitor engineering data measurements on a continuous basis.		
	1	i i		

 \overline{a}_{ij}

.**b**

	EVENT		MCC	ACTIVITY	NOMINAL VALUE	REMARK S
8.	Solar Wind Spectrometer Turn-On	a.	Turr.(1)	-On Checks Check for adequate reserve power, AE-05 (shunt regulator current and adjust PDR's if necessary.	l.l amps	
			(2)	Initiate and verify command octal 045 SWS OPERATIONAL POWER SELECT.		
			(3)	Check AB-05 for change in status of SWS.		
			(4)	Check level of experi- ment supply voltage, AE-7	29.0 Volts	
			(5)	Check AE-05 for appropriate decrease.	l.l amps	
		ъ.	Tele	emetry Check		
			(1)	Examine telemetry data and ensure that decom- mutation is being pro- perly executed and sequence is identified (SWE words 184 & 185).		

.¢

Table 5-2. Phase II (Lunar Surface Operation Checkout Phase) (Continued)

EVENT	MCC ACTIVITY	NOMINAL VALUE	REMARKS
EVENT 8. Solar Wind Spectrometer Turn-On (Cont'd)	 b. Telemetry Check (Cont'd) (2) Check A/D Converter Calibrations, sequence ID: LSB = 0. DW-3 9 millivolts 112, 117 DW-3 9 millivolts 112, 117 DW-4 90 millivolts 113 DW-5 900 millivolts 113 DW-5 900 millivolts 114, 116 DW-6 3 millivolts 115 DW-7 9 millivolts 116, 119 (3) Check Eletrometer calibration, SWS words 120-127. (a) 0 amp., DW-19 to DW-26, sequence ID: LSB = 0 	9 millivolts 90 millivolts 900 millivolts 3000 millivolts	REMARKS
	(b) 5.76×10^{-12} amp. calibration sequence ID: LSB = 01 DW-27 (sum) DW-28 to DW-34 (Cups 1-7)		
	(Cups 1-()		

Table 5-2. Phase II (Lunar Surface Operation Checkout Phase) (Continued)

23

\$

	EVENT	MCC ACTIVITY	NOMINAL VALUE	REMARKS
8.	Solar Wind Spectrometer Turn-On (Cont'd)	 b. Telemetry Check (Cont'd) (c) 5.76 x 10⁻¹¹ amp. calibration, sequence ID: ISB = 10 DW-35 (sum) DW-36 to DW-42 (Cups 1-7) (d) 5.76 x 10⁻⁹ amp. calibration, sequence ID: ISB = 11 DW-43 (sum) DW-44 to DW-50 (Cups 1-7) (4) Check temperature and performance, monitor telemetry, SWS words 112-119, sequence ID: ISB = 1 (DW-11 to DW-13) Temperature Sensors) DW-14 (Temp. Sensor) Cups Assy. DW-15 (Sun Angle Sensor) DW-16 (Programmer Voltage) DW-18 (Modulator Monitor) tor)	25°C 25°C 0 Volts 4.95 Volts 0.88 Volts 1.2 Volts	
		1		I

Table 5-2. Phase II (Lunar Surface Operation Checkout Phase) (Continued)

EVENT	MCC ACTIVITY	NOMINAL VALUE	REMARKS
EVENT 8. Solar Wind Spectrometer Turn-On (Cont'd)	b. Telemetry Check (Cont'd) (5) Check DC High Voltage Calibrations sequence ID: LSB = 1110 $\frac{\text{Symbol} \text{Level} \text{SWS Word}}{\text{DW-51} 1 0}$ $\frac{\text{DW-51} 1 0}{\text{DW-52} 2 8}$ $\frac{\text{DW-53} 3 16}{\text{DW-53} 3 16}$ $\frac{\text{DW-54} 4 24}{\text{DW-55} 5 32}$ $\frac{\text{DW-56} 6 40}{\text{DW-57} 7 48}$ $\frac{\text{DW-56} 6 40}{\text{DW-57} 7 48}$ $\frac{\text{DW-58} 8 56}{\text{DW-59} 9 64}$ $\frac{\text{DW-60} 10 72}{\text{DW-61} 11 80}$ $\frac{\text{DW-62} 12 88}{\text{DW-63} 13 96}$ $\frac{\text{DW-63} 13 96}{\text{DW-65} 15 128}$ $\frac{\text{DW-66} 16 136}{\text{DW-67} 17 144}$ $\frac{\text{DW-68} 18 152}$	NOMINAL VALUE	REMARKS
	DW-69 19 160 DW-70 20 168 DW-71 21 176		

.

٨

'n

EVENT	MCC ACTIVITY	NOMINAL VALUE	REMARKS	
8. Solar Wind Spectrometer Turn-On (Cont'd)	 b. Telemetry Check (Cont'd) (6) Check AC High Voltage calibrations, sequence LD: LSB = 1111 			
	Symbol Level SWS Wor DW-72 1 0 DW-73 2 8 DW-74 3 16 DW-75 4 24 DW-76 5 32 DW-77 6 40 DW-78 7 48 DW-79 8 56 DW-80 9 64 DW-81 10 72 DW-82 11 80 DW-83 12 88 DW-83 12 88 DW-83 12 88 DW-84 13 96 DW-85 14 104 DW-86 15 128 DW-87 16 136 DW-89 18 152 DW-90 19 160 DW-92 21 176			

	EVENT		MCC	ACTIVITY	NOMINAL VALUE	REMARK S
8.	Solar Wind Spectrometer Turn-On (Cont'd)	c.		Cover Removal Check for the availa- bility of adequate reserve power, (adjust PDR's, if necessary).	l.l amp	
			(2)	Initiate and verify Command octal 122 DUST COVER REMOVAL.		Do not initiate Command 122 without approval of PI.
			(3)	Check housekeeping channels for confirma- tion of no change of experiment status.		
			(4)	Check science data for periods before and after dust cover removal to confirm that cover has properly cleared sensor.		

4

 \geq_{i}

5-53

EVENT	MCC ACTIVITY	NOMINAL VALUE	REMARKS
8. Solar Wind Spectrometer Turn-On	d. Collection of Baseline SWS Data		
(Cont'd)	Record data without further transmission commands to establish background noise leve and frequency and magnitude of plasma current peaks.		
	e. High Voltage Gain Change		
	(1) Initiate and verify Command octal 122 HIGH VOLTAGE GAIN CHA	NGE.	This command is decoded in the SWS from a reception of octal 122 three times within ten seconds. Each of the three trans- missions returns an ALSEP Command Verification Word.
	 (2) Check DC and AC High Voltage Calibrations per Event 8, Steps b(and b (6) to confirm execution of the com- mand. 		The gain change command will probably not be authorized by the PI until data have been collected for several days and analyzed.
	f. Collection of Baseline SWS Data in High Gain		
	Record data without further transmission commands to establish background noise leve and frequency and mag tude of plasma curren peaks.	1 ni-	

EVEN	T		MCC ACTIVITY	NOMINAL VALUE	REMARK S
	r Surface etometer kout	a.	 Housekeeping Data Check Check the following data parameters in the indicated subcommutation of ALSEP word 5, bits 2-8 on print- out: (1) X Sensor Temperature. DM-1 (2) Y Sensor Temperature. DM-2 (3) X Sensor Temperature. DM-3 (4) Gimbal Flip Unit Base Temperature. DM-4 (5) Internal Electronics Temperature. DM-5 (6) Level Sensor #1. DM-6 (7) Level Sensor #2. DM-7 (8) DC Supply Voltage.DM-8 	+40°C +40°C +40°C +20°C +20°C +20°C 0 degrees 0 degrees +5 volts	
		Ъ.	<pre>Initial Status Check Check the status of the following parameters in ALSEP word 5, subcommutation as indicated: (1) X-axis Flip Position Frame 1, bits 9-10. DM-9</pre>	0° Position	

Table 5-2. Phase II (Lunar Surface Operation Checkout Phase) (Continued)

.

ģί

5-55

.

	EVENT	MCC ACTIVITY	NOMINAL VALUE	REMARKS
9.		b. Initial Status Check (Cont'd)		
	Magnetometer Checkout (Cont'd)	(2) Y-axis Flip Position Frame 2, bits 9-10. DM-10	0 ⁰ Position	
		(3) Z-axis Flip Position DM-11 Frame 3, bits 9-10	0 ⁰ Position	
		(4) X-axis Gimbal Position Frame 4, bit 9. DM-12		Pre-site-survey position
		(5) Y-axis Gimbal Position Frame 4, bit 10. DM-13		Pre-site-survey position
		(6) Z-axis Gimbal Position Frame 5, bit 9. DM-14	:	Pre-site-survey position
		(7) Temperature Control State Frame 5, bit 10.		X-axis
		DM-15 (8) Heater power status Frame 6, bit 10. DM-28		On or Off
		(9) Measurement Range Frame 7, bits 9-10. DM-16		400 gammas
		(10) X-axis Field Offset. Frame 9, bits 9-10 and Frame 10, bit 9. DM-17		0% .
		(11) Y-axis Field Offset. Frame 10, bit 10 and Frame 11, bits 9-10.		0%
		DM-18 (12) Z-axis Field Offset. Frame 12, bits 9-10 and Frame 13, bit 9. DM-19		0%

Table 5-2. Phase II (Lunar Surface Operation Checkout Phase) (Continued)

5-56

EVENT	MCC ACTIVITY	MCC	NOMINAL VALUE	REMARKS
9. Lunar Surface Magnetometer Checkout (Cont'd)	 b. Initial Status Check (Cont'd) (13) Calibration Mode State Frame 13, bit 10. DM-20 (14) Offset Address State. Frame 14, bits 9-10. DM-21 (15) Filter Status Frame 15, bit 9. DM-22 (16) Calibration Inhibit status Frame 15, bit 10. DM-23 c. Field Offset Determination (1) Initiate and verify Command octal 125 OFFSET ADDRESS (2) Check telemetry for indication of OFFSET ADDRESS, AISEP word 5, ISM Frame 14, bit 9 and 10. DM-21 (3) Initiate and verify Command octal 124 FIELD OFFSET (4) Verify that X-axis off- set has changed, (Frame 9, bits 9 & 10 and Frame 10, bit 9). 	(13) (14) (15) (16) c. Fiel (1) (2) (3)		Scientific Neutral IN Inhibited Consult PI before initiating command. X-axis
	I	r		•

₹\ ·

4

5-57

	EVENT	MCC ACTIVITY	NOMINAL VALUE	REMARKS
9.	Lunar Surface Magnetometer Checkout	c. Field Offset Determination (Cont'd)		
	(Cont'd)	(5) Observe change in X-ax data on analog recorde		
		 (6) Repeat Event 9, Step c(3) as necessary to bring X-axis output to suitable value. Observe the shift in X-axis offset per anal recorder and Frame 9 and 10 telemetry. 	þg	Consult PI before repeating this step.
		(7) Confirm optimum range and offset setting by observation of analog recorder.		
		(8) Initiate and verify Command octal 125 OFFSET ADDRESS.		
		(9) Check telemetry of offset address, Frame 14, bits 9-10. DM-21		
	,	<pre>(10) If required, repeat Event 9, Step c(3)</pre>		
		(11) Confirm that Y-axis offset has changed.		

.

	EVENT	MCC ACTIVITY	NOMINAL VALUE	REMARKS
9.	Lun ar Surface Magnetometer Checkout (Cont'd)	 c. Field Offset Determinat: (Cont'd) (12) Repeat Event 9, Store (3) as necessary observing change in Y-axis offset. 	ep	Consult PI before repeating this step.
		(13) Initiate and verif Command octal 125 OFFSET ADDRESS.	y	
		(14) Check telemetry of offset address Fran 14, bits 9-10. DM-	me	Z-axis
		(15) Repeat Event 9, Sto c(3).	ep	
		(16) Confirm that Z-axi offset has changed		
		(17) Repeat Event 9, St c(3) as necessary observing change is Z-axis offset.	1	Consult PI before repeating this step.
		(18) Initiate and verif Command octal 125 OFFSET ADDRESS		

ح

EV	/ENT	MCC ACTIVITY	NOMINAL VALUE	REMARK S
Exp	at Flow periment eckout	a. Check HFE data on a con- tinuous basis.		Note significant trends, especially during the turn-on period for the other experiments.
Che	eckout	b. Monitor the experiment supply voltage, AE-07.	29.0 volts	Note significant trends.
		c. Check need for leveling of the HFE electronics package.		
		d. Initiate and verify octal command 152 twice.		To insure command link is operating properly.
		e. Monitor HFE engineering channels as shown below:		Note significant trends.
		Telemetry word 33		
		(1) +5 v supply	+ 5.0 volts	
		(2) -5 v supply	- 5.0 volts	
		(3) +15 v supply	+15.0 volts	
		(4) -15 v supply	-15.0 volts	
		(5) Low conductivity	0	Should be zero except during the conductivit
		heater (6) High conductivity heater	0	experiment.
	·			

.

5-60

. <u> </u>	EVENT	MCC ACTIV	ITY	NOMINAL VALUE	REMARKS
1.	Central Station	neering telemet	o optimize Central		Note any out-of-limit readings and significant trends toward limits.
		Lunar Cycle	Commands		
		Day/Night	Octal 017 PDR #1 ON		
		Day/Night	Octal 021 PDR #1 OFF		
		Day/Night	Octal 022 PDR #2 ON		
		Day/Night	Octal 023 PDR #2 OFF		
		Night	Octal 055 DSS Htr #1. ON		
		Night	Octal 056 DSS Htr #2 ON		
		Night	Octal 024 DSS Htr #3 ON		
		b. Confirm an a for each command	appropriate change l executed.		
		at each "hand-ov	nk signal strengths rer" from one MSFN mext. Log results mificant trend.		

Table 5-3. Phase III (Forty-Five Day Phase)

.

×

杠

		Table 5-3.	Phase III	(Forty-Five Day Phase)	(Continued)
VENT	Mag				

	EVENT	MCC ACTIVITY	NOMINAL VALUE	REMARKS
	2. Passive Seis- mic Experiment	a. Monitor and record all science and engineering data continuously.		
		b. Relevel in Auto Mode as required		
		Octal 070 - X-Motor ON/OFF Octal 071 - Y-Motor ON/OFF Octal 072 - Z-Motor ON/OFF		
		c. Check for evidence of auto- matic calibration of short period sensor at 12-hour intervals.		
		d. Once per day, calibrate long period circuitry as in Phase I, Event 13, Steps g(1) through g(4).		- -
نیا س				
5-62				
-				

\$ °

Ion Detector temperature. Experiment/ average temperature will approach Cold Cathode b. Initiate and verify the follow- NOTE: SIDE/CCGE average internal	EVENT	MCC ACTIVITY	NOMINAL VALUE	REMARKS
	3. Supratherma Ion Detecto Experiment/ Cold Cathod Gauge Exper	 a. Monitor SIDE/CCGE average temperature. b. Initiate and verify the follow- ing sequence of commands: (1) CCGE high voltage ON, octals 104, 106, 107 and 110. (2) Channeltron high voltage ON, octals 105, 106, 107 and 110. c. Monitor and record all SIDE/ CCGE Engineering and Scientific data continuously. d. At discretion of the PI, utilize SIDE/CCGE voltage step 		Near the first lunar sunset, the SIDE/CCG average temperature will approach 25°C. NOTE: SIDE/CCGE average internal experime temperature must be less than 25°C before executing any commands.

飾

. Solar Wind Spectrometer	a. Monitor science data on a continuous basis and advise SWS PI		Note any out-of-lim	
	of significant measurement develop ments.		trends toward limit	nit conditions and significar s.
	b. Once per day, log and note significant trends of the followin	e:		
	Temp.			
	Meas. Description		SWS Word	ISB
	DW-11 Temp. Mod 100		112	1
	DW-12 Temp. Mod 200		113	1
	DW-13 Temp. Mod 300		114	. <u>1</u>
	DW-14 Temp. Sensor Cup Assembly		115	1
	DW-15 Sun Angle Sensor		116	l
	DW-16 Programmer Voltage		117	l
	DW-17 Step Generator Voltage and Supply		118	ĩ
	DW-18 Voltage, HK-20 Modulation Monitor		119	1
	c. Monitor all engineering data on a continuous basis and advise PI of significant measurement developments.		Note any out-of-lim trends toward limit	it conditions and significar s.
		÷		
	•	1	1	

	EVENT	MCC ACTIVITY	NOMINAL VALUE	
5.	Lunar Surface Magnetometer	a. Monitor science data measure- ment, DM-25 through DM-27, on a continuous basis.		During non-active periods of LSM activity, print out 5 minutes of data per hour on the high speed printer.
		b. Once per day, record house- keeping data as in Phase II, Event 9, Step a.		Note significant trends.
		c. Once per day, record experi- ment supply voltage, AE-07.	29.0 Volts	
		d. Flip Calibrate No. 2		
		(1) Check science data for evidence of automatic flip/calibration.		Turn on high speed printer and brush recorder for continuous recording.
		(2) Repeat Phase I, Event 9, Step f, FLIP/CAL INITIATE octal 131.		Consult PI before initiating command. Record as FLIP CAL No. 2 in Flight Controller's log.
		e. Housekeeping Data Check		
		Repeat check of Phase II, Event 9, Step a and compare with original data.		
		f. Flip Calibrate No. 3		
		Repeat Phase I, Event 14, Step f.		Consult PI before initiating command. Record as FLIP/CAL No. 3 in the Flight Controller's log.

đ,

緫

	EVENT	MCC ACTIVITY	NOMINAL VALUE	REMARKS
5.	Lunar Surface Magnetom e ter (Cont'd)	g. Flip Calibrate No. 4 Repeat Phase I, Event 14, Step f.		Consult PI before initiating command. Record as FLIP/CAL No. 4 in the Flight Controller's log.
		h. After the fourth Flip/Cal cycle, perform site survey as follows:		Consult PI before sending command for site survey.
		(1) Check for adequate reserve power, AE-05.		
		(2) Initiate and verify Command octal 133 SITE SURVEY		NOTE: First Transmission of this command initiates X-axis survey.
		 (3) From ISM data, print out 5 minutes prior to, during, and 5 minutes subsequent to the Flip/ Cal sequence. 		Use either real-time data or tape recorder data for this requirement.
		(4) Verify appropriate change in science data as survey progresses.		PI requires 3 hours for data analysis prior to initiation of next step.
		i. Repeat Step $h(1)$ through $h(4)$ above, twice to perform Y-axis and Z-axis site surveys.		
		j. At least 6 days after comple- tion of site survey, initiate Command octal 132 FILTER BYPASS. Verify as per Frame 15, bit 9.		Filter Out
		•		

.

	EVENT	MCC ACTIVITY	NOMINAL VALUE	REMAR
5.	Lun ar Su rface Magnetometer (Cont'd)	 k. Record data for 6 hours. 1. Initiate Command octal 132 FILTER BYPASS. Verify as per Frame 15, bit 9. 		Filter In
		m. Ground Command FLIP/CAL during. Lunar Sunrise:	the former and the	
		Initiate FLIP/CAL command every 6 hours commencing 18 hours prior to lunar sunrise and continuing for a period of 18 hours after the event. Procedure will follow Phase I, Event 14, Step f.		
		 n. Ascertain from scientific data that the 12 hour automatic Flip/Cal sequence is in effect at all times other than Step m above. o. Auxiliary Commands 		
		These commands will be initiate at the request of the PI due to special scientific require- ments.		Log all timer (delayed command sequence) FLIP/CAL commands.
	and the state of the	(1) Command octal 123, Range Select		
	n na san san san san san san san san san	(2) Command octal 124, Steady Field Offset		· · ·

剱

冱

5--67

 \sim

EV	VENT	MCC ACTIVITY	NOMINAL VALUE	REMARKS
Magn	r Surface netometer nt'd)	(3) Command octal 125, Steady Field Offset Address		
		(4) Command octal 127, FLIP/CAL Inhibit In/Out		
		(5) Command octal 131, FLIP/CAL		
		(6) Command octal 132, Filter Failure Bypass In/Out		
		(7) Command octal 134 Temperature Control		
5-68				
				• • • •
· ·			n an Arrange and Arrange an	
			Ϋ́νου Ϋ́νου Υ	

EVENT	MCC ACTIVITY	NOMINAL VALUE	
6. Heat Flow Experiment	A. Monitor the HFE Engineering and Scientific Data.		Monitor temperature trends at each sensor. Monitor mode, heater, and programmer states and note abnormal readings.
	 B. Heat Flow Conductivity Experiment 1. Check HFE data telemetry word 21, bits 3, 4, 5, 6 of HF word 5 for correct heater state. 	: 0000	Consult PI prior to performing conductivity experiment. During the conductivity experiment consult the PI before making any mode changes or data interruptions. The time interval for hard copy printouts will be a real-time decision by the PI.
· .	 If bits 3, 4, 5, 6 of HF word 5 are not 0000, send octal command 152 (Heater Advance) until the bits are in the proper state. Reference HF heater se- quence - Page 6-11. 		Octal command 152 advances the heater switch one state for each command sent. The heater sequence is equivalent to that of a rotary switch, except in order to go from heater 12 OFF to heater 11 OFF, four heater advance commands must be sent. The next state after Heater 23 ON is Heater 12 OFF.

.

榔.

	EVENT	MCC ACTIVITY	NOMINAL VALUE	I	REMARKS
6.	Heat Flow Experiment (Continued)			Heat Flow Cond. Experiment	Heater Energized
				1 2 3 4 5 6 7 8	H12 H14 H22 H24 H11 H13 H21 H23
1				Ŭ	nz j
7.	Heat Flow Conductivity Experiment 1 Mode 2 Operation H12	Command Sequence (Initiate and verify)		Bridge <u>Measurement</u>	Heater State
	A) Initation	Monitor for 2 hours		DTH 11	0000
	B) Heating Phase (a)	152, 136		DTH 11	0001
	PI will determine, after l hour, to continue in Mode 2 or switch to Mode 3 operation			If PI elects to stay phase will be from ly	in Mode 2 the heating 5 to 36 hours.
				(a) The heater advan 2 operation, car 2 hour initiatio	nce Command 152, in Mode a be sent during the an period.

	EVENT	MCC ACTIVITY	NOMINAL VALUE	AERMA	×S
8.	Heat Flow Conductivity Experiment 1 Mode 3 Operation	Command Sequence (Initiate and Verify)		Bridge <u>Measurement</u>	Heater State
	A) Heating Phase 10 hrs. Terminate on approval of PI.	140, 144		DTR 11, TR 11	0001
	B) Monitor lower section ring bridge for 15 minutes.	152	:	DTR 12, TR 12	0010
	C) Monitor upper section ring bridge for 15 minutes. (a)	135, 152, 152, 140, 144		DTR 11, TR 11	0100
	D) Monitor Probe 1 gradient bridge for 15 minutes. (b)	135, 142, 152 (14 times)		DTH (11, 12) T (11, 12)	0010
	E) Monitor Lower section ring bridge for 15	140, 144		DTR 12, TR 12	0010
	minutes.			(a) For ring bridge, Mode 15 minute period star has been initiated an	ts when the last command
				(b) For gradient bridge m minute period starts been initiated and ve	when command 135 has

EVENT	MCC ACTIVITY	NOMINAL VALUE	ч.	REMARKS
 8. (Continued) F) Return to Step 3 and repeat steps (C-E) for a minimum of 6 hours. 				
G) Return to Mode 1 operation, full sequence.	135, 141			
9. Heat Flow Conduc- tivity Experiment 2			Bridge <u>Measurement</u>	Heater State
Mode 2 Operation H 14				
A) Initiation	Monitor for 2 hours		DTH 12	0010
B) Heating Phase	152, 136		DTH 12	0011
PI will deter- mine, after 1 hour to continue in Mode 2 or switch to Mode 3 operation				

	EVENT	MCC ACTIVITY	NOMINAL VALUE		REMARKS
10.	Heat Flow Conductivity Experiment 2 Mode 3 Operation	Command Sequence (Initiate and Verify)		Bridge <u>Measurement</u>	Heater <u>State</u>
	A) Heating Phase 10 hours Terminate on approval of PI.	140, 144		DTR 12, TR 12	0011
	B) Monitor lower section ring bridge for 15 minutes.	135, 152, 152, 152, 140, 144		DTR 12, TR 12	0110
	C) Monitor Probe 1 gradient bridge for 15 minutes	135, 142		DTH (11, 12) T (11, 12)	0110
	D) Monitor lower section ring bridge for 15 minutes.				
	E) Return to Step C and repeat steps (C and D) for a mini- mum of 6 hrs.				
	F) Return to Mode l operation, full sequence	135, 141			

.

悽

鹳

	EVENT	MCC ACTIVITY	NOMINAL VALUE	REM	IARKS
11.	Heat Flow Conductivity Experiment 3 Mode 2 Operation H 22	Command Sequence (Initiate and verify)		Bridge <u>Measurement</u>	Heater <u>State</u>
	A) Initiation	Monitor for 2 hours		DTH 21	0110
	B) Heating Phase	152, 152, 152, 136		DTH 21	1001
	PI will deter- mine after one hour, to continue in Mode 2 or switch to Mode 3 operation.				

EVENT	MCC ACTIVITY	Y NOMINAL VALUE	8	REMARKS
12. Heat Flow C ductivity Experiment Mode 3 oper	3 (Initiate and Ver	·ify)	Bridge <u>Measurement</u>	Heater State
A) Heating 10 hr. Terminat approval PI.	e on		DTR 21, TR 21	1001
B) Monitor section bridge f 15 minut	ring or		DTR 22, TR 22	1010
C) Monitor section bridge for minutes	ring	0, 144	DTR 21, TR 21	1100
D) Monitor 2 2 gradie bridge fo minutes	nt	times)	DTH (21, 22) T (21, 22)	1010
E) Monitor : section : bridge for minutes.	ring		DTR 22, TR 22	1010
F) Return to C and rej steps (C- a minimur hours.	peat -E) for			

21

4

5-75

.

	EVENT	MCC ACTIVITY	NOMINAL VALUE	REMARKS	
12.	(Continued) G) Return to Mode l operation, full sequence	135, 141			
13.	Heat Flow Conduc- tivity Experiment 4 Mode 2 Operation H 24	Command Sequence (Initiate and Verify)		Bridge <u>Measurement</u>	Heater <u>State</u>
	A) Initiation	Monitor for 2 hours		DTH 22	1010
	B) Heating Phase	152, 136	÷	DTH 22	1011
	PI will deter- mine, after 1 hour to continue in Mode 2 or switch to Mode 3 operation.				
14.	Heat Flow Conduc-	Command Sequence	· · · · · · · · · · · · · · · · · · ·	Bridge	Heater
	tivity Experiment 4 Mode 3 operation	(Initiate and Verify)		Measurement S	<u>State</u>
	A) Heating Phase 10 hours Terminate on approval of PI	140, 144		DTR 22, TR 22	1011
	B) Monitor lower section ring bridge for 15 minutes	135, 152, 152, 152, 140, 144		DTR 22, TR 22	1110
	· ·			1	

Table !	5-3. Phase 1	III (Forty-Five	Day Phase)	(Continued)

_	EVENT	MCC ACTIVITY	NONTHAL VALUE		All Marries
.4.	(Continued)				
	C) Monitor Probe 2 gradient bridge for 15 minutes.	135, 143		DTH (21, 22) T (21, 22)	1110
	D) Monitor lower section ring bridge for 15 minutes.	140, 144		DTR 22, TR 22	1110
	E) Return to Step C and repeat steps (C thru D) for a mini- mum of 6 hrs.	a an			
	F) Return to Mode 1 operation, full sequence.				
5. 5	Heat Flow Conduc- tivity Experiment 5 Mode 2 operation H 11	Command Sequence (Initiate and Verify)		Bridge <u>Measurement</u>	Heater State
	A) Initiation	Monitor for 2 hours			1110
	B) Heating Phase	152 (7 times), 136		DTH 11	0101
2	PI will deter- mine after 1 hour, to continue in	an a			
	Mode 2 or switch to Mode 3 operation	second francé de la companya de la c	 Applied and the second s	•	al a d'A

5-77

Table 5-3. Phase III (Forty-Five Day Phase) (Contin

益

Ð,

1

化合物 化二乙基乙基乙基乙基乙基乙基乙基乙基乙基乙基乙基乙基乙基乙基

EVENT	MCC ACTIVITY	NOMINAL VALUE	REMARKS	
16. Heat Flow Conduc- tivity Experiment 5 Mode 3 Operation	Command Sequence (Initiate and Verify)		Bridge <u>Measurement</u>	Heater <u>State</u>
A) Heating Phase - 10 hrs. Terminate on approval of PI.	140, 144		DTR 11, TR 11	0101
B) Monitor upper section ring bridge for 15 minutes.	135, 152 (11 times) 140, 144		DTH 11, TR 11	
C) Monitor Probe 1 gradient bridge for 15 minutes.	135, 142		DTH (11, 12) T (11, 12)	0000
D) Monitor upper section ring bridge for 15 minutes.	140, 144		DTR 11, TR 11	0000
E) Return to Step 3 and repeat steps (C-D) for a minimum of 6 hours.				
F) Return to Mode 1 operation full sequence	135, 141			
	•	 An and the second s	• .	

	EVENT	MCC ACTIVITY	NOMINAL VALUE		and a final second
17.	Heat Flow Conduc- tivity Experiment 6 Mode 2 Operation H 13	Command Sequence (Initiate and Verify)		Bridge <u>Measurement</u>	Heater <u>State</u>
	A) Initiation	Monitor for 2 hours		DTH 12	0000
	B) Heating Phase	152 (7 times), 136		DTH 12	0111
	PI will deter- mine after 1 hour, to continue in Mode 2 or switch to Mode 3 opera- tion.				
18.	Heat Flow Conduc- tivity Experiment 6 Mode 3 Operation	Command Sequence (Initiate and Verify)		Bridge Measurement	Heater State
	A) Heating Phase 10 hrs. Terminate on approval of PI.	140, 144		DTR 12, TR 12	0111
	B) Monitor upper section ring bridge for 15 minutes.	135, 152 (9 times), 140, 144		DTR 11, TR 11	0000
	C) Monitor lower section ring bridge for 15 minutes.	135, 152, 152, 140, 144		DTR 12, TR 12	0010

Table 5-3. Phase III (Forty-Five Day Phase) (Conti

4

10

EVENT	MCC ACTIVITY	NOMINAL VALUE	REMAR	KS
<pre>18. (Continued) D) Monitor Probe l gradient bridge for 15 minutes</pre>	135, 142, 152 (14 times)		DTH (11, 12) T (11, 12)	0000
E) Monitor upper section ring bridge for 15 minutes.	140, 144		DTR 11, TR 11	0000
F) Return to Step C and repeat steps (C thru E) for a mini- mum of 6 hrs.				
G) Return to Mode l operation, full sequence.	135, 141			•
19 Heat Flow Conduc- tivity Experiment 7 Mode 2 operation H 21	Command Sequence (Initiate and Verify)		Bridge <u>Measurement</u>	Heater State
A) Initiation	Monitor for 2 hours	1	DTH 21	0000
B) Heating Phase	152 (13 times), 136		DTH 21	1101
PI will deter- mine after 1 hour, to continue in Mode 2 or switch to Mode 3 operation.				

Table 5-3. Phase III (Forty-Five Day Phase) (Continued)

-	EVENT	MCC ACTIVITY	NOMINAL VALUE	REMARK	5
20.	Heat Flow Conduc- tivity Experiment 7 Mode 3 operation	Command Sequence (Initiate and Verify)		Bridge <u>Measurement</u>	Heater State
	A) Heating Phase - 10 hrs. Terminate on approval of P.I.	140, 144		DTR 21, TR 21	1101
	B) Monitor upper section ring bridge for 15 minutes.	135, 152 (11 times), 140, 144	:	DTR 21, TR 21	1000
	C) Monitor Probe 2 gradient bridge for 15 minutes.	135, 143		DTH (21, 22) T (21, 22)	1000
	D) Monitor upper section ring bridge for 15 minutes.	140, 144		DTR 21, TR 21	1000
	 E) Return to Step C and repeat steps (C thru D) for a mini- mum of 6 hr. 		н. 		
	F) Return to Mode 1 operation, full sequence	135, 141			

Table 5-3. Phase III (Forty-Five Day Phase) (Contin

¢!

-	EVENT	MCC ACTIVITY	NOMINAL VALUE	REMA	RKS
21.	Heat Flow Conduc- tivity Experiment 8 Mode 2 operation H 23	Command Sequence (Initiate and Verify)		Bridge <u>Measurement</u>	Heater State
	A) Initiation	Monitor for 2 hours		DTH 22	1000
	B) Heating Phase	152 (7 times), 136		DTH 22	1111
	PI will deter- mine after 1 hour, to continue in Mode 2 or switch to Mode 3 opera- tion.				•
22.	Heat Flow Conduc- tivity Experiment 8 Mode 3 operation	Command Sequence		Bridge Measurement	Heater State
		(Initiate and Verify)			
	A) Heating Phase 10 hrs.	140, 144		DTR 22, TR 22	1111
	Terminate on approval of PI.				
	B) Monitor upper section ring bridge for 15 minutes.	135, 152 (9 times), 140, 144		DTR 21, TR 21	1000
	C) Monitor lower section ring bridge for 15 minutes.	135, 152, 152, 140, 144		DTR 22, TR 22	1010

Table 5-3. Phase III (Forty-Five Day Phase) (Continued)

EVENT	MCC ACTIVITY	NOMINAL VALUE	REMARKS	
22. (Continued)				
D) Monitor Probe 2 gradient bridge for 15 minutes.	135, 143, 152 (14 times)	4 	DTH (21, 22) T (21, 22) 1000	
E) Monitor upper section ring bridge for 15 minutes.	140, 144		DTR 21, TR 21 1000	
F) Return to Step C and repeat Steps (C thru E) for a mini- mum of 6 hours.				
G) Return to Mode l operation, full sequence	135, 141			
		* - - - -		
	1		l	

Table 5-3. Phase III (Forty-Five Day Phase) (Continues)

e)i

EVENT	MCC ACTIVITY	NOMINAL VALUE	REMARKS
1. Central Station	 a. Check Central Station engineering telemetry as in Phase III, Event 1, Step a, and initiate any contingency action indicated. b. Optimize the Central Station thermal environment for the next 24-hour period as in Phase III, Event 1, Step a. 		Check temperatures early in each access period and every day during continuous coverage.

Table 5-4. Phase IV (One-Year Phase)

5-84

. .

	EVENT	MCC ACTIVITY	NOMINAL VALUE	REMARKS
2.	Passive Seis- mic Experiment	a. Early in the access period and every day during continuous cover- age, check sensor temperature, DL-07, and initiate contingency action if out-of-limits.		Log temperatures and note trends.
		b. Early in the access period and again near end of access, check Tidal X, Y and Z data, DL-04, DL-05 and DL-06, respectively, for excess- ive drift of sensor and relevel as required.	-	X MTR ON/OFF Octal 070 Y MTR ON/OFF Octal 071 Z MTR ON/OFF Octal 072
		c. During each continuous cover- age access period, check for evidence of automatic calibration in short period data, DL-08 and initiate contingency action if necessary. Adjust gain, if neces- sary, per Phase I, Event 13, Step d.		
		d. During each access period, calibrate long period circuitry as in Phase I, Event 13, Step g.		
		e. Monitor science data for evi- dence of unusual developments.		

Table 5-4. Phase IV (One-Year Phase) (Continue

¢/

	Table 5-4.	Phase IV (One-Year Phase) (Continued)
EVENT		

	EVENT	MCC ACTIVITY	NOMINAL VALUE	REMARKS
3.	Suprathermal Ion Detector Experiment/ Cold Cathode Gauge Experi- ment	a. Early in each access period and daily during continuous coverage, check instrument temperatures as in Phase I, Event 14, Step b(4), and initiate contingency action if required.		Log temperatures and note trends.
		b. Early in each access period and daily during continuous coverage, check power supply performance as in Phase I, Event 14, Step b(3) and initiate contingency action, if required.		
		c. Monitor SIDE/CCGE science data and adjust operating mode at the discretion of the PI to opti- mize data.		

;

.

	EVENT	MCC ACTIVITY	NOMINAL VALUE	REMARKS
4.	Solar Wind Spectrometer	a. Early in each access period and every day during continuous coverage, check telemetry as in Phase II, Event 8, Step b, and initiate contingency action, if required.	~	Log data and note significant trends.
		b. Near the end of each access period, examine science data for evidence of unusual developments.		

Table 5-4. Phase IV (One-Year Phase) (Continue

1

4

.

	EVENT	MCC ACTIVITY	NOMINAL VALUE	REMARKS
5.	Lun ar Surface Magnetometer	a. Early in each access period and every day during continuous coverage, check engineering data as in Phase II, Event 9, Step a(1) through a(8) and initiate contin- gency action if required.		Log analog engineering value and note significant trends.
		b. During each continuous coverage access period, check science data for evidence of automatic FLIP/CAL at 12-hour intervals.		Initiate following contingency action if required because of time failure: Initiate command octal 131, LSM FLIP/CAL initiate once every day during intermittent support and
	л. Эк	c. During periods of continuous coverage, perform additional FLIP/ CAL cycles as required, per Phase I Event14, Step f. Readjust gain and offset per Phase I, Event 14, Step e if required.		every six hours during continuous support.
		d. Near the end of each access period, examine ISM scientific data for evidence of unusual developments.		
•				

	EVENT	MCC ACTIVITY	NOMINAL VALUE	A L FILIKÍ.	موجع میں
6. Heat Expe	Flow riment	Command Sequence:		Bridge Measurement:	Heater State:
f	heck HFE data or 2 hr. eriods	(Initiate and Verify)		Monitor temperature trends Monitor mode, heater, and p and note abnormal readings.	rogrammer states
1. ļi	nitiation			Ensure heater state is 0000 command 152 until state 000	
	3 operation - 5 min.	140, 144	:	DTR11	0000
	l operation - 5 min.	135, 152, 152		Full Sequence	0010
	3 operation - 5 min.	140, 144		DTR12	0010
	l operation - 5 min.	135, 152 (6 times)		Full Sequence	1000
	3 operation - 5 min.	140, 144		DTR21	1000
	l operation - 5 min.	135, 152, 152		Full Sequence	1010
	3 operation - 5 min.	140, 144		DTR22	1010
	3 operation - 5 min.	135, 152 (6 times)		Full Sequence	0000
				The PI will perform a second tivity experiments during th of the lunar year.	

Table 5-4. Phase IV (One-Year Phase) (Continued)

	EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	NOMINAL VALUE	REMARKS
	l. Orbital Experiment				Most experiments require a field of-view along the local vertical when mounted in the SIM. How- ever, for calibration purposes, some experiments require CSM orientation to other attitudes
					for various time periods. In the case when the SIM is not pointing along the local vertical, some experiments should be turned to Standby or OFF. This decision will be made in Real-Time by the
5-90					Lunar Orbit experiments must be scheduled relative to time-critic operations such as LM descent and ascent, rendezvous and transearth injection and without interference with essential mission profile operations.
	•				
			•		
Ì	· · ·		- - -		
	• · · · · · · · · · · · · · · · · · · ·		i de la construcción de la constru La construcción de la construcción d		an ann an Aontaine an Aontaine Anna Aontaine Anna Aontaine Anna Aontaine Anna Aontaine Anna Aontaine Anna Aontai

Table 5-5. Phase V (Lunar Orbit Phase)

 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1</t

EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	NOMINAL VALUE	REMARKS
2. SM Orbital				
Photographic				
Tasks				
2.1 24-Inch		(
Panoramic				
Camera		TBD		
	÷			
	i.			
			A	
		1	2 8	
1	2			
	2	· · · · ·		
	, ,			
		4	3 •	
		:		
			}	
				·
			ж.	
and the second				
	_*	ł		

Table 5-5. Phase V (Lunar Orbit Phase) (Continued)

4

	EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY		NOMINAL VALUE	REMARKS	
2.	SM Orbital Photographic Tasks (Cont'd) 2.2 3-Inch Mapping Camera		TBD				
				•			
				-			
		· •					
	1		ł				

Table 5-5. Phase V (Lunar Orbit Phase) (Continued)

EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	NOMINAL VALUE	REMARKS
2. SM Orbital				
Photographic				
Tasks (Cont'd) 2.3 Laser				
2.3 Laser				
Altimeter		TBD		
		а а		
			i. i	
		· · ·		
	2			
		1. 1		
ľ	•			
		۰		
1		•		
	с			
1		1	I 1	

ጥ-ት (Compined) ~ •

ß

\$

	EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	NOMINAL VALUE	REMARKS
3.	Gamma-Ray Spectrometer (S-160)		TBD		
		•			

Table 5-5. Phase V (Lunar Orbit Phase) (Continued)

· · · ·

	EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	NOMINAL VALUE	REMARKS
4.	X-Ray Fluorescence (S-161)		TED		
					ť
			:		s.
					-
			· ·		
			- -		
	,				
		т.			

Table 5-5. Phase V (Lunar Orbit Phase) (Continued)

ъ

5-95

л

Table 5-5. Phase V (Lunar Orbit Phase) (Continued)

EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	NOMINAL VALUE	REMARK S
• S-Band Transponder (CM/LM) (S-164)	a. Orbit attitudes be- tween 10-100 nm are desired.			
	b. Each frontside ground track should be covered at least twice with ap- proximately 80 minutes allowed for each measure- ment.			
	c. Orbital location during measurement should be during a com- plete frontside orbital pass.			
• .				

EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	NOMINAL VALUE	REMARKS
5. Particle Shadows/ Boundary Lever				
Layer (S-173)		TBD		
		• • •		
,				

Table 5-5. Phase V (Lunar Orbit Phase) (Continued)

4

30/

5-97

1. Sec. 1. Sec

	EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	NOMINAL VALUE	REMARKS
7.	Subsatellite Magnetometer (S-174)		TBD		
		•			

Table 5-5. Phase V (Lunar Orbit Phase) (Continued)

EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	NOMINAL VALUE	REMARKS
Alpha Particle Spectrometer (S-162)		· · ·		
	e			
		- x		
	,			
	* •			
		• • •		

Table 5-5. Phase V (Lunar Orbit Phase) (Continued)

ń.

b.

Table 5-5. Phase V (Lunar Orbit Phase) (Continued)	Table 5-5.	Phase	V	(Lunar	Orbit	Phase)	(Continued)
--	------------	-------	---	--------	-------	--------	-------------

	EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	NOMINAL	VALUE	REMARKS
9.	Mass Spectrometer (S-165)					
		i - -				
		· .				

	EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	NOMINAL VALUE	REMARK S
	10. UV Photography Earth and Moon (S-177)				v
	· 2				
	*				
i					
					•
	I		1		

ý 5:

·

	EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	NOMINAL VALUE	REMARKS
11.	CM Orbital Photographic Tasks				
	ll.l Hassel Electr Data Camera	lc	TBD		

Table 5-5. Phase V (Lunar Orbit Phase) (Continued)

EVENT	ASTRONAUT ACTIVITY	HCC ACTIVITY	NOMINAL VALUE	REMARKS
ll. CM Orbital Photographic Tasks (Cont'd)				
ll.2 Hassel Electr Camera	rie .	TBD	× .	
·				

Table 5-5. Phase V (Lunar Orbit Phase) (Continued)

à

è

<u> </u>	EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	NOMINAL VALUE	REMARKS
11.		ASTRONAUT ACTIVITY	MCC ACTIVITY	NOMINAL VALUE	REMARKS

Table 5-5. Phase V (Lunar Orbit Phase) (Continued)

۸.

B

EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	NOMINAL VALUE	REMARK S
12.	······································		I	
			·	
·				
		This page intentionally le	et blonk	
		This page intentionally ie	C DIGIK.	
		· .		
		,		
	- 			

ហុ

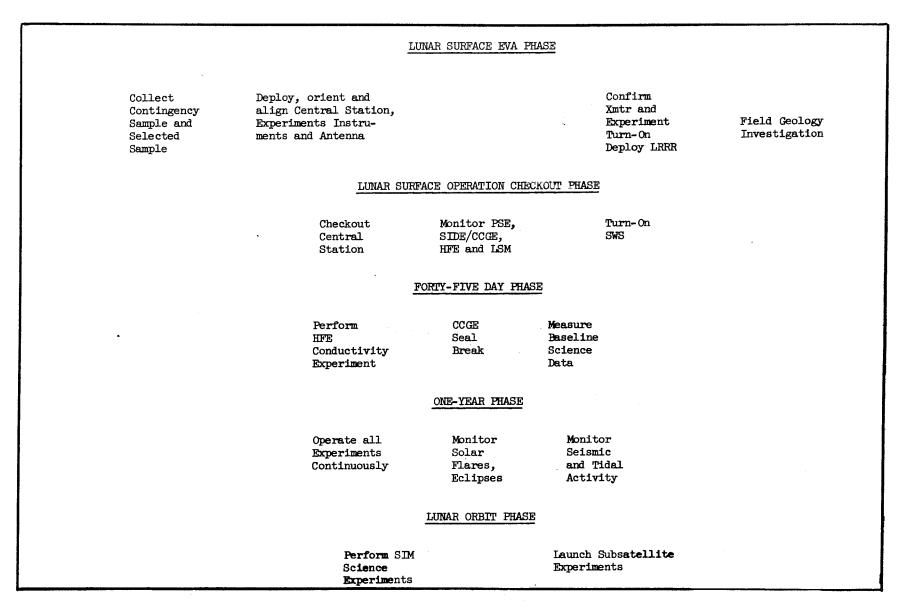
Table 5-5. Phase V (Lunar Orbit Phase) (Continued)

	ASTRONAUT ACTIVITY	MCC ACTIVITY	NOMINAL VALUE	REMARK S
3. Gegenschein from Lunar Orbit (S-178)	Nine photographs should be taken in three dif- ferent directions as follows: a. Three photographs with camera pointed in the anti-solar direction. b. Three photographs with camera pointed toward the Moulton point. c. Three photographs with camera pointed mid- way between the anti- solar and the Moulton point directions.			Astronaut should log the time IMU gimbal angles, the CSM attitude and position when t photographs are taken. The photographs should be tak while the CSM is in total dar ness in lunar orbit and all exterior lights turned off and window shades deployed. Lunar orbit photographs of the Gegenschein and Moulton point regions should be obtained fro the CSM while in an undocked configuration. Following the attitude maneuve for each of the three camera pointing angles, the CSM attit will be maintained within mini deadband limits of + 0.5° and firing of SM RCS jets should t inhibited during film exposure

3

Table 5-5. Phase V (Lunar Orbit Phase) (Continued)

4


R

	EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	NOMINAL VALUE	REMARK S
14.	Downlink Bi-Static Radar (S-170)	a. An orientation maneuver required for the Brewster angle determina- tion of the lunar surface			In the event that the spacecraft omni-antenna is inadequate for measurements, astronaut partici- pation would be required to direct the hi-gain antenna systems toward the lunar surface.
		b. Only one measurement is required during any orbit and should be con- ducted when the space- craft-earth-moon-angle is 100° to 130°- 140°.			The measurement duration will be 30° - 40° of the orbital arc.
		c. The spacecraft point- ing accuracy should be within ± 5 .			
		d. An attitude hold of $\pm 0.5^{\circ}$ is required for $\overline{30^{\circ}} - 40^{\circ}$ of the orbital arc during the measurement period.			t
		e. Allowable spacecraft rate should be within + 0.05 ⁰ /sec - all axes.			· · · · · · · · · · · · · · · · · · ·

	EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	NOMINAL VALUE	REMARK S
15.	Apollo Win- dow Meteroid (S-176)				The Apollo windows must be scanned at 20X magnification and any surface imperfection mapped before flight. The Apollo windows must be recovered and delivered to MSC for post flight analysis

Table 5-5. Phase V (Lunar Orbit Phase) (Continued)

.

Þ

Figure 5-1. Lunar Operation Phases, Events Identification

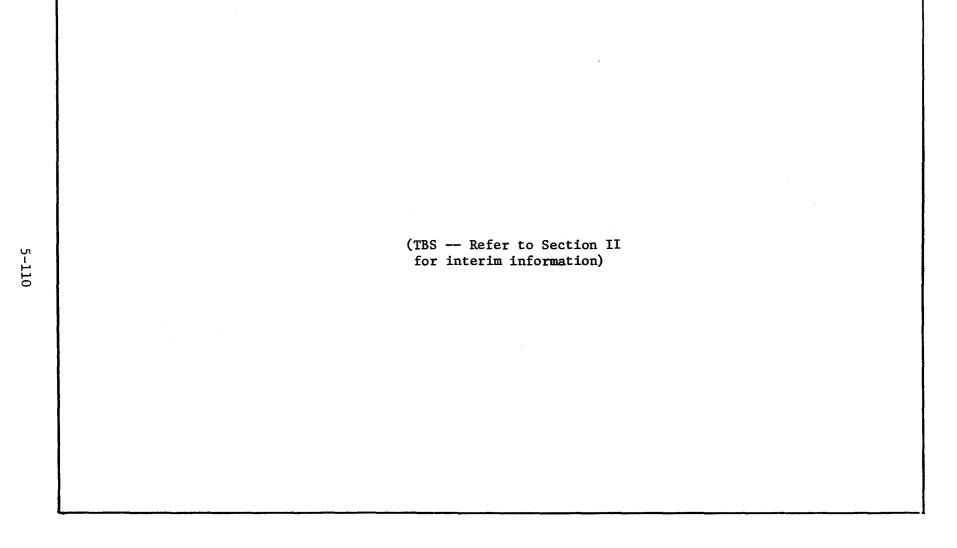
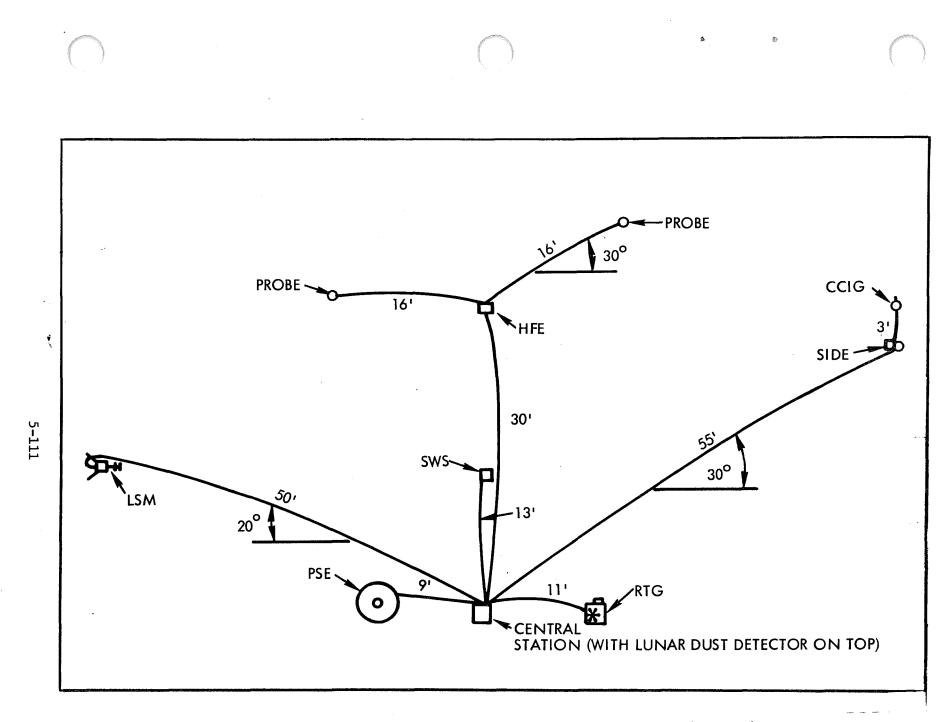
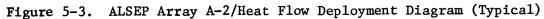




Figure 5-2. Lunar Surface Equipment Use Chart

Event (Geologic features to be studied)		Astronaut Activit	у	MSC Activity	
	SAMPLING	PHOTOGRAPHY	DESCRIPTION	MONITORING	
 OUTCROP Blocky Rimmed Crater Blocks Bright Halo Crater Regolith Sharp Rimmed Crater Elongate Crater Crater Chain Mare Ridge Scarp Crater Cluster Dimple Crater Lineament Subdued Crater 	of • Outcrop • Blocks • Regolith using • hammer • tongs • scoop • core tubes	of Outcrop Blocks regolith geologic features topographic features using monoscopic stereoscopic panoramic with Hasselblad Apollo TV Time- Sequence	of • Rock Material and Geologic features with respect to • Color, texture, com- position, structure weathering or altera- tion • variations-horizontal and vertical • relationships to adjacent features • comparisons with similar features • integrations of: • origins of features • sources of materials • processes	of Sample No's. Photo No's. Descriptions and encoding data annotating maps and photos prepare questions answer questions advise astronauts	

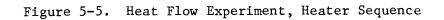

The astronaut activity will consist of observation, photography, description, and sampling of certain geologic features conducted along the traverse. At the same time MSC will be monitoring and documenting the astronaut activity.

Figure 5-4. Lunar Geology General Planning Chart

State					Heater	Function	Bridge Energized
	H4	нз	H2	ні			
1	0	0	0	° '	12	OFF	DTR 11
2	0	0	0	1	12	ON	DTR 11
3	0	0	l	0	14	OFF	DTR 12
ΣĻ	0	0	1	l	14	ON	DTR 12
5	0	1	0	0	11	OFF	DTR 11
6	0	1	0	l	11	ON	DTR 11
7	0	l	1	0	13	OFF	DTR 12
8	0	1	l	1	13	ON	DTR 12
9	1	0	0	0	22	OFF	DTR 21
10	l	0	0	l	22	ON	DTR 21
11	l	0	l	0	24	OFF	DTR 22
12	l	0	l	1 .	24	ON	DTR 22
13	l	1	0	0	21	OFF	DTR 21
14	l	l	0	1	21	ON	DTR 21
15	1	1	l	0	23	OFF	DTR 22
16	l	1	l	1	23	ON	DTR 22
	Bo	re Hol	.e l			Bore Hole 2	
To	qq	сн сн		DTR 11		H21 H22	DTR 21
Bot	ttom	H] H]		DTR 12		н23 н2 ¹ 4	DTR 22

榆

Ő

SECTION VI

SCIENCE RECOVERY PLAN

6.1 GENERAL

This section defines the Science and Applications Directorate requirements for the return of time-critical scientific data and equipment from the recovery zone to the Lunar Receiving Laboratory (LRL), Manned Spacecraft Center, Houston. Guidelines for the preparation and transporting of the data are specified in paragraphs 6.2.1 and 6.2.2. Transportation priorities are specified in Table 6-1.

6.2 PREPARATION AND TRANSPORTATION REQUIREMENTS

6.2.1 PREPARATION OF DATA AND EQUIPMENT FOR RETURN TO MSC

6.2.1.1 Decontamination

During the quarantine period, each item removed from the Mobile Quarantine Facility (MQF) will be placed in a plastic Biological Isolation Container (BIC), the internal pressure of the BIC reduced by a vacuum pump and the BIC heat-sealed. After sealing, the external surface of the BIC must be completely bathed in decontaminant (sodium hypochlorite solution). Safe passage of an item from the MQF is through a transfer portal provided for this purpose.

6.2.1.2 Shipping Containers

Shipping containers to protect items from excessive shock and temperature during handling and flight will be provided by the Landing and Recovery Division.

6.2.2 TRANSPORTATION REQUIREMENTS

6.2.2.1 Flight Operations

Flight operations from the recovery zone to Ellington Air Force Base (EAFB), Houston, must be conducted with multiple or similar items divided between two aircraft to minimize the scientific impact if an aircraft is lost.

6.2.2.2 Transfer of Items from EAFB to the LRL

۰.

Transporting of time-critical items and the Mobile Quarantine Facility (MQF) from EAFB to the Lunar Receiving Laboratory (LRL) will be accomplished by motor vehicle. Transfer of items from the couriers to LRL personnel will be accomplished at this time. Table 6-1. J-1 Mission Scientific Data and Equipment Recovery Requirements Matrix

\$

右

DATA/EQUIPMENT TO BE RETURNED TO LRL	QUANTI TY	SHIPPING PRIORITY FROM RECOVERY AREA	REMARKS
• ALSRC No. 1, S/N 1013	1	Flight No. 1	The contents of each ALSRC are exempt from the decontamination
• Sample Collection Bag No. 1	1		procedures specified in 6.2.1.1. The ALSRC's are not to be opened prior to delivery to the LRL.
• Drill Stems	6		The Organic Control Sample installed in each ALSRC prior to flight will
 Core Tubes/Caps 	3 (max)		remain in the container throughout the mission.
 Environmental Soil Sample (SESC No. <u>TBD</u>) 	1 (max)		The minimum (min) core tubes spec- ified for each ALSRC is the quantity actually assigned to each container. If the tubes are not used on their respective EVA, they
 Selected Geological Samples 	(<u>TBD</u>)		will be carried over to the next EVA. When used, the tubes will be stored in the ALSRC assigned to that par- ticular EVA which will yield the
			maximum (max) number.

Table 6-1. J-1 Mission Scientific Data and Equipment Recovery Requirements Matrix (Continued)

DATA/EQUIPMENT TO BE RETURNED TO LRL	QUANTITY	SHIPPING PRIORITY FROM RECOVERY AREA	REMARKS
• ALSRC No. 2, S/N 1012	1	Flight No. 1 or 2 (<u>TBD</u>)	
• Sample Collection Bag No. 2 or No. 3	1		
 Core Tubes/Caps 	3 (min) 6 (max)		
• Environmental Soil Sample (SESC No. <u>TBD</u>)	1 (2 max)		
 Selected Geological Samples 	(<u>TBD</u>)		

Table 6-1. J-1 Mission Scientific Data and Equipment Recovery Requirements Matrix (Continued)

4

DATA/EQUIPMENT TO BE RETURNED TO LRL	QUANTITY	SHIPPING PRIORITY FROM RECOVERY AREA	REMARKS
• ALSRC No. 3, S/N 1009	1	Flight No. 1 or 2 (<u>TBD</u>)	
 Sample Collection Bag No. 2 or No. 3 	1		
● Core Tubes/Caps	3 (min) 9 (max)		
 Environmental Soil Sample (SESC No. <u>TBD</u>) 	1 (2 max)		
 Selected Geological Samples 	(<u>TBD</u>)		
• Contingency Soil Sample	1	Mobile Quarantine Facility (MQF)	If the ALSRC's are not available for return to the LRL, the contingency sample will be treated as a high priority time-critical item, pre- pared in accordance with paragraph 6.2.1.1, placed in a Contingency Sample Return Container and shipped by aircraft to Ellington Air Force Base, Houston.

Table 6-1.	J-1 Mission	Scientific	Data	and E	quipment	Recovery	Requirements	Matrix	(Continued)
------------	-------------	------------	------	-------	----------	----------	--------------	--------	-------------

DATA/EQUIPMENT TO BE RETURNED TO LRL	QUANTITY	SHIPPING PRIORITY FROM RECOVERY AREA	REMARKS
• Magnetic Soil Sample (MSSC No. <u>TBD</u>)	1	MQF	
 Special Sample Return Bag (EVA No. 3 only) 	1	MQF	
• Extra Collection Bags	3 (max)	MQF	Soil samples and rocks - overflow from ALSRC's.
• Data Storage Electronics Assembly (DSEA) from LM	1	Flight No. 2	The DSEA is hermetically sealed. The complete unit must be removed from the LM. At recovery, the unit must be placed in a magnetic shielded container for shipment to the LRL.
• Data Storage Equipment (DSE) - Tape from CM	1	With CM. Remove when CM is returned to LRL.	The DSE tape is the only source of telemetry available during the period of CM reentry.

Table 6-1. J-1 Mission Scientific Data and Equipment Recovery Requirements Matrix (Continued)

4

-@

DATA/EQUIPMENT TO BE RETURNED TO LRL	QUANTITY	SHIPPING PRIORITY FROM RECOVERY AREA	REMARKS
• Astronaut Flight Logs	-	MQF with Astronauts	Flight logs contain information vital to the interpretation and analysis of lunar surface activity. Transcripts of the flight logs should be made available as quickly as possible after return to MSC.
 Magazines/Cassettes from following camera systems: 			The film magazines will be placed in specially constructed containers at the recovery site and returned
• Maurer 16-mm DAC	(<u>TBD</u>)	1/2 of total magazines on each flight	to Ellington Air Force Base with film data divided between the two aircraft. Film will remain in the custody of the Photographic Technol-
• Hasselblad 70-mm DC (Reseau)	(TBD)	1/2 of total magazines on each flight	ogy Laboratory (PTL) couriers until it arrives at MSC. The film will then be processed through the LRL before being released to the PTD
• Hasselblad 70-mm EC	(<u>TBD</u>)	1/2 of total magazines on each flight	for development.
• 24-Inch Panoramic	1	TBD	
• 3-Inch Mapping	1	TBD	

SECTION VII

LUNAR RECEIVING LABORATORY PLAN

Data for this section will be included in the next issue of the J-1 MSRD, scheduled for publication at L minus 5 months. These data are not required as source material for any MSC document or for use by any MSC organization before that time.

Ģ

6³**

SECTION VIII

CONTINGENCY PLAN

8.1 GENERAL

This section provides data for use in real-time replanning and rescheduling of mission science activities in the event that a contingency or off-nominal condition occurs during the mission. Included are the assumptions upon which planning data are based and the constraints which will impact real-time decisions. Planning data are provided for the following major contingencies: no launch (mission scrubbed), no translunar injection (earth orbital mission only), lunar flyby (no lunar orbital or lunar surface activities), lunar orbital mission (no lunar surface landing), no lunar surface EVA, and no lunar orbital EVA.

8.2 ASSUMPTIONS

- a) Launch delays of more than a few days may require replacement or adjustment of some experiment hardware.
- b) For the earth orbit mission case, the altitude and inclination will both be increased within operational limitations.
- c) An experiment may be operated for engineering tests only, if orbit will not allow for science data collection.
- d) A lunar flyby mission will not allow for proper attitude and operating time for SM experiment operations.
- e) If the mission is off-nominal so that it appears that there will be no more than one surface EVA, the ALSEP should be deployed in a direction toward the nearest available and recognizable Hadley-Apennine material to increase the possibility of collecting selected sample materials.

8.3 TIME CONSTRAINT

For any malfunction on a scientific task, spend a maximum of 10 minutes on malfunction procedures and then abandon. Additional time may be allocated on certain malfunctions before resulting in total experiments abandonment. This additional time will be a real-time decision based on consumables and timeline constraints.

8.4 HOLD POINTS

The sequence of the experiment deployment or operation may be stopped after the completion of any one of the following hold points. It will be continued at some time later by going to the next series of tasks:

- a) Remove ALSEP Subpackages No. 1 and No. 2; close SEQ bay loor; emplace ALSEP Subpackages with experiments in and facing the sun.
- b) Tilt fuel cask; dome not removed.
- c) Tilt fuel cask; remove dome, do not defuel.
- d) Fuel RTG; carry ALSEP to deployment site; remove subpallet from Subpackage No. 2; carry Subpackage No. 1 to emplacement site (do not deploy); interconnect RTG cable (do not actuate switch).
- e) Deploy ALSEP Subpackage No. 1 as well as ALSEP Subpackage No. 2; release and remove experiments; raise sunshield; mount and aim antenna; deploy PSE.
- f) Deploy ALSEP experiments and complete tasks. A hold point exists after each experiment is deployed.
- g) Geology hold points (TBD).
- h) Orbital hold points (TBD).

8.5 EXPERIMENT RESCHEDULING

In the event of a major contingency (no lunar landing, etc.), deployment and operation of lunar orbital and/or lunar surface experiments will be affected and must be rescheduled. Table 8-1 indicates which of the lunar orbital experiments may be accomplished for each major contingency.

Preliminary contingency planning data for the lunar surface experiment activities are presented in Table 8-2. Detailed contingency procedures for the lunar surface experiments and related activities will be provided in the next issue of the MSRD.

EXPERIMENT			MISSIC	ON TYPI	E	
EXPERIMENT		A	В	С	D	E
SM Orbital Photographic Tasks:				2		
• 24-Inch Panoramic Camera	Х	G	N	G	G	N
• 3-Inch Mapping Camera	Х	G	N	G	G	N
Laser Altimeter*	X	N	N	G	G	G
CM Photographic Tasks	G	х	F	G	G	G
UV Photography - Earth and Moon	G	G	G	G	G	G
Gegenschein from Lunar Orbit	G	x	N	G	G	G
Gamma-Ray Spectrometer	Х	G	N	. G	G	G
Alpha Particle Spectrometer*	х	N	N	G	G	G
X-Ray Fluorescence	X	G	N	G	G	G
Mass Spectrometer	Х	G	N	G	G	G
S-Band Transponder (CM/LM)	G	x	N	G	G	G
Subsatellite:						
 Magnetometer* 	N	N	G	G	G	G
 Particle Shadows/Boundary Layer 	N	G	G	G	G	G
• S-Band Transponder	N	G	G	G	G	G
Bistatic Radar	N/A	N/A	N/A	G	G	G
*No useful science data in earth orbit						
LEGEND:						
S-Scrubbed launch; can be recycle A-Earth Orbit B-Lunar Flyby C-Lunar Orbit D-No Surface EVA E-No Orbital EVA	crubbed launch; can be recycled without experiment effect. arth Orbit F-Alternate unar Flyby G-Go unar Orbit N-No/Go o Surface EVA N/A-Not Applicable					

Table 8-1. Experiment Use for Contingency Missions

dep.

filler and the second

etternesser.

Table 8-2. EVA Decisions

EVENT NO.	CONTINGENCY	RESPONSIBLE AGENT	ACTION	REMARKS
1	Crew unable to locate touch- down point in the landing ellipse.	Crew	Make visual observations and des- cribe features around the LM.	
		мсс	1. Compare television images and the astronauts' description of features to the overall features in the map package.	
			2. After locating the touchdown point advise crewmen of which map sheet to use for plotting their traverse routes.	
2	Not enough time for EVA.	Crew	Make careful observations and descriptions of surface through LM windows. Numerous still camera photos should be taken with both black and white and color films from both windows. Photos with polarizing filter in three dif- ferent positions should be made.	
		мсс	Study landing area on maps and submit pertinent questions relat- ing to surface smoothness or roughness, the contours of surface, size of rocks, and craters in area.	

Table 8-2. EVA Decisions (Continued)

愈

ŧ

EVENT NO.	CONTINGENCY	RESPONSIBLE AGENT	ACTION	REMARKS
3	Time for brief EVA. (1 or 2 men)	Crew	 Repeat activity in preceding Event 2. Collect contingency sample. If possible, take a panorama of area and shots of surface nearby. Take shots of surface under LM descent engine and around footpads. 	

EVENT NO.	CONTINGENCY	RESPONSIBLE AGENT	ACTION	REMARKS
4	Time for EVA 1 only. (2 men)	Crew	 Collect contingency sample. Deploy ALSEP as normal but in direction toward the nearest available and recognizable Hadley-Apennines material. Deploy LR³. Collect documented samples during traverse to the ALSEP site and while returning. Photograph and describe geo- logical features as well as col- lect samples. Cut down the number of stations and distance attempted rather than reduce quality of sample collections and documenta- tion. Study landing area on maps and make decision on ALSEP deployment site. 	

Table 8-2. EVA Decisions (Continued)

Table 8-2. EVA Decisions (Continued)

A

÷

EVENT NO.	CONTINGENCY	RESPONSIBLE AGENT	ACTION	REMARKS
5	Time for one-man EVA 1 only. (Not enough time for EVA 2) One man EVA 1. (EVA 2 possible)	Crew	 Collect contingency sample. Deploy ALSEP as normal but in direction toward the nearest available and recognizable Hadley-Apennines material. Deploy LR³. Collect documented samples during return traverse from ALSEP site. Cut down the number of stations and distance attempted rather than reduce quality of sample collections and documenta- tion. Collect contingency sample. Deploy ALSEP as normal but in direction toward the nearest available and recognizable Hadley-Apennines material. Deploy LR³. Collect documented samples during return traverse from ALSEP site. 	

EVENT NO.	CONTINGENCY	RESPONSIBLE AGENT	ACTION	REMARKS
7	One man EVA 2.	Crew	 If LRV is available. a. Perform geology sample collection and documentation. b. Take panorama shots of traverse area. If LRV is not available. a. Perform geology sample collection and documentation. b. Take panorama shots of traverse area. 	a. May abbreviate documentation re- quirements for samples if MCC concurs.

Table 8-2. EVA Decisions (Continued)

APPENDIX A

ACRONYMS AND ABBREVIATIONS

A	Ampere(s)
Å	Angstrom Unit (One Ten-Billionth of a Meter)
ac	Alternating Current
A/D	Analog-to-Digital
AGC	Automatic Gain Control
AFMAD	Apollo Flight Mission Assignments Directive
ALSD	Apollo Lunar Surface Drill
ALSEP	Apollo Lunar Surface Experiments Package
ALHT	Apollo Lunar Hand Tools
ALHTC	Apollo Lunar Hand Tool Carrier
ALSRC	Apollo Lunar Sample Return Container
amp	Ampere(s)
AMU	Atomic Mass Unit
ASA	American Standards Association
ASPO	Apollo Spacecraft Program Office
Auto	Automatic
BIC	Biological Isolation Container
BPS	Bits Per Second
BTE	Bench Test Equipment
0	
C	Centigrade
CAL	Calibrate
ССВ	Configuration Control Board
CCIG	Cold Cathode Ion Gauge

. Alter

慼

former (

A-1

СМ	Command Module
cm	Centimeter
c/s	Central Station
CSM	Command and Service Module
15	
dB	Decibel
dBm	Decibel Below 1 Milliwatt
dc	Direct Current
Decl.	Declination (measured in celestial coordinates)
DPS	Descent Propulsion System
DSE	Data Storage Equipment
DSEA	Data Storage Electronics Assembly
DSS	Data Subsystem
Ε	East
EAFB	Ellington Air Force Base
EMI	Electromagnetic Interference
EPO	Earth Parking Orbit
eV	Electron Volt
EVA	Extravehicular Activity
F	Fahrenheit
FCSD	Flight Crew Support Division
FMC	Forward Motion Compensation
FOV	Field-Of-View
FOV fps	Field-Of-View Feet per Second

弘

44.

line of the second s

gal	cm/sec ²
GET	Ground Elapsed Time
gm	Gram
^{GN} 2	Gaseous Nitrogen
HD	Highly Desirable
HFE	Heat Flow Experiment
Hq.	Headquarters
TD	Tentification
ID	Identification
IMU	Inertial Measurement Unit
JPL	Jet Propulsion Laboratory
77	Kelvin
K	
keV	One Thousand Electron Volts
kg	Kilogram
kHz	Kilohertz
km	Kilometer
kV	Kilovolt
LASER	Light Amplification through Stimulated Emission of Radiation
LCRU	Lunar Communications Relay Unit
LDDE	Lunar Dust Detector Experiment
LM	Lunar Module
LMO	Lunar Missions Office
LOI	Lunar Orbit Injection
LP	Long-Period

LRL	Lunar Receiving Laboratory
LRRR	Laser Ranging Retro-Reflector
LR ³	Laser Ranging Retro-Reflector
LRV	Lunar Roving Vehicle
LSB	Least Significant Bit
LSM	Lunar Surface Magnetometer
m	Meter, Milli
М	Mandatory
MAL	NASA Headquarters Apollo Lunar Exploration Office Symbol
MCC	Mission Control Center
MESA	Modularized Equipment Stowage Assembly
Mev	One Million Electron Volts
MHz	Megahertz
mm	Millimeter
MQF	Mobile Quarantine Facility
MRD	Mission Requirements Document
MSC	Manned Spacecraft Center
MSFEB	Manned Space Flight Experiments Board
MS FN	Manned Space Flight Network
MSRD	Mission Science Requirements Document
NGGO	mission betence Requirements bocament
MSSC	Magnetic Soil Sample Container
mSSC	
	Magnetic Soil Sample Container
mV	Magnetic Soil Sample Container Millivolt

N/A	Not Applicable
NASA	National Aeronautics and Space Administration
NM	Nautical Mile
No.	Number
0 ₃	Ozone (Triatomic Oxygen)
OMS F	Office of Manned Space Flight
OSSA	Office of Space Sciences and Application
PCM	Pulse Code Modulation
PCU	Power Conditioning Unit
PDR	Power Dissipation Resistor
PDU	Power Distribution Unit
PI	Principal Investigator
PLSS	Portable Life Support System
PSE	Passive Seismic Experiment
PTC	Passive Thermal Control
PTL	Photographic Technology Laboratory
R. Asc.	Right Ascension (measured in celestial coordinates)
RCS	Reaction Control Subsystem
RF	Radio Frequency
rpm	Revolutions per Minute
RTG	Radioisotope Thermoelectric Generator
S	South
SA	Saturn Apollo

胍

Summer -

S & AD	Science and Applications Directorate
sec	Second
SESC	Special Environmental Sample Container
SEQ	Scientific Equipment Bay
SIDE	Suprathermal Ion Detector Experiment
SIM	Scientific Instrument Module
SM	Service Module
SNAP	Space Nuclear Auxiliary Power
SO	Special Order
SP	Short-Period
SPS	Service Propulsion System
SRC	Sample Return Container (also known as ALSRC)
SWE	Solar Wind Experiment
SWS	Solar Wind Spectrometer (Same as SWE)
TBD	To Be Determined
TBS	To Be Supplied
TEI	Transearth Injection
Temp	Temperature
TLI	Translunar Injection
TM	Telemetry
torr	Unit of Pressure (1/760 of an atmosphere or $0.757 \times 10^{-2} \text{ n/m}^2$)
TV	Television
UHT	Universal Handling Tool
υv	Ultraviolet

.

V	Volt
VCO	Voltage Controlled Oscillator
Vdc	Volts of Direct Current
VHF	Very High Frequency
W	West
Х	Magnification Factor
Xmtr	Transmitter
h	Hour (Superscript)
m	Minute (Superscript)
o	Degrees
T	Feet
11	Inches
γ	Gamma
μ	Micron

ġ.

6⁰⁰¹¹¹

APPENDIX B

GLOSSARY

A suspension of fine solid or liquid particles AEROSOL such as smoke or fog in the earth's atmosphere. ALBEDO The amount of electromagnetic radiation reflected by a body expressed as a percentage of the radiation incident on the body. ALPHA PARTICLE A nuclear particle of atomic mass 4 made up of 2 protons and 2 neutrons. A unit of length equal to 10^{-10} meters or 10^{-4} ANGSTROM UNIT microns commonly used in specifying wavelengths of electromagnetic radiation. APERTURE The opening of a camera through which light rays pass when the film shutter is open. AREAL Pertaining to coverage of area as maximum areal coverage of a lunar traverse. ATTENUATION Decrease in intensity usually of wave phenomena such as light or sound. BASALTIC A type of dark gray rock formed by solidification of molten material (previously found on the lunar surface). Binary digit of telemetered information. BIT BOUNDARY LAYER Interaction layer between the surface of the moon and the undisturbed portion of the solar wind. BOW SHOCK The shock wave produced by the interaction of the solar wind with the earth's magnetosphere. CARTOGRAPHIC Related to the production of accurately scaled maps as of the moon's surface. CASSETTE Container of photographic film for the 24-Inch Panoramic Camera or 3-Inch Mapping Camera. CISLUNAR Pertaining to the space between the earth and moon or the moon's orbit. COLORIMETRIC Pertaining to the measurement of the intensities of different colors as of lunar surface materials.

COSMIC RAYS Very high energy nuclear particles, commonly protons, that bombard the earth from all directions. COSMOLOGICAL Concerned with the investigation of the character

and origin of the universe.

CROSSTRACK In a plane perpendicular to the instantaneous direction of a spacecraft's ground track.

DEADBAND The limits of an allowable spacecraft attitude excursion in a particular attitude-hold mode.

DIELECTRIC A material with few conduction electrons, i.e., an electrical insulator.

DIURNAL Recurring daily.

DOPPLER TRACKING A continuous-wave, trajectory-measuring system using the Doppler effect caused by a target moving relative to a ground transmitter and receiving stations.

EARTHSHINE Illumination of the moon's surface by sunlight reflected from the earth.

ECLIPTIC PLANE The plane defined by the earth's orbit about the sun.

EFFLUENT Any substance discharged from a spacecraft such as waste water, urine, fuel cell purge products, etc.

EJECTA Material thrown out (as resulting from meteoroid impact or volcanic action).

ELECTRON The extranuclear constituent of all atoms carrying a negative charge and a mass of 1/1836 that of a proton.

EPHEMERIS A tabulation of the predicted positions of a celestial body - such as the moon - at regular intervals.

EPICENTER The lunar surface point directly above the source of a seismic disturbance.

EXOSPHERE The outermost portion of the earth's or moon's atmosphere from which gases can escape into outer space.

ditte

FIELD A spatial region in which each point has a definite value of a scalar or vector quantity such as a magnetic field. FIELD-OF-VIEW The area from which light is admitted into an optical instrument, usually expressed in terms of angles. FINE-GRAINED Broad description of lunar geological material to be gathered that is characterized by a structural composition of fine-grained matrices evident upon microscopic examination. FLUORESCENCE Emission of radiant energy in response to the absorption of radiant energy at a different wavelength. FLUX The rate of flow (per unit area, as well, for some applications) of some quantity such as the flux of cosmic rays or the flux of plasma particles in the solar wind. FRAGMENTAL Broad description of lunar geological material to be gathered representing fragmented material such as small rock chips. A measure of gravitational acceleration equal to GAL 1 cm/sec^2 . GALACTIC Pertaining to a galaxy in the universe such as the Milky Way. GAMMA A measure of magnetic field strength equal to 1×10^{-5} oersteds. A quantum of electromagnetic radiation emitted GAMMA-RAY by an atomic nucleus as a result of a quantum transition between two energy levels of the nucleus. GEGENSCHEIN A faint light covering a 20-degree field-of-view projected on the celestial sphere about the sunearth vector (as viewed from the dark side of the earth). GEOCHEMICAL GROUP A group of three experiments especially designed to study the chemical differentiation and constituents of the lunar surface remotely from lunar orbit, viz, S-160, S-161, and S-162.

- GEOPHYSICAL Pertaining to the physics of the earth, or moon, and the surrounding environment.
- GNOMON A rod pivoted about a free bearing used on the lunar surface to indicate the local vertical, to give sun position, and to serve as a distance scale.
- GRADIENT The space rate of change of a function. For example, the local lunar surface magnetic field.

GRANITIC Pertaining to very hard igneous rock.

GROUND TRUTH Lunar surface data used as a calibration or check on data taken from lunar orbit.

HERTZ A unit of frequency used to describe electromagnetic radiation and equal to 1 cycle per second.

HUMMOCK A rounded knoll or hill.

INERTIAL COORDINATE A system in which the (vector) momentum of a SYSTEM particle is conserved in the absence of external forces and whose axes are not undergoing acceleration or rotation.

IGNEOUS ROCK Rock formed by solidification of molten material.

- IN SITU "In its original position." For example, taking photographs of a lunar surface rock sample "in situ" (as it lays on the surface).
- J-1 TYPE MISSION The first of a class of Apollo missions in the Apollo Lunar Exploration Program providing the capability for extended lunar surface staytimes, longer mission duration, improved surface mobility and communications, more extensive surface science experiments and exploration, and an orbital science payload package (SIM).
- K LINES Band spectra lines characteristic of the innermost atom electron shell containing 2 electrons; this shell is called the K-shell.

L - "X" MONTHS The number of months before launch, e.g., L-5 months.

L LINES Band spectra lines characteristic of the next to innermost atom electron shell containing electrons; this shell is called the L-shell.

GLOS SARY	(Continu	ied)
-----------	----------	------

Apparent motion of the geometric center of the LIBRATION moon due primarily to the ellipticity of the lunar orbit coupled with the fact that its rotation and orbital frequencies are equal. LITHIFIED Evidence of having been changed into stone. MACROSCOPIC Large enough to be seen with naked eye or under low magnification. MAGNETOPAUSE The transition region between the earth's magnetosphere and the solar wind bow shock. MAGNETOSPHERE The region of the earth's atmosphere where ionized gases contribute to the determination of the dynamics of the atmosphere and where the forces of the earth's magnetic field are predominant. MAGNETOTAIL The tube-like elongated region of the earth's magnetosphere of undetermined length in the anti-solar direction. An intermediate layer of the moon between the MANTLE lithosphere (outer layer) and the central core. MARE A large dark flat area on the lunar surface (Lunar Sea). MARIA Plural form of mare. MASCONS Large mass concentrations beneath the surface of the moon. They are believed to contain large bodies or masses that have impacted the lunar surface from outer space. MASS SPECTROMETER An instrument which differentiates chemical species in terms of their different isotopic masses. METEORITIC Pertaining to material apparently originating from meteoroids. METRIC PHOTOGRAPHY Recording of events by means of photography, together with an appropriate network of coordinates, to form the basis of accurate measurements and reference points for precise photo mapping. MICRO-BRECCIA A rock consisting of sharp fragments embedded in a fine-grained matrix.

MICROSCOPIC Of such a size as to be viewable, if at all, only under optical magnification.

MIE Name associated with the theory of scattering of electromagnetic radiation from spherical particles without regard to comparative size of radiation wavelength and particle diameter.

MINERALOGY The science of minerals that deals with the study of their crystallography and their general physical and chemical properties.

MONOENERGETIC SOURCE A source of electromagnetic radiation, confined to a very narrow frequency range used, for example, as a calibration source for spectrometers.

MORPHOLOGY The external structure of rocks in relation to the development of erosional forms or topographic features.

MOULTON POINT A theoretical point along the sun-earth line located 940,000 statute miles behind the earth at which the sum of all gravitational forces is zero(in a rotating coordinate system).

NADIR That point on the earth (or moon) vertically below the observer.

NOCTILUCENT Shining at night. For example, noctilucent clouds or collections of high-altitude aerosols which scatter light.

NUCLEON A constituent particle of an atomic nucleus. For example, a proton or a neutron which falls in terms of mass between a meson and a hyperon.

OCCULTATION The disappearance of a body behind another body of larger apparent size. For example, the occultation of the sun by the moon as viewed by an earth observer to create a solar eclipse.

OZONE Triatomic oxygen (0_3) found in significant quantities in the earth's upper atmosphere.

PENUMBRAL Referring to the part of a shadow in which the light (or other ray-type material such as the solar wind) is only partially masked in contrast to the umbra in which light is completely masked by the intervening object.

PHOTON

PLASMA

POLARIMETRIC

PROTON

RADON

RAYLEIGH

REGOLITH

RILLE/RILL

SCARP

S-BAND

SEISMIC

SELENOCENTRIC

SELENODETIC

The electromagnetic quantum, regarded as a zero rest mass particle with no electric charge and possessing an energy of H ν where H is Planck's constant and ν is the radiation frequency.

An electrically conductive gas comprised of neutral particles, ionized particles and free electrons but which, when taken as a whole, is electrically neutral.

Referring to the measurement of the intensity of polarized light in a partially polarized light beam or the measurement of the extent of polarization.

The positively charged constituent of atomic nuclei. For example, the entire nucleus of a hydrogen atom having a mass of 1.67252×10^{-27} kilograms.

A radioactive gaseous element with atomic number 86 and atomic mass 222 formed by the radioactive decay of radium.

Name associated with atmospheric scattering of electromagnetic radiation from spherical particles of radii smaller than about one-tenth the wavelength of the radiation.

The unconsolidated residual material that resides on the solid surface of the moon (or earth).

A long, narrow valley on the moon's surface.

A frequency band used in radar and communications extending from 1.55 to 5.2 kilomegahertz.

A line of cliffs produced by faulting or erosion.

Related to mechanical vibrations within the surface of the earth or moon resulting from, for example, impact of projectiles on the surface.

ENTRIC Referring to an inertial coordinate system whose origin is referenced at the center of the moon.

Relating to the accurate determination of positions of points on the moon, measurement of areas on the lunar surface, and the determination of lunar gravitational variations.

B-7

- SENSITOMETRIC Pertaining to the measurement of the light response characteristics of photographic film under controlled conditions of exposure and development.
- SIDELAP Overlap of one aerial photographic strip with another in a direction perpendicular to the length of the strips.
- SLAVED The condition of a controlled device or mechanism which operates whenever another device is operating, usually in synchronization.
- SOLAR WIND Streams of plasma emanating from and flowing approximately radially outward from the sun.
- SPATIAL Pertaining to the location of points referenced to three-dimensional space as contrasted with temporal (pertaining to time) locations.
- SPECTROMETER An instrument which disperses radiation into energy bands (or, in a mass spectrometer, particles into mass groups) and indicates the flux in each band or group.

SPECTROSCOPIC Referring to measurements made with a spectrometer.

SPECTRUM The totality of wavelengths (or frequencies) of electromagnetic radiation.

SPHERULES Pertaining to the small, spherical crystalline bodies found in vitreous volcanic rocks.

SPUR A ridge or lesser elevation that extends laterally from a mountain or mountain range.

- STANDBY An operating mode of certain scientific equipment and sensors in the SIM Bay indicating that thermal control heaters are "ON" or that the electronics are in the process of being "warmed-up" in readiness for the operational period to follow.
- STELLAR Of or pertaining to stars. The stellar camera composing a part of the 3-Inch Mapping Camera is used to photograph star fields.
- STEREO A type of photography in which photographs taken of the same subject area from different angles are combined to produce visible features in threedimensional relief.

SUBSATELLITE

TEKTITES

THORIUM

TIDAL

A small unmanned satellite, deployed from the spacecraft while it is in orbit, designed to obtain various types of solar wind and lunar magnetic data over an extended period of time.

Small glassy bodies containing no crystals, composed of at least 65 percent silicon dioxide, bearing no relation to the geological formation in which they occur, and believed to be of extralunar origin.

TEMPORAL Referring to the passage or measurement of time.

TERMINATOR The line separating the illuminated and the darkened areas of a body such as the earth or moon which is not self-luminous.

TERRA Those portions of the lunar surface other than the maria.

A heavy metallic element with an atomic number 90 and an atomic mass of 232.

THREE-WAY MODE A Doppler radar method involving a primary station which both sends and receives signals, a transponder on the spacecraft, and a secondary station which receives signals only.

Referring to the seismic movement of layers forming the outer portion of the lunar surface or within the lunar mantle as a result of the earth's gravitational attraction. Similar in nature to the tidal movements of the earth's oceans.

TIMELINE A detailed schedule of astronaut or mission activities indicating the activity and time at which it is to occur within the mission.

TOPOGRAPHIC Pertaining to the accurate graphical description, usually on maps or charts, of the physical features of an area on the earth or moon.

TOPOLOGY OF THEPertaining to the study of the composition, struc-MAGNETOTAILture, and time-tracing of solar wind particlesappearing in the magnetotail.

TRANSEARTH During transit from the moon to the earth.

TRANSIENT An initial, short-lived effect preceding the obtainment of operating equilibrium of a system. For example, the initial current surge that occurs when an electrical system is energized.

TRANSLUNAR During transit from the earth to the moon.

TRANSPONDER A combined receiver and transmitter whose function is to transmit signals automatically when triggered by an interrogator.

TWO-WAY MODE The Doppler radar tracking method which employs a single sending and receiving station and the spacecraft transponder.

URANIUM A heavy metallic element of atomic number 92 and principal atomic weight 238.

VECTOR A physical quantity requiring both magnitude and direction for its specification, as magnetic force field and gravitational acceleration vectors.

VITREOUS Resembling glass as in color, composition, etc.

WAVELENGTH The distance between maxima (or minima) of a periodic phenomenum such as an electromagnetic wave.

X-RAY An electromagnetic radiation of non-nuclear origin within the wavelength interval of 0.1 to 100 angstroms (between gamma-ray and ultraviolet radiation).

ZERO PHASE A photographic orientation in which the camera, subject, and sun are coplanar with the camera between the sun and the subject.

ZODIACAL LIGHT A faint glow extending around the entir zodiac but showing most prominently in the neighborhood of the sun. (It may be seen in the West after twilight and in the East before dawn as a diffuse glow. The glow may be sunlight reflected from a great number of particles of meteoritic size in or near the ecliptic in the planetoid belt).

APPENDIX C

REFERENCES

- Apollo Flight Mission Assignments (U), OMSF Document M-D 500-11, dated October 1969, and as amended by the following APO-CCBD Numbers: 164; 173; 181; 194; 195; and 199.
- Mission Requirements, J-1 Type Mission, MSC Document No. MSC-02575, dated TBD.
- CSM/LM Spacecraft Operational Data Book, Volume V, ALSEP Data Book, SNA-8-D-027.
- 4. CSM/LM Spacecraft Operational Data Book, Volume VI, Document No. SNA-8-D-027(VI).

z'n,

- 5. Apollo Lunar Surface Experiments Package (ALSEP), Flight System Familiarization Manual, ALSEP-MT-03.
- 6. CSM Experiments Data Book for J-Series Mission, NAR Document.
- 7. Lunar Experiments Data Requirements, J-Mission, MSC Document dated July 31, 1970.
- 8. Apollo Lunar Surface Experiments Operational Requirements, MSC-TA-D-68-1, dated December 1968.
- 9. Measurement Requirements Document, ALSEP-SE-03 Revision J, dated February 18, 1970.
- 10. Photo Equipment for Manned Space Flight Handbook, MSC Document No. MSC-CF-E-68-12.
- 11. Apollo Lunar Geology Definitive Experiment Plan dated April 1968.
- 12. Apollo Lunar Geology Experiment Operational Requirements dated December 1968.
- 13. Minutes of MSC Science Working Panel Meetings.
- 14. Minutes of MSC Apollo Lunar Orbit Science Program Interface Meetings.
- 15. Minutes of MSC Lunar Orbit Science Mission Planning Meetings for J-Missions.
- 16. Minutes of MSC Lunar Surface Science Mission Planning Meetings for J-Missions.
- 17. H. Masursky, "Lunar-Exploration Targets", <u>Astronautics & Aeronautics</u>, January 1969.

18. Apollo Program (Phase I Lunar Exploration) Mission Definitions, MSC Document No. MSC-01266 (Rev.), dated August 15, 1970.

APPENDIX D

DISTRIBUTION

1

1 1

1

ī 1

-	
1	AB/C. C. Kraft
1	BG/M. H. Sands
1	BL/I. R. Brinkmann
1	BL2/E. G. Edmonds
3	BM2/E. J. Hill
2	BM6/Technical Library
1	CA/D. T. Gregory
1	CA/D. K. Slayton
1	CB/J. P. Allen
1	CB/V. D. Brand
1	CB/P. K. Chapman
1	CB/A. W. England
1	CB/R. F. Gordon
1	CB/K. G. Henize
1	CB/J. B. Irwin
1	CB/R. Parke
1	CB/H. H. Schmitt
1	CB/D. R. Scott
1	CB/A. B. Shepherd
1	CB/T. P. Stafford
1	CB/A. M. Worden
1	CF/W. J. North
1	CF2/J. W. Bilodeau
1	CF3/C. H. Woodling
1	CF22/M. E. Dement CF23/L. D. Allen
1	CF23/L. D. Allen CF24/P. C. Kramer
$\frac{1}{1}$	CF24/F. C. Kramer CF25/L. G. Richard
1 1	CF25/D. C. Schultz
1	CF32/H. A. Kuehnel
1	CF32/J. W. McKee
1	CF32/R. H. Nute
1	CF32/J. A. Taylor
1	CF32/W. N. Teague
1	CF32/J. J. Van Bockel
1	CF32/R. G. Zedekar
1	CF33/S. Faber
1	CF34/T. W. Holloway
1	CF34/J. W. O'Neill
1	CF131/D. F. Grimm
1	CF131/G. C. Franklin
1	CF131/C. D. Perner
1	DA/C. A. Berry, M.D.
1	DA/H. R. Hair
1	DC5/W. R. Carpentier, M.D.
ī	DC52/H. O. Wheeler, M.D.
1	DC52/B. C. Wooley, M.D.
-	

Wittenni 27

÷

1	DD/W. R. Hawkins, M.D.
1	EA/M. A. Faget
ī	EA2/R. A. Gardiner
1	EA8/P. M. Deans
1	EA8/J. B. Lee
1	EB/H. C. Kyle
1	EB2/R. W. Moorehead
1	EB3/M. R. Franklin
1	EB5/G. D. Marlow
1	
1	EC/R. E. Smylie
	EC/P. F. Hurt
1	EC3/R. J. Gillen
1	EC3/F. H. Samonski
1	EC3/E. M. Tucker
1	EC6/L. E. Bell
1	EC9/J. L. Gibson
1	EC9/C. C. Lutz
1	EC9/R. L. Spann
1	ED/E. H. Brock
1	ED3/M. T. Cunningham
1	ED5/F. Fulton
1	ED5/D. E. Iloff
1	EE/R. S. Sawyer
1	EE2/H. J. Woo d
1	EE3/E. L. Chicoine
3	EE12/M. G. Kingsley
5 1	EF/E. M. Jones
	EG2/D. C. Cheatham
1	EG23/K. J. Cox
1	EG27/D. W. Gilbert
1	EG42/G. T. Rice
1	EG43/R. E. Wilson
1	EG412/J. F. Hanaway
1	EH/D. G. Wiseman
1	EL/J. C. McLane
1	EM3/A. Travis
1	EP/R. B. Ferguson
2	EP2/C. W. Yodzis
2	EP4/H. O. Pohl
1	EP5/W. E. Rice
1 1	EP12/R. K. McSheehy
1	ES/R. E. Vale
1	ES2/G. E. Griffith
1	ES3/J. W. Kiker
1	ES5/D. H. Greenshields
1	ES12/W. G. McMullen
1	ES12/W. G. McMullen ES16/J. A. Smith

1	EW/C. C. Johnson
1	EW31/G. C. Miller
1	EX/M. A. Silveira
1	FA/S. A. Sjoberg
1	FC/E. F. Kranz
1	FC/J. W. Roach
3	FC2/C. S. Harlan
3	FC3/A. D. Aldrich
2	FC4/J. E. Hannigan
1	FC5/J. C. Bostick
1	FC6/C. B. Shelley
1	FC7/R. A. Hoover
2	FC9/J. E. Saultz
1	FC13/G. S. Lunney
1	FC14/H. G. Miller
1	FL/J. B. Hammack
1	FL2/D. E. Stulken
1	FM/C. R. Huss
1	FM/J. P. Mayer
1	FM2/F. V. Bennett
1	FM3/C. C. Allen
3 3	FM4/J. C. McPherson
3	FM5/R. L. Berry
3	FM6/E. C. Lineberry
1	FM7/M. D. Cassetti
1	FM7/D. A. Nelson
2	FM13/R. P. Parten
1	FS/L. C. Dunseith
2	FS2/J. M. Satterfield
4	FS4/J. A. Frere
1	FS5/J. C. Stokes
2	FS63/J. A. Miller
1	HD/A. J. Mayer, Jr.
1	HE/J. P. Loftus
1	NA/W. M. Bland
1	NB/J. H. Levine
1	PA/R. S. Johnston
1	PA/J. A. McDivitt
1	PA/S. H. Simpkinson
1	PB/A. Hoboken
3	PB7/L. R. Fisher
1	PC/W. H. Gray
1	PC2/R. Frazer
1	PC2/F. L. Miller
1	PD/R. L. Kubicki
1	PD4/C. H. Glancy
1	PD4/C. C. Guild PD4/J. R. Sevier
1	PD4/J. R. Sevier

1	PD7/S. M. Blackmer
1	PD7/R. H. Kohrs
1	PD7/J. M. Peacock
1	PD7/R. H. Kohrs PD7/J. M. Peacock PD7/D. R. Segna
1	PD9/J. W. Craig
1	PE/H. P. Davis
1	PE/O. G. Morris
1	PF/A. Cohen
1	PF/D. R. Broome
1	PP/J. G. McClintock
1	PP3/G. H. Jordan
1	PP3/H. L. Tash
1	PP5/R. C. Hood
1	PP6/J. J. Shannon
1	PP7/W. R. Kelly
1	PP8/A. L. Brady
1	PT/D. D. Arabian
1	PT3/J. F. DeMoss
1	PT3/G. B. Foster
1	PT7/J. S. Cooper
1	PT13/D. M. Goldenbaum
1	SA/M. L. Raines
1	TA/A. J. Calio
1	TA/P. R. Penrod
1 1	TA/G. Simmons
1	TG2/B. C. Cour-Palais
1	TG4/R. P. Kovar TJ/J. L. Dragg
1	TJ/A. W. Patteson
1	TJ/J. H. Sasser
1	TJ/L. C. Wade
1	TL/R. B. Erb
1	TL/H. Huber
1	TM/J. G. Zarcaro
5	TM1/R. R. Baldwin
1	TM1/F. J. Herbert
1	TM1/B. H. Walton
1	TM2/E. M. Crum
1	TM2/V. M. Dauphin
1	TM2/S. N. Hardee
1	TM2/L. E. James
1	TM2/P. E. Lafferty
1	TM3/W. F. Eichelman
1	TM3/M. D. Lopez
1	TM3/M. L. Miller
1	TM3/R. A. Moke
1	TM3/T. T. White
2	TM4/Crew Training Office

- 8 TM5/W. K. Stephenson
- 5 TN/P. Gast

勸

- 1 TN4/W. D. Carrier
- 1 TN4, D. Strangway

NASA AMES RESEARCH CENTER

1 Dr. Palmer Dyal, Code N204-4 Electrodynamics Branch/Space Sciences Division Moffett Field, California 94034

NASA GODDARD SPACE FLIGHT CENTER

- 2 Dr. Isidore Adler, Code 641 Theoretical Studies Branch Greenbelt, Maryland 20771
- 1 Dr. Stanley C. Freden, Code 650 Laboratory for Meterology and Earth Sciences Greenbelt, Maryland 20771
- 1 Lawrence Dunkelmen, Code 613.3 Planetary Optics Section Greenbelt, Maryland 20771

NASA KENNEDY SPACE FLIGHT CENTER

- 5 CKF/R. D. McCafferty
- 1 LO-PLN/R. E. Moser
- 1 LO-RRO/E. P. Bertram
- 1 LS-ENG-7/R. B. Gaskins
- 1 LS-ENG-8/C. B. Mars
- 1 LS-ENG-9/E. C. Johnson
- 1 PSK/A. E. Morse

NASA MARSHALL SPACE FLIGHT CENTER

- 1 PM-SAT-E/R. E. Beaman
- 1 PM-SAT-LRV/S. F. Morea

NASA WASHINGTON

- 1 MA/C. Lee
- 1 MA/W. Stoney
- 3 MAL/W. T. O'Bryant
- 1 MAO/E. W. Land
- 1 MAR/G. White

AMERICAN SCIENCE & ENGINEERING, INC.

1 Dr. Paul Gorenstein 11 Carleton Street Cambridge, Massachusetts 02142

BELLCOMM

- 1 MAS/V. Hamza
- 1 MAS/V. Mummert
- 1 MAS/P. E. Reynolds
- 1 MAS/R. L. Wagner

BOEING

- 2 HAO4/Boeing Data Management
- 1 HA56/E. L. Jeffers
- 1 HA69/F. M. Manning
- 1 HA69/R. Zeiger
- 2 HA74/R. B. McMurdo

GENERAL ELECTRIC

3 Dr. Robert L. Fleischer General Physics Laboratory General Electric R&D Center Schenectady, New York 12305

GRUMMAN AIRCRAFT CORPORATION

- 1 GAC/J. M. Buxton (Houston Office)
- 5 GAC/L. Gran
- 1 GAC/F. Rogers

NORTH AMERICAN ROCKWELL

- 1 NR/H. Harman (Houston Office)
- 5 NR/FB31/D. R. Hafner
- 1 NR/AB33/M. Chase
- 1 NR/AB46/B. C. Johnson

TRW SYSTEMS

- 3 TRW (Houston Office)/G. L. Christen
- 20 TRW (Houston Office)/G. E. Teveldahl 1 T. H. Pederson/Bldg. M2/Rm 1179 One Space Park
 - Redondo Beach, California 90278

D-3

DISTRIBUTION (Continued)

JET PROPULSION LABORATORY

- Dr. Albert Metzger Mail Code T-1173 4800 Oak Grove Drive Pasadena, California 91103
- W. L. Sjogren, Mail Code 156-251
 4800 Oak Grove Drive Pasadena, California 91103
- 1 Dr. C. W. Snyder, Mail Code 169-236 4800 Oak Grove Drive Pasadena, California 91103

UNITED STATES GEOLOGICAL SURVEY

- 3 Dr. G. A. Swann Center of Astrogeology 601 East Cedar Avenue Flagstaff, Arizona 86001
- 5 F. J. Doyle Topographic Division 1340 Old Chainbridge Rd. McLean, Virginia 22101

CALIFORNIA INSTITUTE OF TECHNOLOGY

1 R. F. Scott Room 111/Thomas Laboratory Pasadena, California 91109

UNIVERSITY OF CALIFORNIA AT BERKELEY

- Dr. Kinsey A. Anderson Space Sciences Laboratory Berkeley, California 94726
- Dr. James K. Mitchell Department of Civil Engr.
 440 Davis Hall Berkeley, California 94726

UNIVERSITY OF CALIFORNIA AT DAVIS

1 Dr. Ian McGregor Department of Geology Davis, California 95616

UNIVERSITY OF CALIFORNIA AT LOS ANGELES

- Dr. Paul J. Coleman, Jr. Department of Planetary & Space Science Los Angeles, California 90024
- Dr. William M. Kaula Institute of Geophysics & Planetary Physics Los Angeles, California 90024

UNIVERSITY OF CALIFORNIA AT SAN_DIEGO

1 Dr. J. R. Arnold Chemistry Department La Jolla, California 92037

COLUMBIA UNIVERSITY

- 1 Dr. Marcus E. Langseth Lamont-Doherty Geological Observatory Palisades, New York 10964
- 1 Dr. Gary V. Latham Lamont-Doherty Geological Observatory Palisades, New York 10964

UNIVERSITY OF MINNESOTA

 Dr. Robert O. Pepin School of Physics and Astronomy Minneapolis, Minnesota 55455

THE STATE UNIVERSITY OF NEW YORK

1 Dr. Tobias C. Owen Department of Earth and Space Sciences Stoney Brook, New York 11790

RICE UNIVERSITY

100

- 1 Dr. J. W. Freeman Department of Space Science Houston, Texas 77001
- 1 Dr. David Reasoner Department of Space Science Houston, Texas 77001

STANFORD UNIVERSITY

- 1 Dr. Robert L. Kovach Department of Geophysics Stanford, California 94035
- 2 H. Taylor Howard Stanford Electronics Lab. Stanford, California 94035

UNIVERSITY OF TEXAS AT AUSTIN

1 Dr. William R. Muchlberger Geology Department Austin, Texas 78712

UNIVERSITY OF TEXAS AT DALLAS

- 1 Dr. John H. Hoffman Atmospheric & Space Sciences P.O. Box 30365 Dallas, Texas 75230
- 1 Dr. F. S. Johnson Atmospheric & Space Sciences P.O. Box 30365 Dallas, Texas 75230

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION MANNED SPACECRAFT CENTER HOUSTON, TEXAS 77058

OCT 3 0 1970

TN OF: TML

MEMORANDUM TO: Distribution in Appendix D of enclosure

FROM : TM/Manager, Lunar Missions Office

SUBJECT : Preliminary J-1 Mission Science Requirements Document (MSRD)

The MSRD enclosure is the first of three versions scheduled for Apollo Mission J-1 (Apollo 15). This preliminary document is scheduled for publication at launch (L) - 9 months, the final MSRD at L - 5 months, and a revised final MSRD at L - 2.5 months. MSRD's will also be prepared for Apollo Mission J-2 (Apollo 16) and J-3 (Apollo 17).

The recent selection of the Hadley-Apennines landing site delayed the availability of some related detailed data. These data will be included in the final MSRD scheduled for L - 5 months.

Your aid is solicited in improving the usefulness of the MSRD for mission planners and other users. Recommendations or requests for changes to the document or its distribution should be submitted to the J-l Science Mission Manager, Mr. Richard R. Baldwin, TMl, extension 2840.

Enclosure

TMl:RRBaldwin:cr

APPENDIX E

FILM CHARACTERISTICS AND PROCESSING TEST DATA

CONTENTS

Ŷ	Film Type	Page
	3400	E-1
ş	3401	E-5
	2485	E-9
	2484	E-16
	2405 (formerly SO-267)	E-22
	SO-349 (now 3414)	E-27
	SO-368	E-32
and and a second s	SO-168	E-38
Hannesser.	S0-246	E-43
	S0-121	E-48
	3443	E-51

ę

蟧

liquinum -

(This material was obtained from manufacturer's published information unless a specific test source is referenced.)

FILM CHARACTERISTICS*

A panchromatic, negative camera film that has intermediate speed, high contrast, and extended red sensitivity. The high acutance and very high resolution of this film favor a small-negative format. The emulsion, coated on a 2.5-mil Estar base (for dimensional stability and tear resistance) is hardened for high-temperature, rapid processing in a continuous processing machine, such as the Kodak Versamat Film Processor, Model 11.

<u>Note</u>: This film is not normally used in commercial aerial cameras available in today's market. It is designed for use in certain military cameras that have been specially constructed or modified to handle thinbase films.

BASE

This film has a 2.5-mil Estar polyester base with a dyed gel backing. The total nominal thickness of this film is 2.89 mils.

EXPOSURE

Suggested aerial exposure indexes for mechanized processing will be found in the tables which follow.

Aerial exposure indexes are designed for use with the Kodak Aerial Exposure Computer, Kodak Publication No. R-10. Aerial exposure indexes are not equivalent to, and should not be confused with, the conventional film speeds used in pictorial photography.

IMAGE-STRUCTURE CHARACTERISTICS; MX-641 chemicals with 2 developer racks at 10 fpm

Characteristic	Value	Classification
Resolving Power Test-object contrast 1000:1 Test-object contrast 1.6:1	200 lines/mm 80 lines/mm	Very high
RMS Granularity (at net density of 1.0)	18	Very fine

* This material describes the general characteristics of this film type. Sensitometric curves describe the results of a specific set of processing conditions on a specific emulsion batch. Experimenters are reminded that results may change somewhat from one emulsion to the next. Specific characteristics are determined for mission films as far as possible in advance of actual mission.

MECHANIZED PROCESSING

This film should be processed in equipment made especially for this purpose. Conventional rewind equipment is not recommended, because of the physical characteristics of the Estar thin base. Continuous-type processing machines--such as spray, deep tank, or roller transport--are best for processing this film. The Kodak Versamat Film Processor, Model 11, can be used to process this

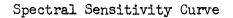
film using Kodak Versamat 641 chemicals.

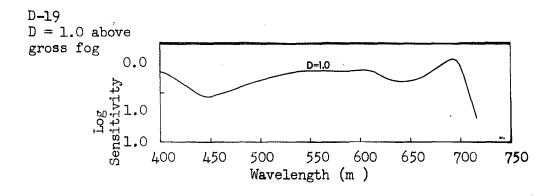
PROCESSING CHEMICALS: Kodak Versamat 641 Developer Starter Kodak Versamat 641 Developer Replenisher Kodak Versamat 641 Fixer and Replenisher

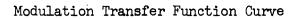
PROCESSING SEQUENCES WITH KODAK VERSAMAT CHEMICALS:

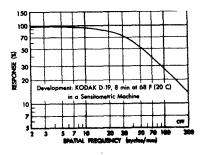
Processing Step	Number of Racks	Path Length (feet)	Temperature
Develop	1 or 2	4 or 8	85°F + 2°F
Fix*	3	12	85°F, nominal
Wash	2	8	80° to 82°F
Dry			120° to 145°F**

* Fixer replenisher should be introduced into tank No. 3 of the processor

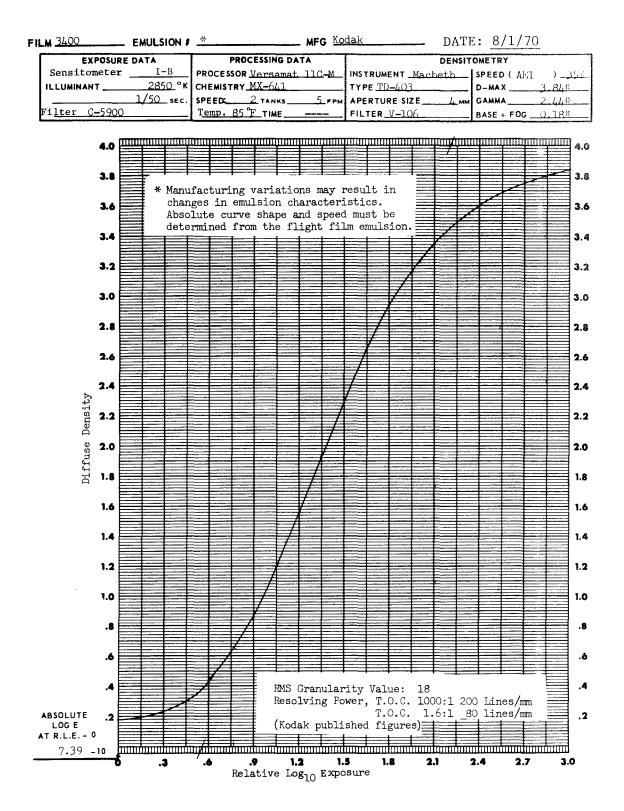

** The temperature of the dryer may require adjustment, depending upon the ambient temperature conditions in the processing area. Set temperature approximately 5 degrees above temperature required to dry clear film.


SUGGESTED AERIAL EXPOSURE INDEXES, GAMMAS, AND MACHINE SPEEDS WITH KODAK VERSAMAT 641 CHEMICALS AT 85°F PROCESSING TEMPERATURE:


Machine Speed (feet per minute)	Number of Developer Racks	Average Gamma	Average Aerial Exposure Index
5	l	2.80	16
	2	2.90	20
10	1	2.30	10
	2	2.60	12
15*	1	1.90	6.4
	2	2.30	10
20*	1	1.60	6.4
· · · · · · · · · · · · · · · · · · ·	2	2.20	<u> </u>


* Represents condition where fixing, washing, or drying problems exist

KODAK PANATOMIC-X AERIAL FILM 3400 (ESTAR Thin Base)



E-3

it.

KODAK PLUS-X AERIAL FILM TYPE 3401 (ESTAR Thin Base)

(This material was obtained from manufacturer's published information unless a specific test source is referenced.)

FILM CHARACTERISTICS*

A panchromatic, negative camera film that has high contrast, medium speed, high acutance, fine grain and extended red sensitivity. The emulsion is coated on a 2.5-mil Estar base which provides tear resistance and dimensional stability. This film is suitable for high-temperature processing in continuous-processing machines, such as the Kodak Versamat Processor, Model 11.

<u>Note</u>: This film is not normally used in the aerial cameras available in today's market. It is designed for use in certain military cameras that have been specially constructed or modified to handle thin-base films.

BASE

This film has a 2.5-mil Estar polyester base with a dyed gel backing. The total nominal thickness is 3.06 mils.

EXPOSURE

Suggested aerial exposure indexes for mechanized processing will be found in the tables which follow.

Aerial exposure indexes are designed for use with the Kodak Aerial Exposure Computer, Kodak Publication No. R-10. Aerial exposure indexes are not equivalent to, and should not be confused with, the conventional film speeds used in pictorial photography.

IMAGE-STRUCTURE CHARACTERISTICS; MX-641 chemicals with 2 developer racks at 10 fpm

Characteristic	Value**	Classification
Resolving Power Test-object contrast 1000:1 Test-object contrast 1.6:1	100 lines/mm 50 lines/mm	High
RMS Granularity (at net density of 1.0)	32	Medium

*This material describes the general characteristics of this film type. Sensitometric curves describe the results of a specific set of processing conditions on a specific emulsion batch. Experimenters are reminded that results may change somewhat from one emulsion to the next. Specific characteristics are determined for mission films as far as possible in advance of actual mission.

** Interpolated from Kodak published data for results obtained at PTD for MX-641 chemistry.

MECHANIZED PROCESSING

This film should be processed in equipment made especially for this purpose. Conventional rewind equipment is not recommended, because of the physical characteristics of the Estar thin base. Continuous-type processing machines--such as spray, deep tank, or roller transport--are best for processing this film.

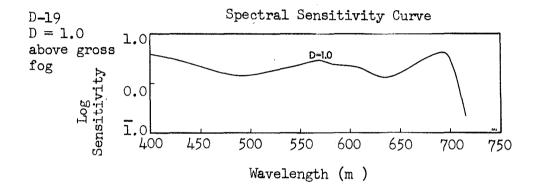
The Kodak Versamat Film Processor, Model 11, can be used to process this film using Kodak Versamat 641 chemicals.

PROCESSING CHEMICALS:

Kodak Versamat 641 Developer and Starter Kodak Versamat 641 Developer and Replenisher Kodak Versamat 641 Fixer and Replenisher

PROCESSING SEQUENCES WITH KODAK VERSAMAT CHEMICALS:

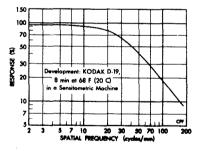
Processing Step	Number of Racks	Path Length (feet)	Temperature
Develop	2	4 or 8	85°F + 늘°F
Fix*	3	12	85°F, nominal
Wash	2	8	80°F to 82°F
Dry			120°F to 145°F**
× Etrano	and also also also all has a	where draged shake here la N	


* Fixer replenisher should be introduced into tank No. 3 of the processor

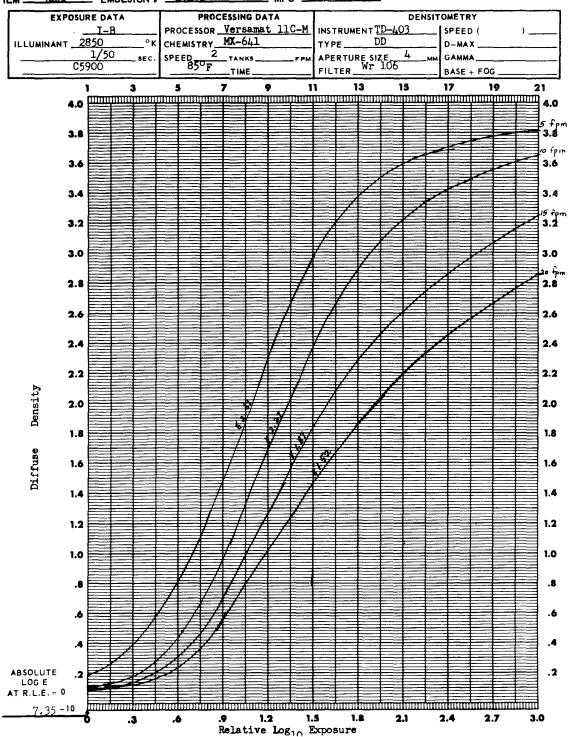
** The temperature of the dryer may require adjustment, depending upon the ambient temperature conditions in the processing area. Set temperature approximately 5 degrees above temperature required to dry clear film.

SUGGESTED AERIAL EXPOSURE INDEXES, GAMMAS, AND MACHINE SPEEDS WITH KODAK VERSAMAT 641 CHEMICALS AT 85°F PROCESSING TEMPERATURE

Machine Speed	Number of	Average	Average Aerial
(feet per minute)	Developer Racks	Gamma	Exposure Index
5	2	2.61	64
10	2	2.27	50
15	2	1.87	40
20	2	1.52	32


KODAK PLUS-X AERIAL FIIM 3401 (ESTAR Thin Base)

.et


Ś

Modulation Transfer Function Curve

٠

KODAK HIGH SPEED RECORDING FILM TYPE 2485 (ESTAR-AH Base)

(This material was obtained from manufacturer's published information unless a specific test source is referenced.)

FILM CHARACTERISTICS*

An extremely high-speed, panchromatic film with extended red sensitivity. It is especially recommended for a wide variety of photorecording applications where weak signals of extremely short duration must be recorded, or where very high writing speeds are required. Speed and contrast can be varied over a very wide range for such a high-speed film by selecting the most suitable combination of developer time and temperature. The varied uses of this film include: a wide range of photo instrumentation with all types of light sources; CRT recording with all phosphors, especially blue-emitting phosphors; high-speed photography at low light levels; streamer-chamber photography; medical-science applications, such as pupillography; photography of re-entry phenomena and other applications which require fleeting signals be recorded on a "go-or-no-go" basis.

BASE

This film has a 4.0-mil Estar-AH polyester base with fast-drying PX backing The 0.10 density of this base reduces light piping and provides halation protection.

EXPOSURE

Suggested aerial exposure indexes for mechanized processing will be found in the tables which follow.

Aerial exposure indexes are designed for use with the Kodak Aerial Exposure Computer, Kodak Publication No. R-10. Aerial exposure indexes are not equivalent to, and should not be confused with, the conventional film speeds used in pictorial photography.

IMAGE STRUCTURE CHARACTERISTICS; MX-641 chemicals, 2 developer racks, 3 fpm

Characteristic	Value**	Classification
Resolving Power Test-object contrast 1000:1 Test-object contrast 1.6:1	58 lines/mm 21 lines/mm	Moderately low
RMS Granularity (at net density of 1.0)	18	Coarse

* This material describes the general characteristics of this film type. Sensitometric curves describe the results of a specific set of processing conditions on a specific emulsion batch. Experimenters are reminded that results may change somewhat from one emulsion to the next. Specific characteristics are determined for mission films as far as possible in advance of actual mission.

** Interpolated from Kodak published data for results obtained at PTL for MX-641 chemistry.

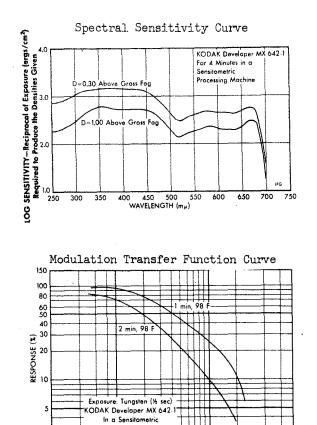
MECHANIZED PROCESSING

The Kodak Versamat Film Processor, Model 11 C-M, can be used to process this film using Kodak Versamat 641 chemicals.

PROCESSING CHEMICALS: Kodak Versamat 641 Developer Starter Kodak Versamat 641 Developer and Replenisher Kodak Versamat 641 Fixer and Replenisher

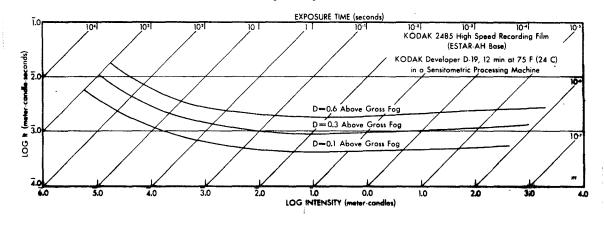
PROCESSING SEQUENCES WITH KODAK VERSAMAT CHEMICALS:

Processing Step	Number of Racks	Path Length (feet)	Temperature
Develop	2	4 or 8	85°F + 2°F
Fix*	3	12	85°F, nominal
Wash	2	8	80° to 82°F
Dry			120° to 145°F
N. Efstern men]	and shan should be de	traduced into touls a	2 of the


* Fixer replenisher should be introduced into tank no. 3 of the processor.

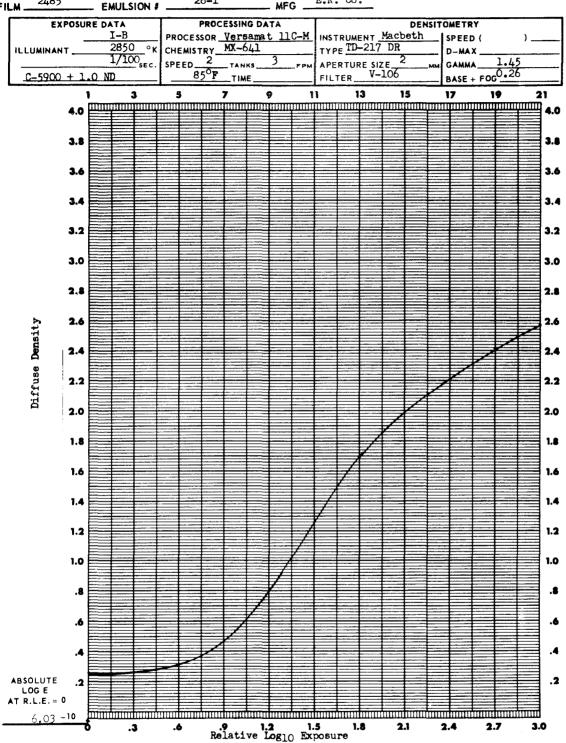
** The temperature of the dryer may require adjustment, depending upon the ambient temperature conditions in the processing area. Set temperature approximately 5 degrees above temperature required to dry clear film.

SUGGESTED AERIAL EXPOSURE INDEXES, GAMMAS, AND MACHINE SPEEDS WITH KODAK VERSAMAT 641 CHEMICALS AT 85°F PROCESSING:

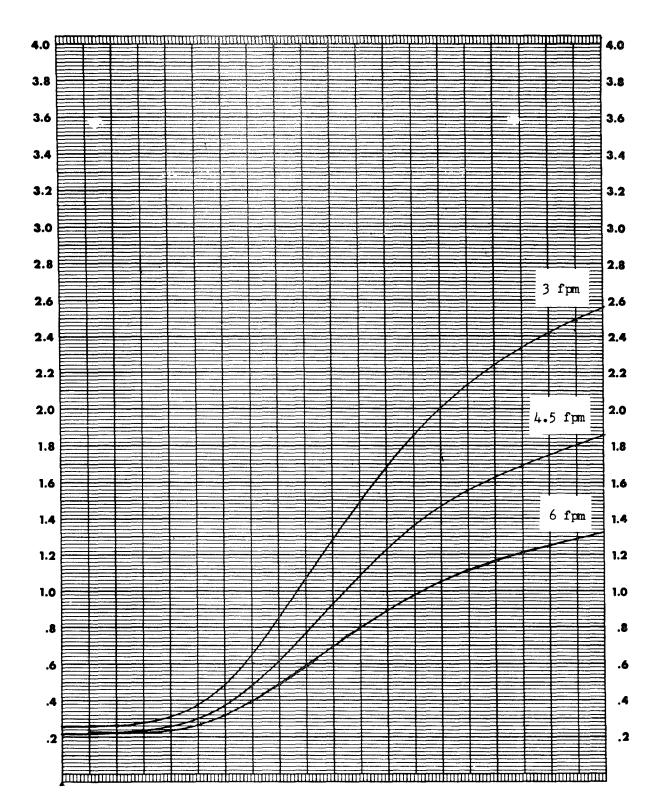

Machine Speed	Number of	Average	Average
(feet per minute)	Developer Racks	Gamma	Exposure Index
3	2	1.45	2350 (ASA)
4.5	2	1.05	
6	2	0.66	

KODAK HIGH SPEED RECORDING FILM TYPE 2485 (ESTAR-AH Base)

2

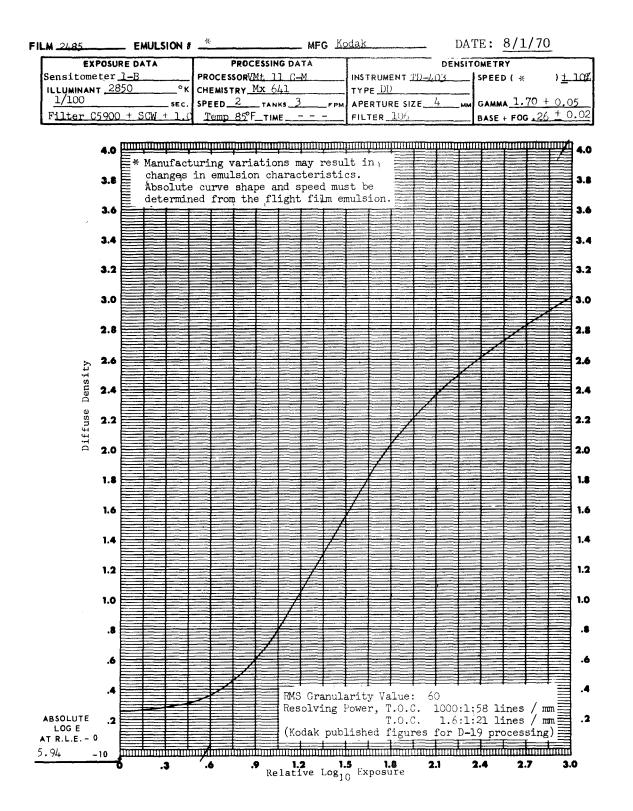

5. S Reciprocity Curve

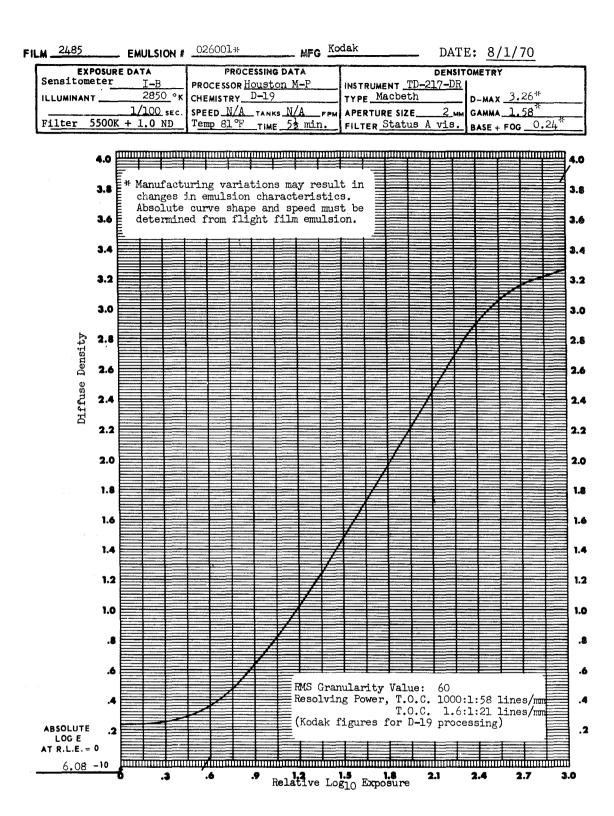
E-11


総理学派

ŝ -18 -192 -----20 (E.) -765

DATE 9 Mar 70


FILM ________ EMULSION # ___ 26-1 MFG E.K. Co.


Effect of Processor Speed, MX-641 Developer @ 85°F

E-13

lannar,

E-14

affic

E-15

KODAK PAN FILM TYPE 2484 (ESTAR-AH Base)

(This material was obtained from manufacturer's published information unless a specific test source is referenced.)

FILM CHARACTERISTICS*

An extremely high-speed panchromatic film which is very useful for photorecording under weak illumination or when extremely short exposure times are encountered.

USE

Photographic applications of this film include CRT photography, highspeed photography, missile tracking and re-entry phenomena and sparkchamber photography.

BASE

This film has a 4.0-mil ESTAR-AH polyester base with fast-drying PX backing. The 0.10 density of this base reduced light piping and provides halation protection.

EXPOSURE

Suggested aerial exposure indexes for mechanized processing will be found in the tables which follow.

Aerial exposure indexes are designed for use with the Kodak Aerial Exposure Computer, Kodak Publication No. R-10. Aerial exposure indexes are not equivalent to, and should not be confused with, the conventional film speeds used in pictorial photography.

IMAGE-STRUCTURE CHARACTERISTICS; D-19 chemicals for 4 minutes development at 68°F

Characteristic	Value	Classification
Resolving Power Test-object contrast 1000:1 Test-object contrast 1.6:1	70 lines/mm 22 lines/mm	Medium
RMS Granularity (at net density of 1.0)	37	Moderately coarse

* This material describes the general characteristics of this film type. Sensitometric curves describe the results of a specific set of processing conditions on a specific emulsion batch. Experimenters are reminded that results may change somewhat from one emulsion to the next. Specific characteristics are determined for mission films as far as possible in advance of actual mission. MECHANIZED PROCESSING

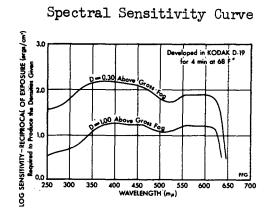
This film can be processed in the Kodak Versamat Film Processor, Model 11, using Kodak Versamat 641 chemicals.

PROCESSING CHEMICALS:

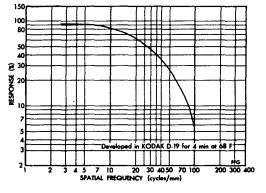
Kodak Versamat 641 Developer Starter Kodak Versamat 641 Developer Replenisher Kodak Stop Bath SB-5a or Kodak Indicator Stop Bath Kodak Versamat 641 Fixer and Replenisher

PROCESSING SEQUENCES WITH KODAK VERSAMAT CHEMICALS:

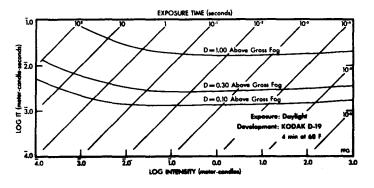
Processing Step	No. of Racks	Path Length (feet)	Temperature
Develop	1	4	$85^{\circ}F + \frac{1}{2}^{\circ}F$
Stop	l	4	85°F
Fix*	2	8	85°F, nominal
Wash	2	8	80°F
Dry			130°F**


* Fixer replenisher should be introduced into tank No. 3 of the processor.

** The temperature of the dryer may require adjustment, depending upon the ambient temperature conditions in the processing area. Set temperature approximately five degrees above temperature required to dry clear film.


SUGGESTED AERIAL EXPOSURE INDEXES, GAMMAS, AND MACHINE SPEEDS WITH KODAK VERSAMAT 641 CHEMICALS AT 85°F PROCESSING TEMPERATURE

Machine Speed	No. of	Average	Average
(feet per minute)	Developer Racks	Gamma	Exposure Index
3	l	.89	2760

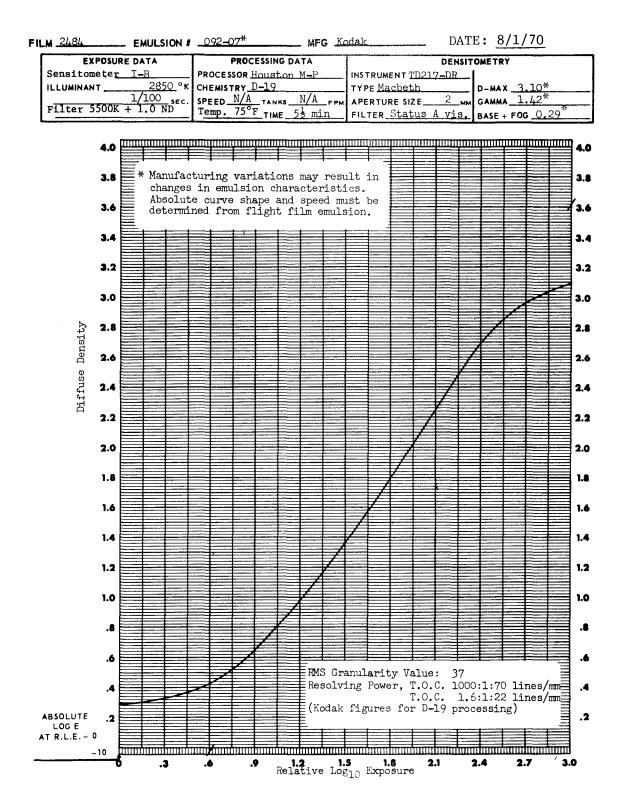

KODAK PAN FILM TYPE 2484 (ESTAR-AH Base)

Modulation Transfer Function Curve

Reciprocity Curve

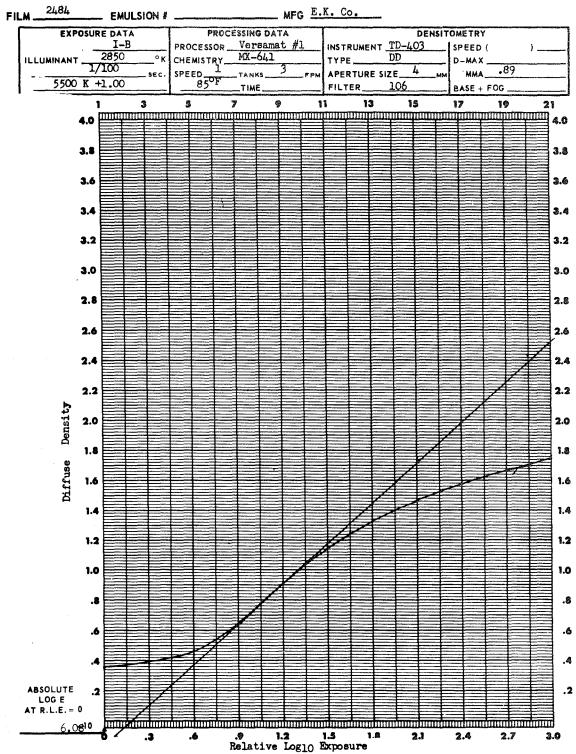
			-		C C C C C C C C C C C C C C C C C C C	2014/21990-174/CE		di di		-							1.00	-			
	POSUR					1	NOCE	ssini VM+	G DA1	TA "M	instanted.		_			DENS		ETRY			
Sensitor		2850			CHE	CESS	OR	67 - L	1.5			INST	RUME	NT _	<u>10-</u>	217 1	-1				
ILLUMINAI		$\frac{620}{100}$			СНЕ	MIST	¥۲	1				TYP				~~~~~	-		0	07#	
				SEC.	SPE	ED 🎾	ـال مەمىيە	TANK	(9			APER	RTUR	ESIZ	E	2	M G	амма	<u> </u>		45¥
Filter !	<u>1500k</u>	<u>+ 1</u> ,	OND		Tem	p9	0°F	_TIMI			·]	FILT	ER	DLA	JUB .	Ă,VI	_ в/	4SE <u>+</u>	FOG		47
	4.0	mm		mm	uun	unnu	nini	mm	mm	IIIIIII	nnii	mm	шш	mm	шш	nnnn	10101	unui	1000	minn	11(11)
							÷.		1	t											
		E*Ma											≡								
	3.8	E ch	ange	es in	n em	ulsi	on c	har	acte	rist	ics.	•									_
		E Ab	solu	ite i	curv	e sh	ape	and	spe	ed m	ust	be									
	3.6	E αe	eterr	mne	i ir	omt	he 1	lig.	ht f	11m	emu.	Lsio	n <u> </u>			==					
	•.•																-				
			_		=											==					
	3.4					=															
	3.2										_		_								
										-											
	3.0																				
	3.0																				
															_						
	2.8																				_
																	_				
	2.6			E																	
5	• •			E							_										
5	2.4			Ē					1												
Diffuse Density																					
P	2.2																				
a a a a a a a a a a a a a a a a a a a				1==																	
3	2.0			£																	
, H																					
н																					\checkmark
	1.8		-	<u> </u>																	
				<u> </u>														X			
	1.6			I ==													N				
															2						
	1.4							[1												E
			-							-				r	<u> </u>						
				I																	
	1.2				 				1		E,	K			E						
											Z										
	1.0						-			\swarrow											
									1	1					1						
									K_												
	.8							1													
				1			1			<u> </u>				1	1	t =			=		1
	.6				ļ					₹RMS	Gra	anula	arit	y Va	lue	: 37	7				=
					E			1		∄ Res	olv	ing 1	Powe	r, 1	.0.0	j. id	000:	1:70	liı	1es/1	m≣
	.4				=			<u> </u>		\$				I	' . 0.0). l	6:	1:22	111	nes/i	nm =
					-					∰(Kc	dak	fig	ures	for	D-	L9 pr	oce	ssin	g)	, -	
	-						1			ŧ						-			-		_
ABSOLUT LOG E	E.2		-								<u>t </u>	1	1	1	1-	<u>t —</u>		1	1	1	
AT R.L.E.	= 0				E																
	-10			1000	1	hom	1	1	him	1	1	1	1	1	1			him		1	1 mm
6.02		share a state of the state of t		.3		6		.9		.2		1.5		.8		1.1		.4		2.7	1

Sugaran


-A

-

and and a second se


and and a second se

E-19

E-20

DATE 14 July 70

E-21

KODAK DOUBLE-X AEROGRAPHIC FILM TYPE 2405 (SO-267) (ESTAR Base)

(This material was obtained from manufacturer's published information unless a specific test source is referenced.)

FILM CHARACTERISTICS*

A panchromatic, negative camera film that has high sensitivity, high acutance, good contrast and wide exposing latitude. Its extended red sensitivity permits greater speed through haze-cutting filters. This film is on a 4.0-mil Estar base which provides very high resistance to tearing and extremely good dimensional stability, and its exposure, image-structure characteristics, and machine processing are the same as Type 2405 film. This film is suitable for high-temperature, rapid processing in the Kodak Versamat Film Processor.

BASE

This film has a 4.0-mil Estar polyester base with fast drying (PX) backing.

EXPOSURE

Suggested aerial exposure indexes are designed for use with Kodak Aerial Exposure Computer, Kodak Publication No. R-10. Aerial exposure indexes are not equivalent to, and should not be confused with, the conventional film speeds used in pictorial photography.

IMAGE-STRUCTURE CHARACTERISTICS; MX-641 chemicals with 2 developer racks at 8 fpm

Characteristic	Value	Classification
Resolving Power		
Test-object contrast 1000:1	85 lines/mm	Medium
Test-object contrast 1.6:1	38 lines/mm	Low
RMS Granularity		
(at net density of 1.0)	36	

MECHANIZED PROCESSING

This film should be processed in equipment made especially for this purpose, such as the Kodak Versamat Film Processor, Model 11, using Kodak Versamat 641 chemicals.

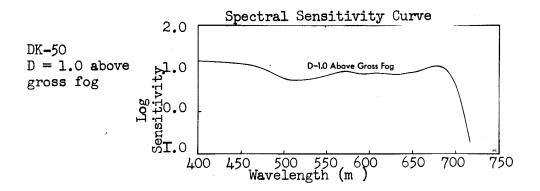
* This material describes the general characteristics of this film type. Sensitometric curves describe the results of a specific set of processing conditions on a specific emulsion batch. Experimenters are reminded that results may change somewhat from one emulsion to the next. Specific characteristics are determined for mission films as far as possible in advance of actual mission. PROCESSING CHEMICALS:

4

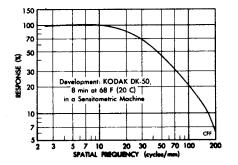
-13-

Kodak Versamat 641 Developer and Starter Kodak Versamat 641 Developer Replenisher Kodak Versamat 641 Fixer and Replenisher

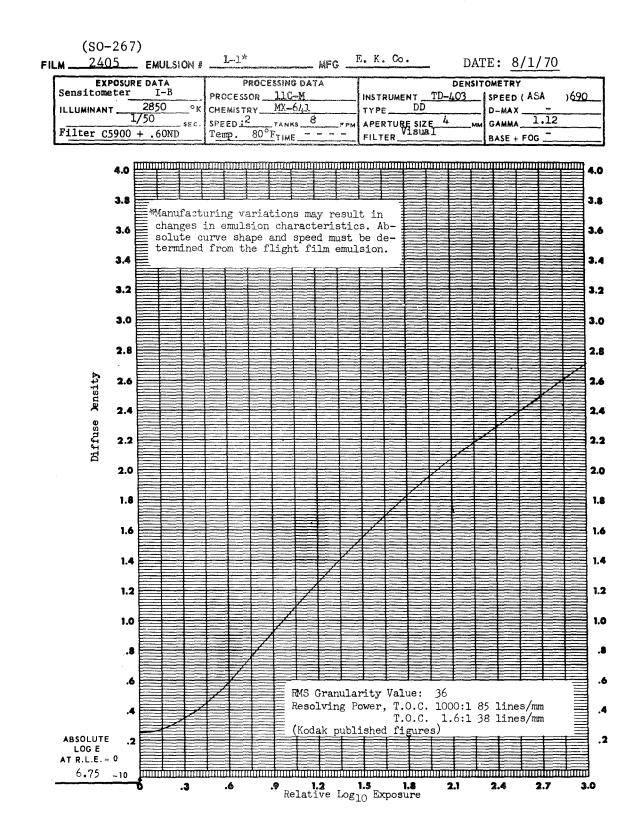
PROCESSING SEQUENCES WITH KODAK VERSAMAT CHEMICALS:


Number of Racks	Path Length (feet)	Temperature
1 or 2	4 or 8	85°F + 2°F
3	12	85°F, nominal
2	8	80° to 82°F
		120° to 145°F**
	· · · · · · · · · · · · · · · · · · ·	l or 2 4 or 8 3 12 2 8

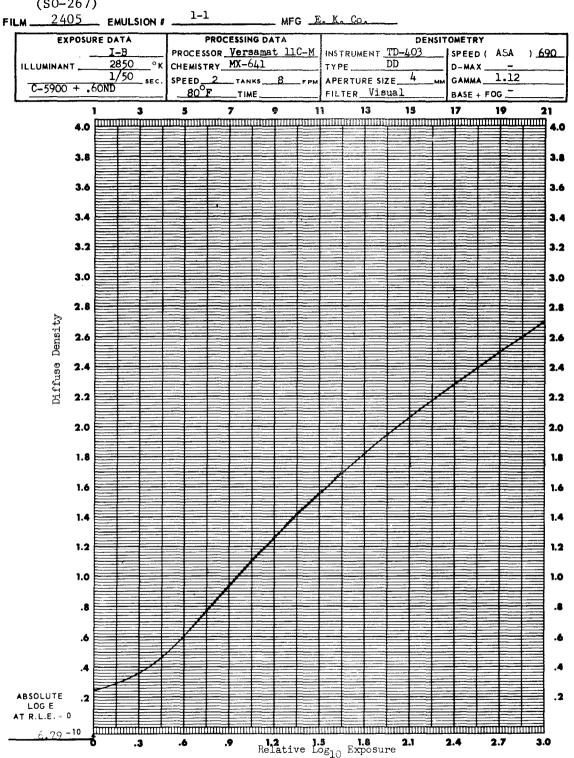
* Fixer replenisher should be introduced into tank no. 3 of the processor.


** The temperature of the dryer may require adjustment, depending upon the ambient temperature conditions in the processing area. Set temperature approximately 5 degrees above temperature required to dry clear film.

SUGGESTED AERIAL EXPOSURE INDEXES, GAMMAS, AND MACHINE SPEEDS WITH KODAK VERSAMAT CHEMICALS AT 80°F PROCESSING TEMPERATURE:


Machine Speed	Number of	Average	Average
(feet per minute)	Developer Racks	Gamma	Exposure Index
8	2	1.12	690 (ASA)

Modulation Transfer Function Curve



4

E-25

DATE <u>12 Mar 70</u> CONTROL # <u>Apollo 13</u> (S0-267)

(This material was obtained from manufacturer's published information unless a specific test source is referenced.)

FILM CHARACTERISTICS*

A panchromatic, negative camera film that has slow speed, high contrast, extended red sensitivity, maximum definition and extremely fine grain. This film is designed for extremely high-altitude, stable-platform aerial photography. The emulsion is hardened for high-temperature, rapid processing and is coated on a 2.5-mil Estar base for dimensional stability and tear resistance.

<u>Note</u>: This film is not recommended for use in aerial cameras commonly available on today's market. It is designed for use in cameras that have been specially constructed or modified to handle the thinner-based films.

BASE

This film has a 2.5-mil Estar polyester base with a dyed gel backing. The total nominal thickness of this film is 3.0 mils.

EXPOSURE

Suggested aerial exposure indexes for mechanized processing will be found in the tables which follow.

Aerial exposure indexes are designed for use with the Kodak Aerial Exposure Computer, Kodak Publication No. R-10. Aerial exposure indexes are not equivalane to, and should not be confused with, the conventional film speeds used in pictorial photography.

IMAGE-STRUCTURE CHARACTERISTICS; D-19 chemicals with 8-minute development at 68°F

Characteristic	Value	Classification
Resolving Power Test-object contrast 1000:1 Test-object contrast 1.6:1	630 lines/mm 250 lines/mm	Extremely High Extremely High
RMS Granularity (at net density of 1.0)	9	

* This material describes the general characteristics of this film type. Sensitometric curves describe the results of a specific set of processing conditions on a specific emulsion batch. Experimenters are reminded that results may change somewhat from one emulsion to the next. Specific characteristics are determined for mission films as far as possible in advance of actual mission.

MECHANIZED PROCESSING

This film should be processed in equipment made especially for this purpose. Conventional rewind equipment is not recommended, because of the physical characteristics of the Estar thin base. Continuous-type processing machines--such as spray, deep tank, or roller transport--are best for processing this film. The Kodak Versamat Film Processor, Model 11, equipped with a Kodak Versamat Stop Bath Kit, Model 11, can be used to process this film using Kodak Versamat 641 chemicals.

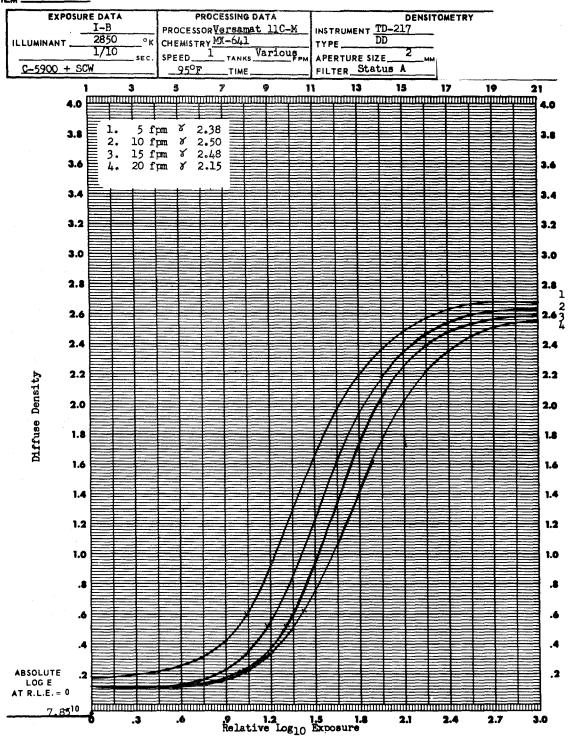
PROCESSING CHEMICALS: Kodak Versamat 641 Developer Starter Kodak Versamat 641 Developer Replenisher Kodak Stop Bath SB-5a or Kodak Indicator Stop Bath Kodak Versamat 641 Fixer and Replenisher

PROCESSING SEQUENCES WITH KODAK VERSAMAT CHEMICALS:

Processing Step	Number of Racks	Path Length (feet)	Temperature
Develop	2	8	95° <u>+</u> ¹ / ₂ °F
Stop Bath	l	4	95°F ~
Fixer*	2	8	95 ° F
Wash	2	8	90° to 92°F
Dry**		88	120° to 145°F

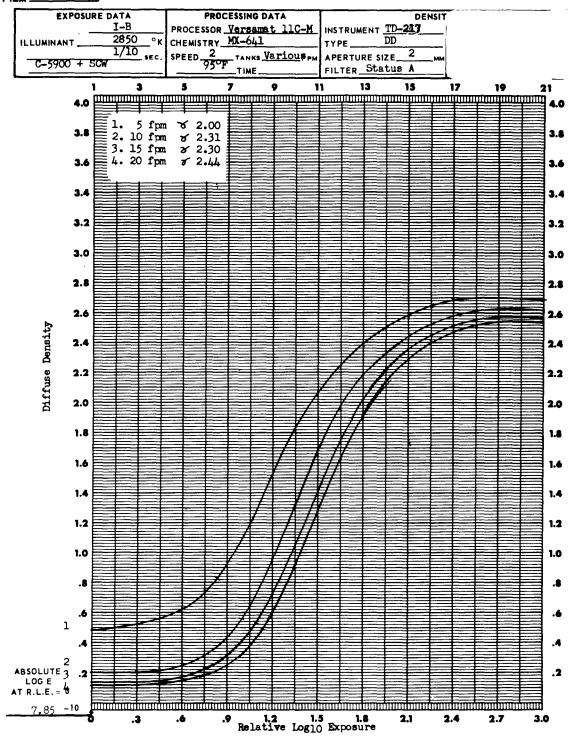
* The fixer replenisher is introduced into machine tank no. 5 (second fixer tank).

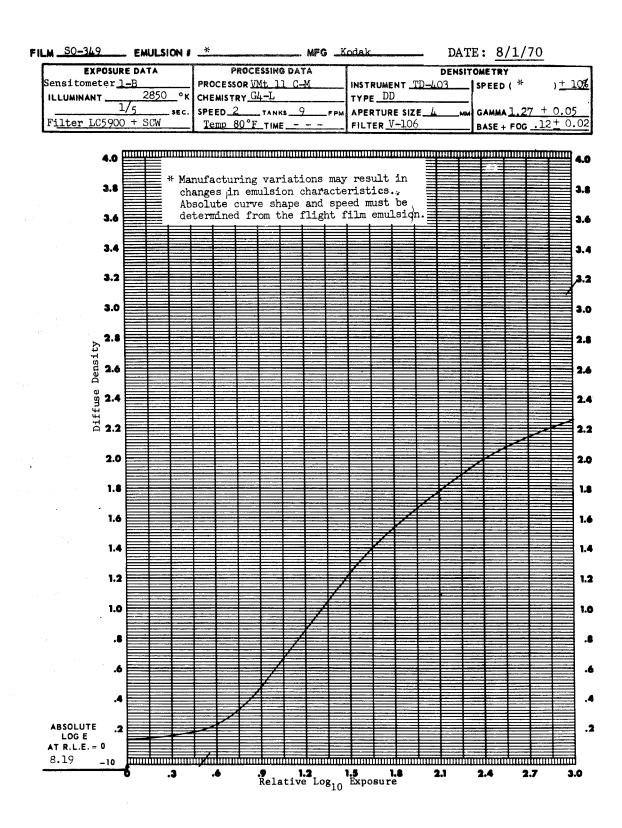
** For optimum physical quality, dryer temperature should be the minimum required. The temperature of the dryer may require adjustment, depending upon the ambient temperature conditions in the processing area. Set temperature 5 degrees above temperature required to dry clear film.


SUGGESTED AERIAL EXPOSURE INDEXES, GAMMAS, AND MACHINE SPEEDS WITH KODAK VERSAMAT 641 CHEMICALS AT 95°F PROCESSING TEMPERATURE:

Machine Speed	Number of	Average	Average Aerial
(feet per minute)	Developer Racks	Gamma	Exposure Index
5	1	2.38	6.61
	2	2.00	10.23
10	l	2.50	4.68
	2	2.31	7.08
15	l	2.48	3.55
	2	2.30	5.62
20	1	2.15	2.69
	2	2.44	5.12

DATE 14 Jan 70


FILM SO-349


-14

E-29

-6

-

E-31

KODAK EKTACHROME MS FILM TYPE SO-368 (ESTAR Thin Base)

(This material was obtained from manufacturer's published information unless a specific test source is referenced.)

FILM CHARACTERISTICS*

A medium-speed, color-reversal film for low-altitude mapping and reconnaissance. This film has an antihalation undercoating. The physical characteristics, exposure, image-structure characteristics, and mechanized processing of this film are the same as those given for Kodak Aerial Color Film Type 2448.

<u>Note</u>: This film is not available for use in commercial aerial cameras. It is a Special Order item designed for use in certain military cameras that have been constructed or modified to handle thin-base films.

BASE

This film has a 2.5-mil Estar polyester base with fast-drying (PX) backing.

EXPOSURE

Suggested aerial exposure indexes for mechanized processing will be found in the tables which follow.

Aerial exposure indexes are designed for use with the Kodak Aerial Exposure Computer, Kodak Publication No. R-10. Aerial exposure indexes are not equivalent to, and should not be confused with, the conventional film speeds used in pictorial photography.

IMAGE-STRUCTURE CHARACTERISTICS; Kodak EA-4 chemicals with 2 developer racks at 3.2 fpm

Characteristic	Value	Classification
Resolving Power Test-object contrast 1000:1	80 lines/mm	Medium
Test-object contrast 1.6:1 RMS Granularity (at net density of 1.0)	<u>36 lines/mm</u> 12	Low

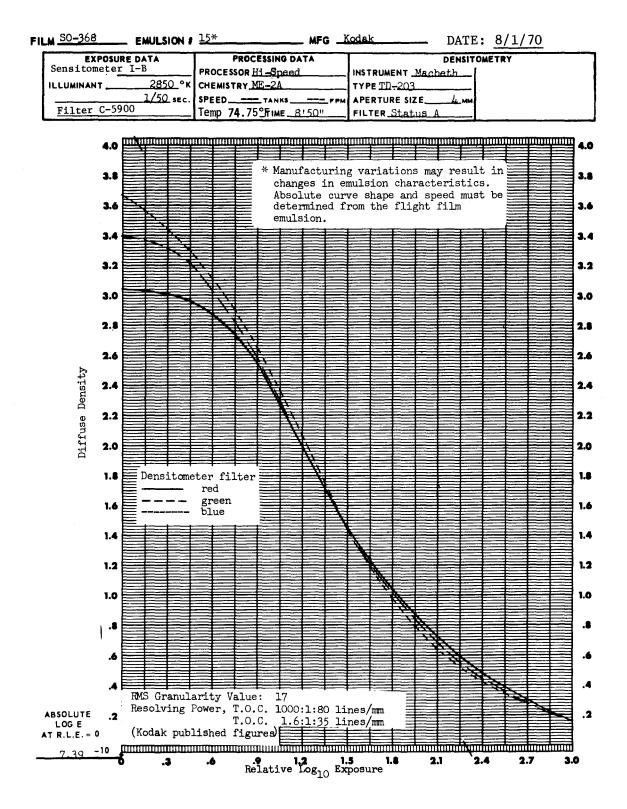
* This material describes the general characteristics of this film type. Sensitometric curves describe the results of a specific set of processing conditions on a specific emulsion batch. Experimenters are reminded that results may change somewhat from one emulsion to the next. Specific characteristics are determined for mission films as far as possible in advance of actual mission.

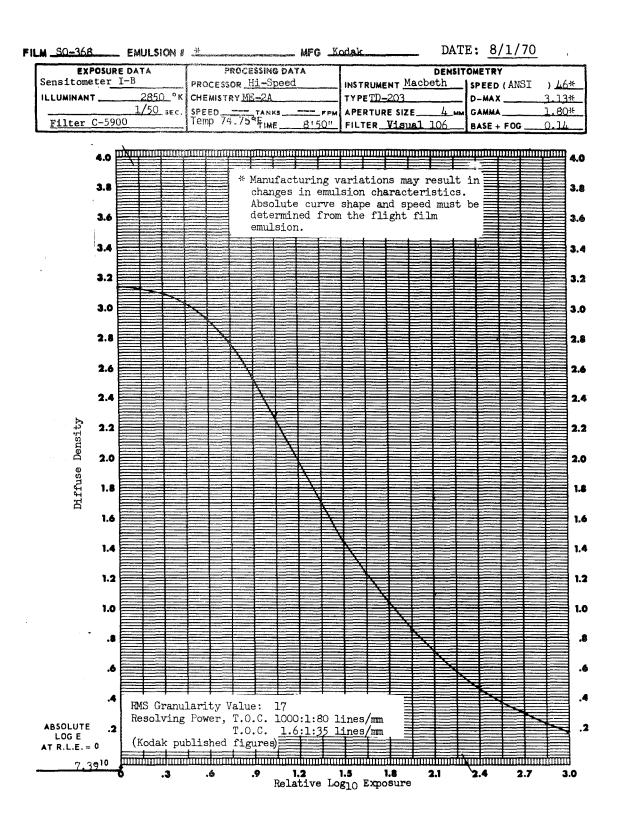
MECHANIZED PROCESSING

顶

تف

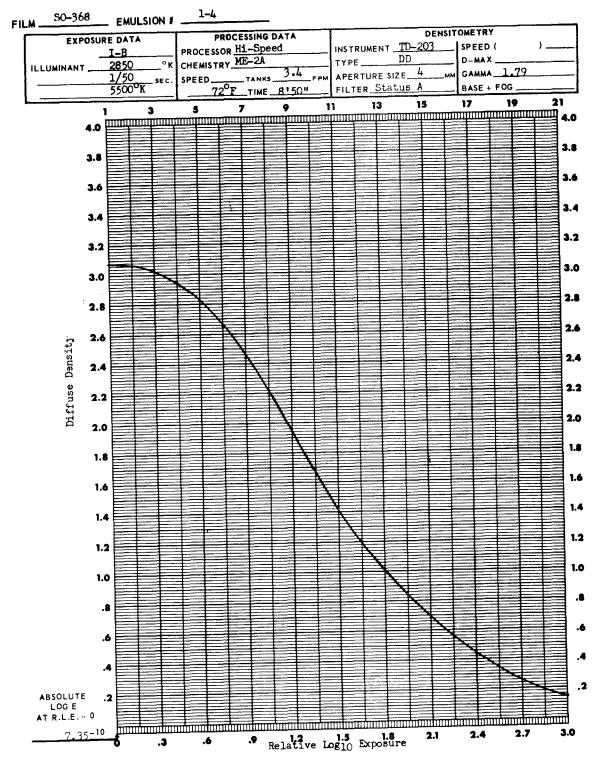
Queena.

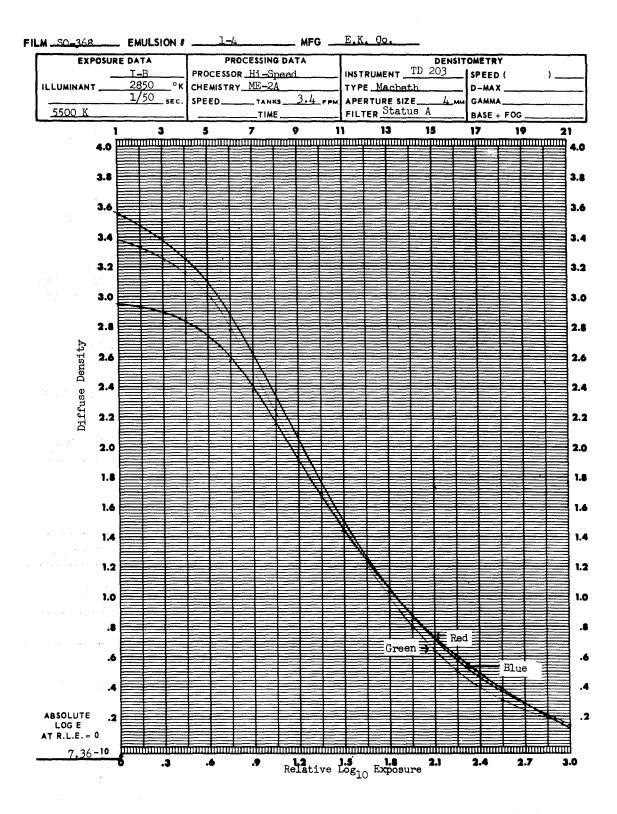

The Kodak Versamat Film Processor, Model 1411, can be used to process this film using Kodak Versamat EA-4 chemicals.


Processing Step	Number of Racks	Time	Temperature
Prehardener	1 & 2	2130"	950 + 10F
Neutralizer	3	1'15"	970 7 30F
First Developer	4 & 5	2130"	1000 + 30F
First Stop	6	1'15"	100° ∓ ĩ°F
Wash	7	1'15"	88° to 95°F
Color Developer	8 & 9	2130"	$110^{\circ} + 1^{\circ}F$
Second Stop	10	1'15"	1100 + 1°F
Wash	11	1'15"	88° to 95°F
Bleach	12	1'15"	110° + 1°F
Fix	13	1'15"	$110^{\circ} + 1^{\circ}F$
Wash	14	1'15"	88° to 95°F
Dryer	— T	2130"	$125^{\circ} + 5^{\circ}F$

PROCESSING SEQUENCES WITH KODAK EA-4 CHEMICALS:

SUGGESTED AERIAL EXPOSURE INDEXES, GAMMAS, AND MACHINE SPEEDS WITH KODAK EA-4 CHEMICALS AT 109°F PROCESSING TEMPERATURE:


Machine Speed	Number of	Average	Average Aerial
(feet per minute)	Developer Racks	Gamma	Exposure Index
3.2	2	1.93	6



E-35

DATE _____ Oct 69

E-37

KODAK EKTACHROME EF FILM TYPE SO-168 (ESTAR Thin Base)

(This material was obtained from manufacturer's published information unless a specific test source is referenced.)

FILM CHARACTERISTICS*

A high-speed, color-reversal film for low level reconnaissance and mapping. This film has a 2.5-mil Estar base and high dimensional stability.

<u>Note</u>: This film is not available for use in commercial aerial cameras. It is a Special Order item designed for use in certain military cameras that have been constructed or modified to handle thin-base films.

BASE

This film has a 2.5-mil Estar polyester base with clear gel backing.

EXPOSURE

Suggested aerial exposure indexes for mechanized processing will be found in the tables which follow.

Aerial exposure indexes are designed for use with the Kodak Aerial Exposure Computer, Kodak Publication No. R-10. Aerial exposure indexes are not equivalent to, and should not be confused with, the conventional film speeds used in pictorial photography.

IMAGE-STRUCTURE CHARACTERISTICS; EA-4 chemicals at 3.2 fpm

Characteristic	Value	Classification
Resolving Power Test-object contrast 1000:1 Test-object contrast 1.6:1	80 lines/mm 36 lines/mm	Medium Low
RMS Granularity (at net density of 1.0)	15	

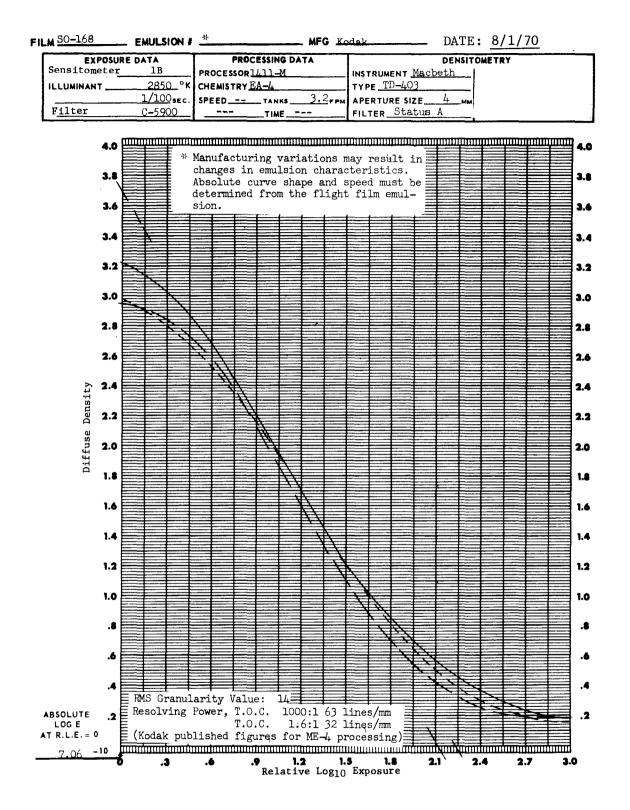
MECHANIZED PROCESSING

The Kodak Ektachrome RT Processor, Model 1411, can be used to process this film using Kodak EA-4 chemicals.

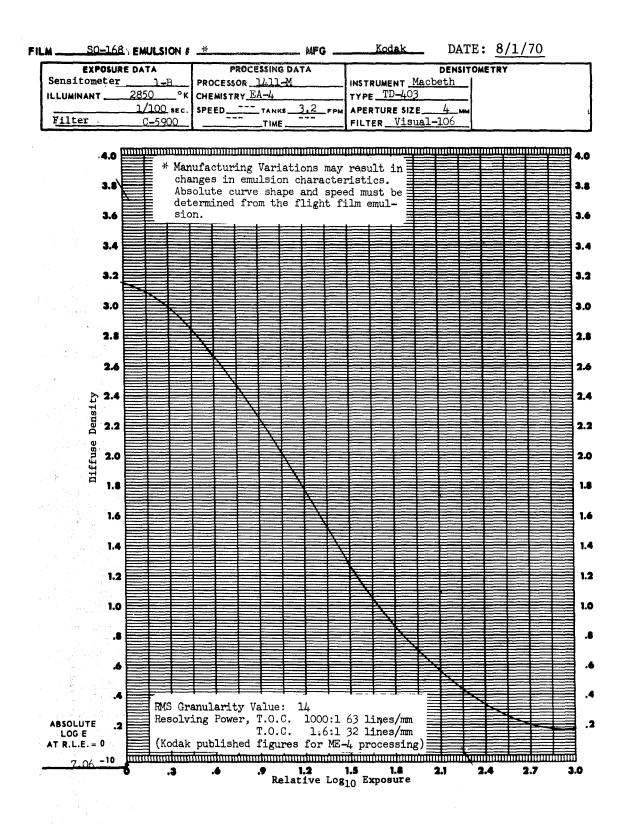
* This material describes the general characteristics of this film type. Sensitometric curves describe the results of a specific set of processing conditions on a specific emulsion batch. Experimenters are reminded that results may change somewhat from one emulsion to the next. Specific characteristics are determined for mission films as far as possible in advance of actual mission. PROCESSING SEQUENCES WITH KODAK PROCESS EA-4 CHEMICALS:

ster.

*

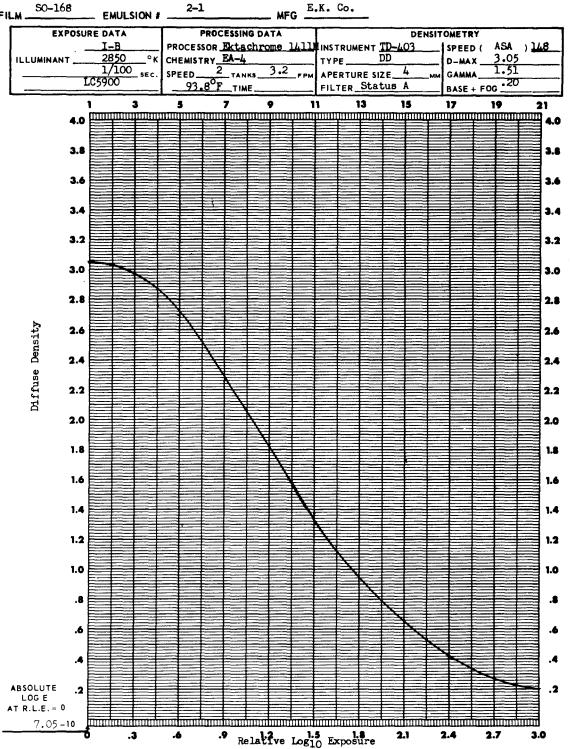

jipan.

lanner"."


Processing Step	Number of Racks	Time	Temperature
Prehardener	1 & 2	2130"	95° + 1°F
Neutralizer	3	יי15י ב	970 - 30F
First Developer	4 & 5	2130"	100° + 3°F
First Stop	6	115"	100° ∓ ĩ°F
Wash	7	1'15"	88° to 95°F
Color Developer	8 & 9	2130"	$110^{\circ} + 1^{\circ}F$
Second Stop	10	1'15"	110° - 1°F
Wash	11	1'15"	88° to 95°F
Bleach	12	1'15"	$110^{\circ} + 1^{\circ}F$
Fix	13	1'15"	110° - 1°F
Wash	14	1'15"	88° to 95°F
Dryer	· · · · · · · · · · · · · · · · · · ·	2130"	$125^{\circ} \pm 5^{\circ}F$

SUGGESTED AERIAL EXPOSURE INDEXES, GAMMAS, AND MACHINE SPEEDS WITH KODAK PROCESS EA-4 CHEMICALS AT 93.8°F:

Machine Speed	Number of	Average	Average
(feet per minute)	Developer Racks	Gamma	Exposure Index
3.2	2	1.51	148 (ASA)



÷

E-41

DATE 29 Oct 69

(This material was obtained from manufacturer's published information unless a specific test source is referenced.)

FIIM CHARACTERISTICS*

A negative material which is sensitive to infrared radiation as well as the blue light of the visible spectrum. It has exceptional sensitivity and is capable of giving high contrast. These qualities make this film especially suitable for the reduction of haze effects, camouflage detection, and oblique long-distance photography. The physical characteristics, exposure, imagestructure characteristics, and mechanized processing of this film are the same as those for Kodak Infrared Aerographic Film Type 5424.

<u>Note</u>: This film is not available for use in commercial aerial cameras. It is a Special Order item designed for use in certain military cameras that have been constructed or modified to handle this film.

BASE

ŵ.

This film has a 5.2-mil cellulose acetate butyrate Gray Base with no backing.

EXPOSURE

Suggested aerial exposure indexes for mechanized processing will be found in the tables which follow.

Aerial exposure indexes are designed for use with the Kodak Aerial Exposure Computer, Kodak Publication No. R-10. Aerial exposure indexes are not equivalent to, and should not be confused with, the conventional film speeds used in pictorial photography.

IMAGE-STRUCTURE CHARACTERISTICS; D-19 chemicals for 8 minutes at 68 F

Characteristic	Value	Classification
Resolving Power Test-object contrast 1000:1 Test-object contrast 1.6:1	89 lines/mm 28 lines/mm	Medium Low
RMS Granularity (at net density of 1.0)		

* This material describes the general characteristics of this film type. Sensitometric curves describe the results of a specific set of processing conditions on a specific emulsion batch. Experimenters are reminded that results may change somewhat from one emulsion to the next. Specific characteristics are determined for mission films as far as possible in advance of actual mission.

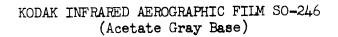
MECHANIZED PROCESSING

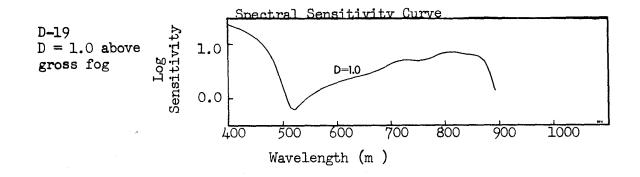
This film should be processed only in equipment made especially for this purpose, such as Kodak Versamat Film Processor, Model 11, using Kodak Versamat 641 chemicals.

PROCESSING CHEMICALS: Kodak Versamat 641 Developer Starter Kodak Versamat 641 Developer Replenisher Kodak Versamat 641 Fixer and Replenisher

PROCESSING SEQUENCES WITH KODAK VERSAMAT CHEMICALS:

Processing Step	Number of Racks	Path Length (feet)	Temperature
Develop	1 or 2	4 or 8	85°F + 12°F
Fix*	3	12	85°F, nominal
Wash	2	8	80° to 82°F
Dry			120° to 145°F**

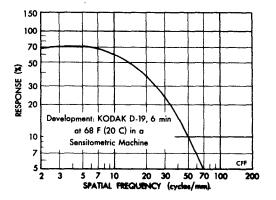

* Fixer replenisher should be introduced into tank No. 3 of the processor

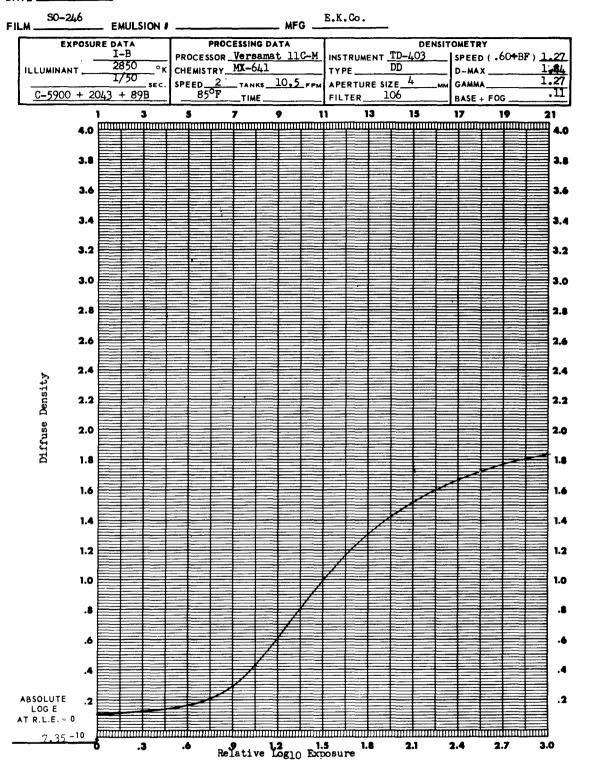

** The temperature of the dryer may require adjustment, depending upon the ambient temperature conditions in the processing area. Set temperature approximately 5 degrees above temperature required to dry clear film.

SUGGESTED AERIAL EXPOSURE INDEXES, GAMMAS, AND MACHINE SPEEDS WITH KODAK VERSAMAT 641 CHEMICALS AT 85°F PROCESSING TEMPERATURE:*

Machine Speed	No. of	Average	Average Aerial
(feet per minute)	Developer Racks	Gamma	Exposure Index
8.5	2	1.41	24
10.5	2	1.84	38
Y DUT Jaka Carro		1000	

* PTL data from film processed 13 January 1970

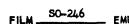



(ji)

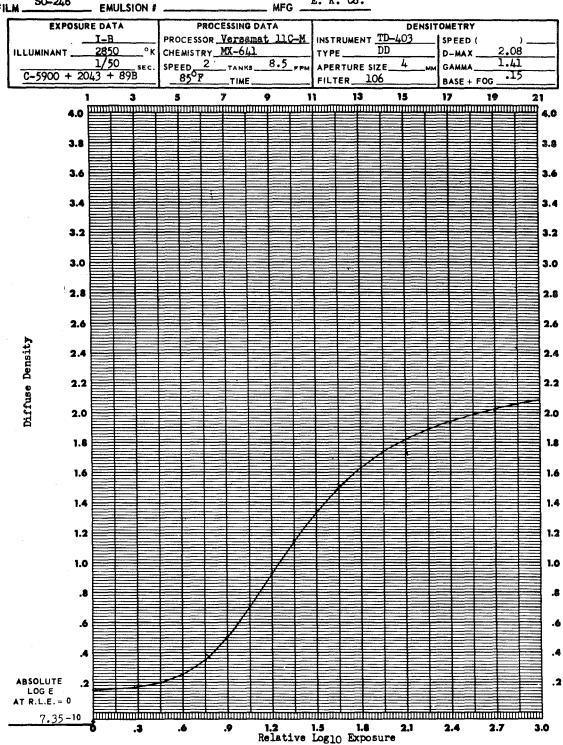
44

Modulation Transfer Function Curve

E-45


E-46

DATE 7 Jan 70


DATE _______ Jan _70

靈

÷.

E. K. Co. _ MFG _

E-47

KODAK AERIAL COLOR FILM, TYPE SO-121 (ESTAR Thin Base)

(This material was obtained from manufacturer's published information unless a specific test source is referenced.)

FILM CHARACTERISTICS*

A high-resolution color reversal film designed specifically for high-altitude aerial reconnaissance. Because of its intended use, this film has extremely fine grain and very high definition.

BASE

This film has a 2.5-mil Estar base with an antihalation undercoat and clear gel backing. The total nominal thickness of this film is 3.0 mils.

EXPOSURE

Suggested aerial exposure indexes for mechanized processing will be found in the tables which follow.

Aerial exposure indexes are designed for use with the Kodak Aerial Exposure Computer, Kodak Publication No. R-10. Aerial exposure indexes are not equivalent to, and should not be confused with, the conventional film speeds used in pictorial photography.

IMAGE-STRUCTURE CHARACTERISTICS; EA-4 chemicals with 2 developer racks at 3.2 fpm

Characteristic	Value	Classification
Resolving Power Test-object contrast 1000:1 Test-object contrast 1.6:1	160 lines/mm 80 lines/mm	Very High Medium
RMS Granularity (at net density of 1.0)	15	

MECHANIZED PROCESSING

The Kodak Ektachrome RT Processor, Model 1411-M, can be used to process this film using Kodak Ektachrome Process EA-4 chemicals.

^{*} This material describes the general characteristics of this film type. Sensitometric curves describe the results of a specific set of processing conditions on a specific emulsion batch. Experimenters are reminded that results may change somewhat from one emulsion to the next. Specific characteristics are determined for mission films as far as possible in advance of actual mission.

PROCESSING CHEMICALS:

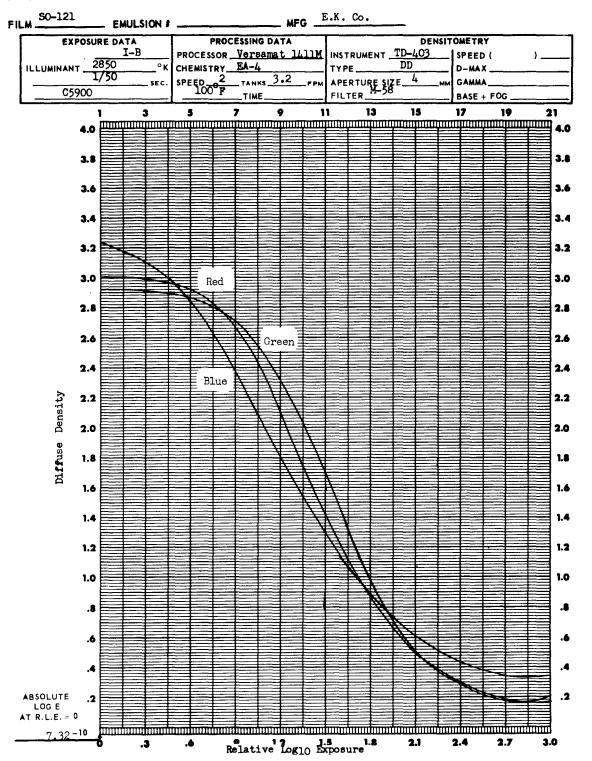
Ŵ

MR.

C.

Kodak Ektachrome Process EA-4 Chemistry

PROCESSING SEQUENCES WITH KODAK EKTACHROME CHEMICALS:


Processing Step	No. of Racks	Time	Temperature
Prehardener	1&2	2130"	<u> 750 + 10F</u>
Neutralizer	3	1'15"	$97^{\circ} + 3^{\circ}F$
First Developer	4 & 5	2130"	100° ± ½°F*
First Stop	6	1'15"	100° - ĨºF
Wash	7	1'15"	88° to 95°F
Color Developer	8 & 9	2130"	$110^{\circ} + 1^{\circ}F$
Second Stop	10	1'15"	110° - 1°F
Wash	11	1'15"	88° to 95°F
Bleach	12	1'15"	$110^{\circ} + 1^{\circ}F$
Fix	13	1'15"	$110^{\circ} + 1^{\circ}F$
Wash	14	1'15"	88° to 95°F
Dryer		2130"	$125^{\circ} + 5^{\circ}F$

* Process at $106^{\circ} \pm \frac{1}{2}^{\circ}$ F for double camera speed. Film force-processed for double camera speed will shift somewhat in color balance and contrast, and will have lower maximum densities.

SUGGESTED AERIAL EXPOSURE INDEXES, GAMMAS, AND MACHINE SPEEDS WITH KODAK EKTACHROME EA-4 CHEMICALS AT 100°F PROCESSING TEMPERATURE:

Machine Speed	No. of	Average	Average Aerial
(feet per minute)	Developer Racks	Gamma	Exposure Index
3.2	2	2.09	6

DATE 8 Jul 70

(This material was obtained from manufacturer's published information unless a specific test source is referenced.)

FILM CHARACTERISTICS*

This film type is a standard film replacement for special order film type SO-180, which was coated on a 2.5-mil Estar base with clear gel backing. It is a false color-reversal film used for camouflage detection, forest survey, medical and industrial research, and pictorial photography.

BASE

÷

*

This film has a 2.5-mil Estar thin base with a clear gel backing. Total nominal thickness of this film is 3.65 mils.

EXPOSURE

Suggested aerial exposure indexes for mechanized processing will be found in the tables which follow.

Aerial exposure indexes are designed for use with the Kodak Aerial Exposure Computer, Kodak Publication No. R-10. Aerial exposure indexes are not equivalent to, and should not be confused with, the conventional film speeds used in pictorial photography.

IMAGE-STRUCTURE CHARACTERISTICS; EA-4 chemicals with 2 developer racks at 3.2 fpm

Characteristic	Value	C lassif ication
Resolving Power Test-object contrast 1000:1 Test-object contrast 1.6:1	63 lines/mm 32 lines/mm	Moderately Low Low
RMS Granularity (at net density of 1.0)	17	

MECHANIZED PROCESSING

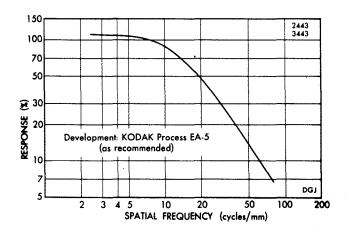
This film should be processed in the Kodak Ektachrome RT Processor, Model 1411, using Kodak Process EA-4 chemicals.

^{*} This material describes the general characteristics of this film type. Sensitometric curves describe the results of a specific set of processing conditions on a specific emulsion batch. Experimenters are reminded that results may change somewhat from one emulsion to the next. Specific characteristics are determined for mission films as far as possible in advance of actual mission.

Proc essi ng Step	No. of Racks	Time	Temperature
Prehardener	1&2	2130"	95° ± 1°F
Neutralizer	3	ייבייב	97° + 3°F
First Developer	4 & 5	2130"	100° + 불°F
First Stop	6	1'15"	100° + ĩ°F
Wash	7	1'15"	88° to 95°F
Color Developer	8 & 9	2130"	$110^{\circ} + 1^{\circ}F$
Second Stop	10	יי51יב	110° + 1°F
Wash	11	ייביב	88° to 95°F
Bleach	12	1 '1 5"	110° + 1°F
Fix	13	1'15"	110° - 1°F
Wash	14	יי5יו	88° to 95°F
Dryer		2130"	$125^{\circ} \pm 5^{\circ}F$

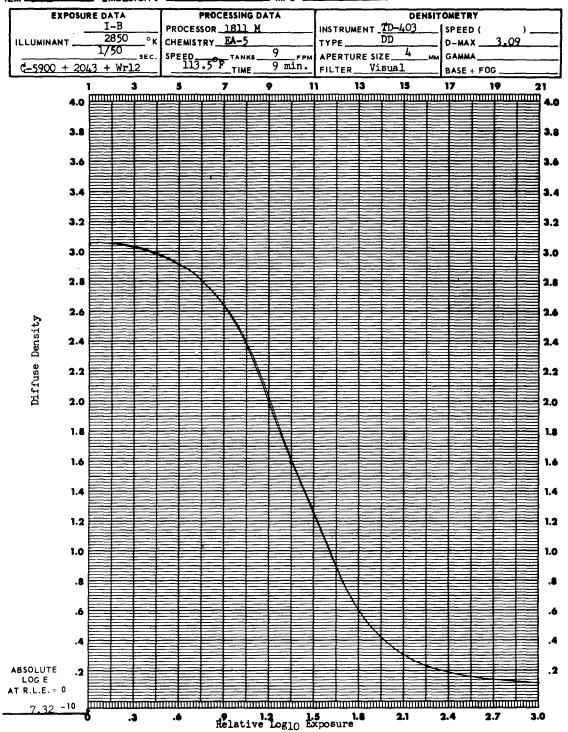
• ***

PROCESSING SEQUENCES WITH KODAK PROCESS EA-4 CHEMICALS:


SUGGESTED AERIAL EXPOSURE INDEXES, GAMMAS, AND MACHINE SPEEDS WITH KODAK PROCESS EA-4 CHEMICALS:

Machine Speed	No. of	Average	Average
(feet per minute)	Developer Racks	Gamma	Exposure Index
3.2	2	2.41	93 (ASA)

Kodak Aerochrome Infrared Film 3443 (ESTAR Thin Base)

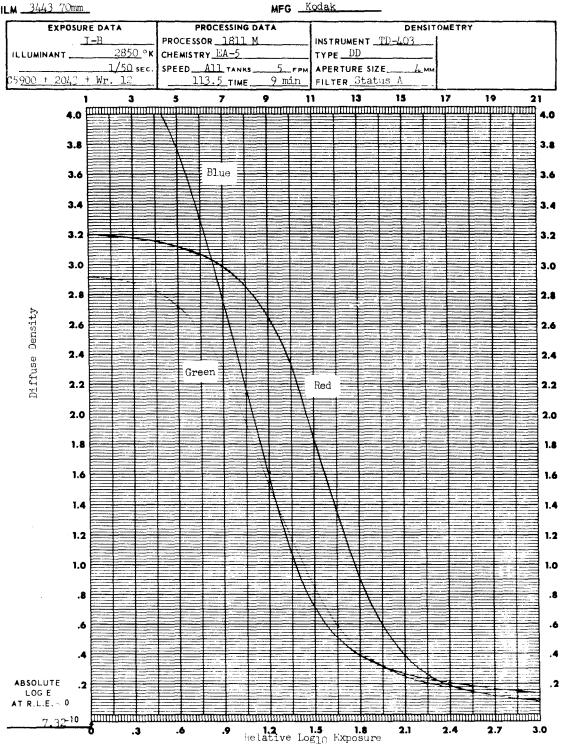

ę

÷.

Modulation Transfer Function Curve

DATE _____ 20 May 70

ŀ


FILM _3443_____ EMULSION # ______ MFG _____ K. Co.___

(1)

DATE 20 May 1970

TASK 468____

)

·

.