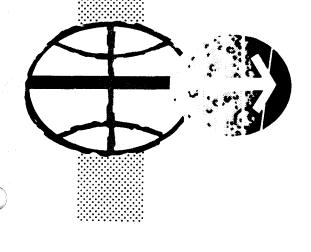

TD5 File Ray Fry MSC-04104

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

SCIENCE OPERATIONS SUPPORT PLAN MISSION J-1/APOLLO 15

FINAL

MANNED SPACECRAFT CENTER HOUSTON, TEXAS


June 1, 1971

MSC-04104

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

SCIENCE OPERATIONS SUPPORT PLAN MISSION J-1/APOLLO 15

FINAL

MANNED SPACECRAFT CENTER HOUSTON, TEXAS

June 1, 1971

MSC FORM 2026A (REV MAY 68)

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

2

j.

SCIENCE OPERATIONS SUPPORT PLAN

MISSION J-1/APOLLO 15

FINAL

Manned Spacecraft Center Houston, Texas

June 1, 1971

SCIENCE OPERATIONS SUPPORT PLAN

MISSION J-1/APOLLO 15

Prepared for the Science Requirements and Operations Branch Science Missions Support Division

Science and Applications Directorate Manned Spacecraft Center Houston, Texas

25/ : Prepared by: Glenn

Glenn P. Barnes Space Experiments Engineering General Electric Company

Approved: J. R. Bates

Experiments Operations Section

Approved: John G. Zarcaro

(/ Chief, Science Missions Support Division

Any comments or questions on this document should be forwarded to J. R. Bates or G. P. Barnes, Science Requirements and Operations Branch, TD5, extension 5851 or 5028.

REFERENCES

1

1. Apollo Lunar Surface Experiments Operational Requirements. MSC-TA-D-68-1 (December 1968)

2. Measurements Requirements Document. ALSEP-SE-03, Revision M (May 13, 1971).

3. Apollo Lunar Geology Definitive Experiment Plan (April 1968)

4. Apollo Lunar Geology Experiment Operational Requirements (December 1968)

5. Mission Requirements SA-510/CSM-112/LM-10, J-1 Type Mission, Lunar Landing. MSC-02575. January 4, 1971.

6. CSM/LM Spacecraft Operational Data Book, Volume V, ALSEP Data Book, SNA-8-D-027 (V)

7. CSM/LM Spacecraft Operational Data Book, Volume VI, CSM Experiments Data Book for J-Missions. SNA-8-D-027 (VI).

8. Mission Science Planning Document, Apollo Mission J-1. MSC-04010. May 15, 1971.

TABLE OF CONTENTS

ι τ

Contraction of the second

C

gadornio.

SECTION		PAGE NUMBER
1.0	GENERAL	1
2.0	MISSION PHASES	2
	 2.1 Phase I (Lunar Surface EVA Phase) 2.2 Phase II (Lunar Module Ascent Phase) 2.3 Phase III (Forty-Five Day Phase) 2.4 Phase IV (One-Year Phase) 2.5 Phase V (Lunar Orbit Phase) 	2 2 2 2 2 2
APPENDIX	Abbreviations and Acronyms	A-l

TABLES

	TABLE NUMBER	PAGE NUMBER	
Phase I (Lunar Surface EVA Phase)	1	5	
Phase II (Lunar Module Ascent Phase)	2	62	
Phase III (Forty-Five Day Phase)	3	80	
Phase IV (One-Year Phase)	4	118	
Phase V (Lunar Orbit Phase)	5	126	

ILLUSTRATIONS

,

		FIG NUM			AGE MBER
	Lunar Operation Phases	•	1		3
	Apollo 15 ALSEP Array A-2 Deployment Layout	•	2		4
	Central Station Leveling and Alignment	•	3		10 -
	Central Station Antenna Leveling and Alignment) ₁		11-
,	RTG Current Indicator	•	5		13
	Passive Seismic Experiment Leveling and Alignment	•	6		15 🛩
	Suprathermal Ion Detector Experiment Leveling and Alignment	•	7		17
	Solar Wind Spectrometer Leveling and Alignment	•	8		20
	Lunar Surface Magnetometer Leveling and Alignment	•	9		22 -
	Heat Flow Experiment Leveling and Alignment	. 1	0		25 🕬
	Laser Ranging Retro-Reflector Leveling and Alignment	. 1	1		58
	Heat Flow Experiment Heater Sequencer	. 1	.2	1	16

SCIENCE OPERATIONS SUPPORT PLAN

1.0 GENERAL

This document defines the science operational procedures as set forth by the Principal Investigators and the Science and Applications Directorate. These procedures are for use by mission planners and controllers in satisfying the experiment requirements contained in the Mission Requirements Document, SA-510/CSM-112/LM-10, J-1 Type Mission.

Included in this document are pertinent data resulting from the Principal Investigator's Operational Interface Meetings and are intended for use by the Principal Investigators, members of the scientific community, and personnel responsible for planning and supporting mission science requirements. These data define the scientific experiments operations, the lunar geology investigation, and the crew activities during the lunar surface operation phases. Reference should be made as necessary to the other documents listed in the references.

Reference should also be made as applicable to other MSC documents which provide necessary procedures in a chronological sequence (timeline) for all science activities. These documents include the Flight Plan, Lunar Surface Procedures, Lunar Surface Checklist, Photographic and Television Procedures, and the CSM Solo Book. Detailed operational data not included in this section or other sections of this document may be found in the CSM/LM Spacecraft Operational Data Book, Volumes V (ALSEP Data Book) and VI (CSM Experiments Data Book for J-Missions).

2.0 MISSION PHASES

The mission operational timeline consists of five phases as defined in the following paragraphs. Specific events for each of the phases are identified in Figure 1.

2.1 Phase I (Lunar Surface EVA Phase)

Phase I is outlined in Table 1, and covers the period during which the astronauts are available for specific deployment activities, backup operations, and lunar geology investigations. Refer to Figures 2, through 10 for supplemental information.

2.2 Phase II (Lunar Module Ascent Phase)

Phase II is outlined in Table 2, and covers the period from 30 minutes prior to LM ascent through the checkout and verification of all lunar surface experiments.

2.3 Phase III (Forty-Five Day Phase)

Phase III is outlined in Table 3, and covers the period from experiment checkout and verification through the first 45 calendar days of ALSEP operation. Phase III includes lunar surface experiments only; orbital experiments are covered in Phase V.

2.4 Phase IV (One-Year Phase)

Phase IV is outlined in Table 4, and covers the period from day 45 through the first year of ALSEP operation. Phase IV includes lunar surface experiments only; orbital experiments are covered in Phase V.

2.5 Phase V (Lunar Orbit Phase)

Phase V is outlined in Table 5, and covers all scientific activities for lunar orbit experiments. Phase V does not cover lunar surface experiments.

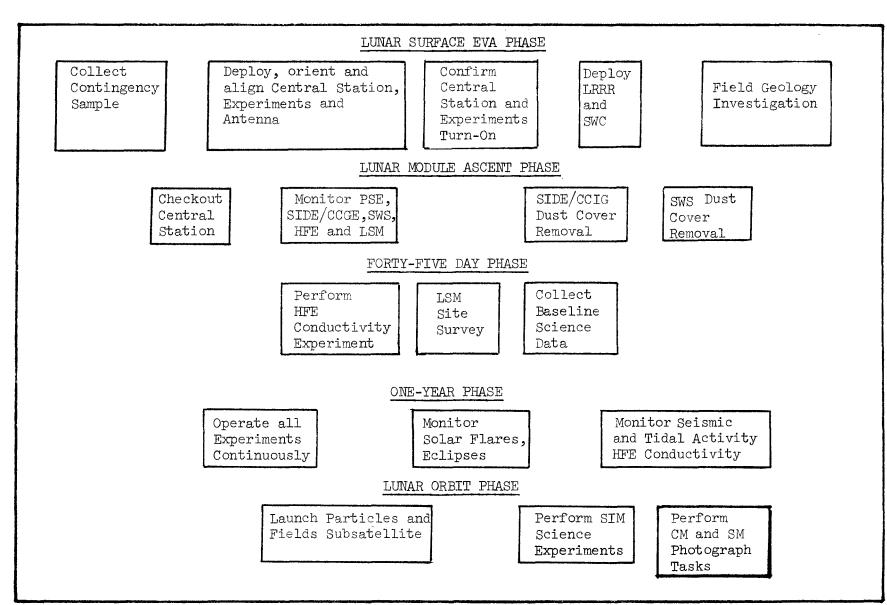


Figure 1. Lunar Operation Phases, Events Identification

ω

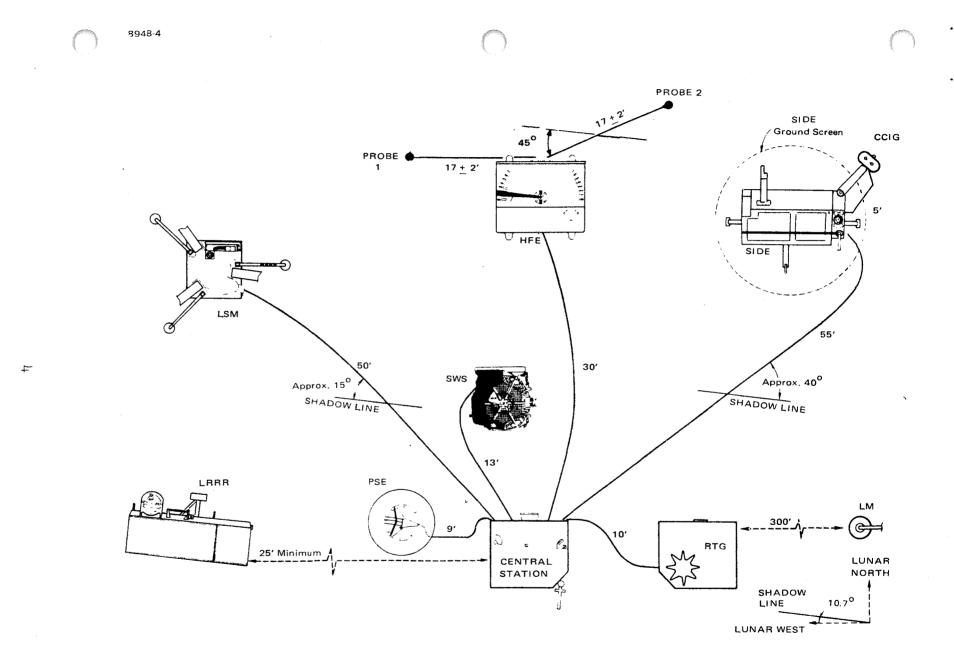


Figure 2. Apollo 15 ALSEP Array A-2 Deployment Layout

Table 1. Phase 1 (Lunar Surface EVA Phase)

Phase I is outlined in Table 1 and covers the period during which the astronauts are on the lunar surface to deploy science experiments and perform field geology investigations. Refer to the Apollo 15 Flight Plan and Lunar Surface Procedures for further information involving astronaut activities during this phase.

 σ

Table 1. Phase I, (Lunar Surface EVA Phase)

EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	REMARKS
1.0 Contingency Sample Collection	Collect a contingency sample near the LM.		Sample should be taken as soon as possible after egress and placed in the Contingency Sample Return Container.
2.0 Documented Sample Collection	Collect samples of lunar material.		<pre>Samples are documented as follows: a. Photograph area before col- lecting sample. b. Collect sample and place in prenumbered collection bag. c. Photograph area after col- lecting sample. d. Store samples in the Sample Return Container or Sample Collection Bags. NOTE: For more detailed require- ments, reference the Mission Requirements Document, SA-510/ CSM-112/LM-10.</pre>

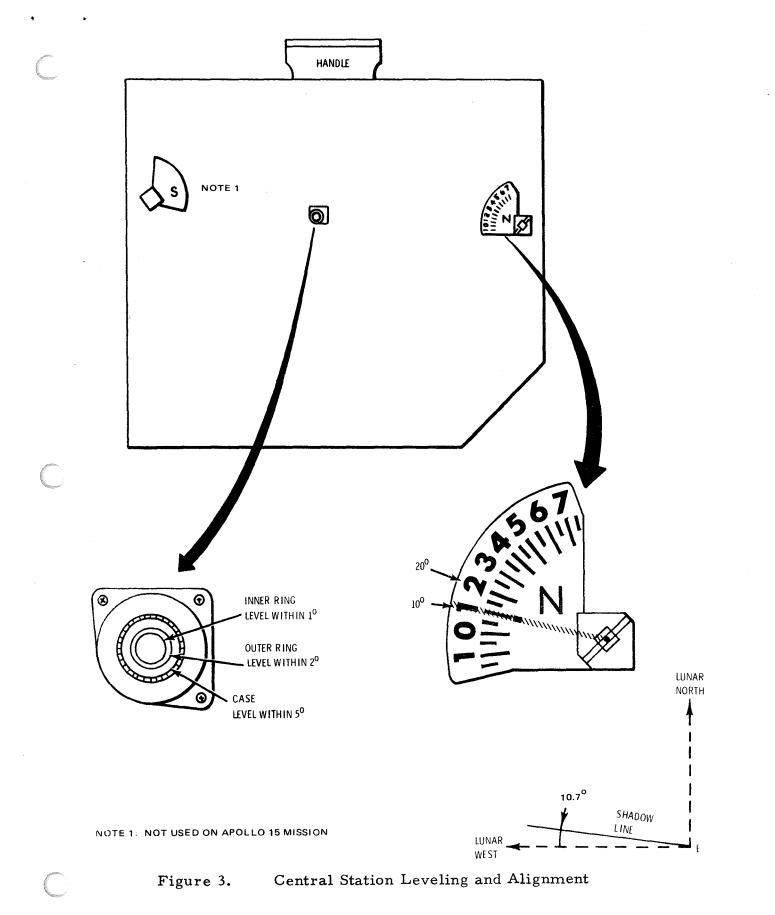
Table l.]

~7

Phase I, (Lunar Surface EVA Phase)

EVE	NT A	ASTRONAUT ACTIVITY	MCC ACTIVITY	REMARKS
3.0 Solar Compos Deploy	sition	Deploy the SWC 60 to 100 feet from the LM. Orient the SWC fac- ing the sun, i.e., normal to the sun line.	na kan kan kan kan kan kan kan kan kan k	Deployment distance should prevent dust due to crew activity or residue from vented gases from settling on the aluminum foil.
	с. d.	vertical position.		When foil is retrieved, minimize the dust collected in the SWC stowage bag.

Table 1. Phase I (Lunar Surface EVA Phase)


EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	REMARKS
4.0 ALSEP Central Station Deployment	a. Deploy Central Sta- tion a minimum of 300 feet west of LM.		Site should be approximately horizontal with carry handle side of C.S. facing North. Nothing should restrict view of space seen by thermal control surfaces.
	b. Align C.S. within 5 ⁰ of the shadow line using the "N" compass rose. Align gnomon		Alignment devices are useable at sun elevation angles between 5 and 45 degrees.
	shadow with alignment mark adjacent to the numeral "1".		C.S. should not be shaded from the sun more than absolutely necessary prior to deployment.
	c. Level C.S. within 5 ⁰ using the bubble level. Sunshield must be still down in stowed position.		ALSEP deployment area must be generally level and free from craters, boulders and debris which might restrict view of space seen by the instruments.
	d. Level antenna within 0.5 [°] of vertical as indicated by bubble level. See Figure ¹ 4.		Bubble should be free from case circle to be level within 0.5 ⁰ .
	e. Align antenna within 0.5° of sun line as determined by sun dial.		When shadow covers shadow refer- ence block, antenna is aligned within 0.5 ⁰ .

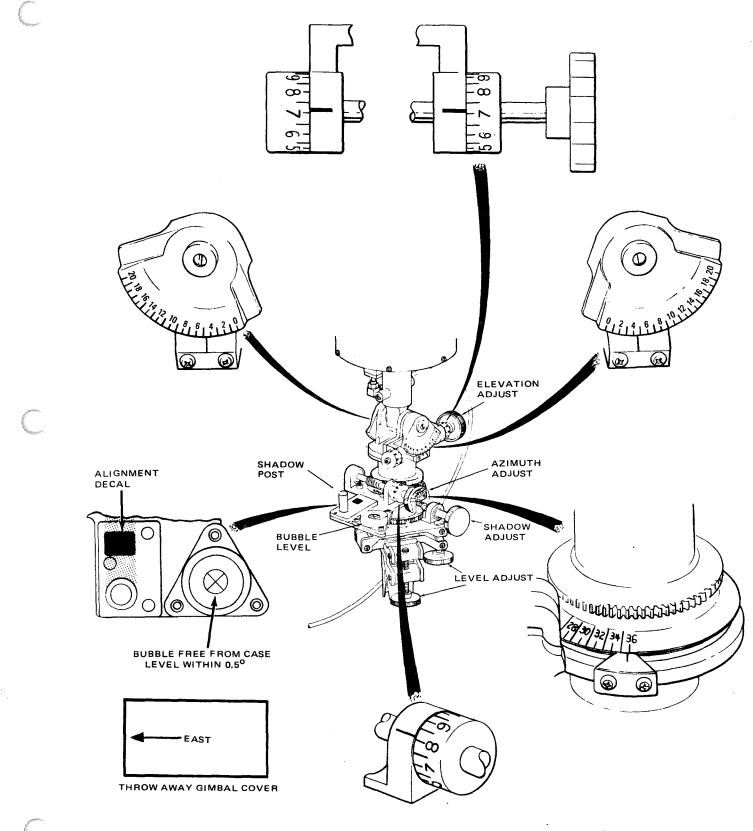
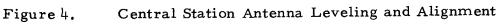
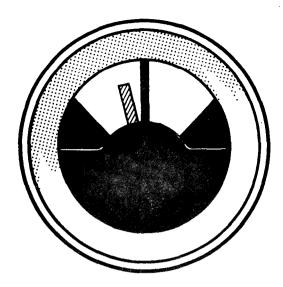

ω

Table 1. Phase I

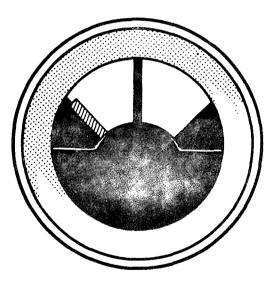
(Lunar	Surface	EVA	Phase)

EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	REMARKS
4.0 ALSEP Central Station Deployment (Cont'd)	<pre>f. Turn azimuth knob ccw to: Coarse Scale: 35+ Fine Scale : 81 g. Turn elevation knob cw to: Coarse Scale: 4+ Fine Scale : 71</pre>		Azimuth and elevation settings are shown in astronaut's cuff check list.




Table 1. Phase J (Lur

(Lunar Surface EVA Phase)

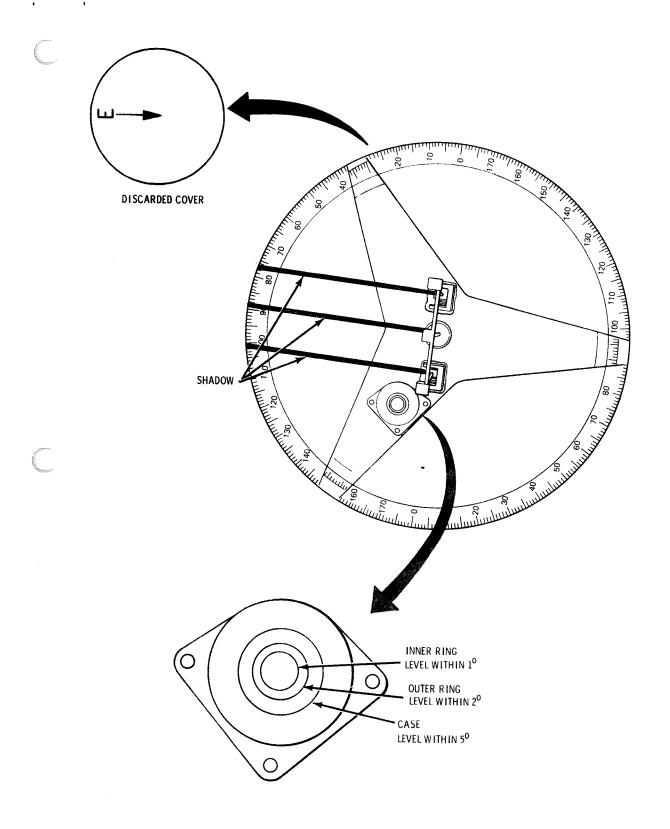

æ

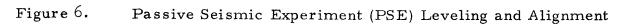
¥

EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	REMARKS
5.0 Radioisotope Thermoelectric Generator Deployment	a. Deploy the RTG 9 to 12 feet from C.S., limited by 13-foot cable.		No part of RTG must be within field-of-view of the open, North side of C.S.
	b. Align RTG so that cable exit from the sub-pallet points toward the C.S. RTG should be generally East of C.S.		Separation between RTG and C.S. must be adequate so that crew does not contact the RTG during C.S. deployment.
	c. Read ammeter on Shorting Switch Box and verify a value greater than zero. Connect RTG eable to C.S. Later in deployment, astro- naut will actuate Shorting Switch and verify that ammeter reading drops to zero.		

a. First Reading Nominal Configuration (RTG Short-circuited)

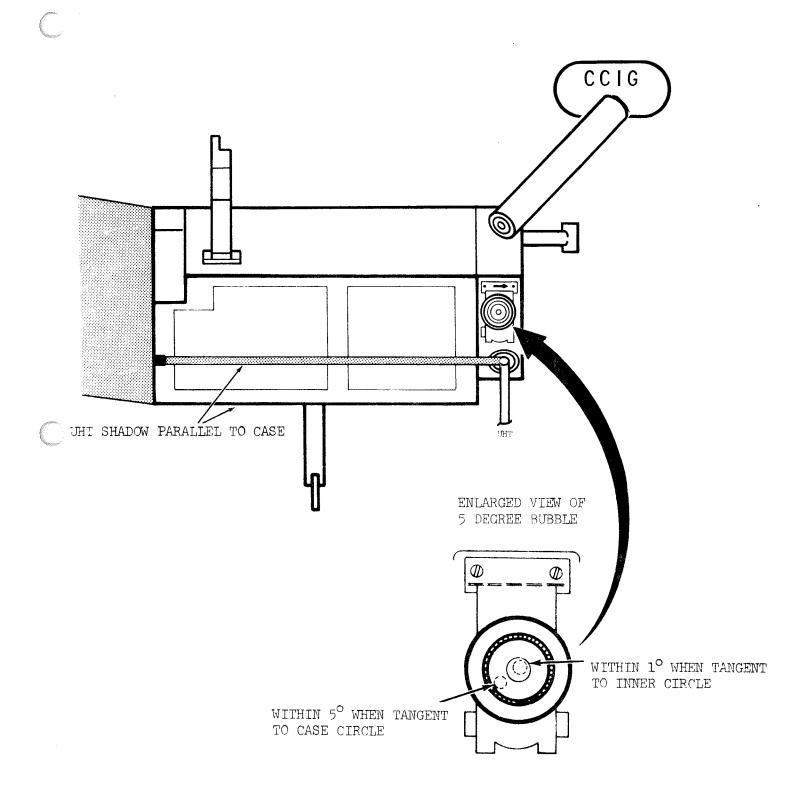
b. Second Reading Nominal Configuration (RTG Short Removed)

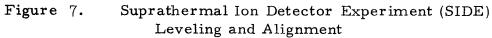

Figure 5. RTG Current Indicator


Table 1. Phase I, (Lunar Surface EVA Phase)

EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	REMARKS
mic Experi- ment Deploy-	a. Deploy PSE 8 to 9 feet West of Central Station. (See Figure 2.)		Limited by 10-foot cable, 15 feet minimum separation from RTG. Separation is necessary to avoid heat input from RTG. PSE must be no less than 10 feet from other units to minimize pickup of stray vibrations by PSE. Pack surface to prevent PSE sensor from touch- ing surface.
	b. Rough align the PSE within 20° of sunline, before opening PSE girdle by pointing arrow on the sensor gir- dle toward the sun. (See Figure 5.)		When girdle is removed, gnomon will pop up.
	c. Coarse level the PSE to within 5 [°] of vertical utilizing the bubble level. (See Figure 5.)		Bubble should be free from case circle to be within 5°. 5° is the limit of the automatic leveling gimbal system.
	d. Fine level the PSE after removing girdle and spreading the thermal shroud. (See Figure 5.)		Astronaut should read and report, to the nearest degree, the intersection of the shadow of the gnomon on the compass rose. Final azimuth alignment must be known within 5° accuracy with reference to sun line utilizing shadow graph.

14

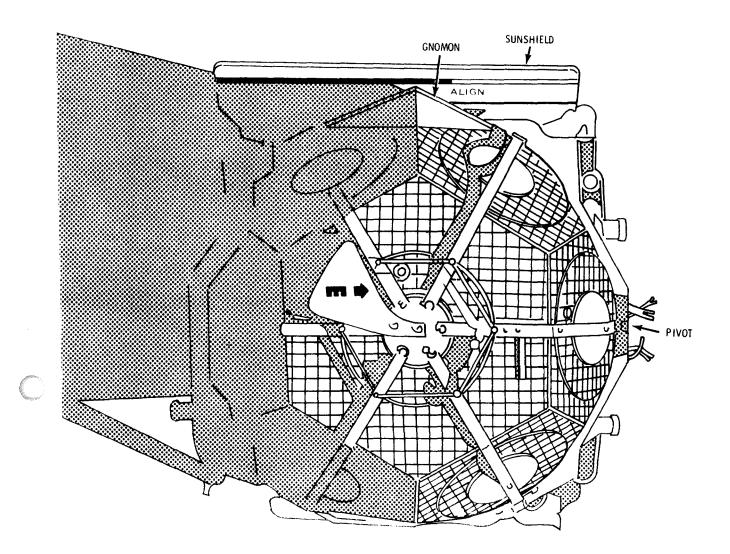

•



(Lunar Surface EVA Phase)

EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	REMARKS
7.0 Suprathermal Ion Detector Experiment/ Cold Cathode Gauge Experiment	50 to 60 feet North- east of Central Sta-		Limited by 60-foot cable.
Deployment	b. Level SIDE within 5 ^o of vertical utilizing bubble level. (See Figure 7.)		Bubble should be free from case
	c. Align SIDE within 5 ⁰ of sun line.		Astronaut will rough align unit utilizing arrow on top of unit. Arrow, marked "E", points toward sun. He will then fine align unit within 5° of shadow line by visu- ally determining that the shadow cast by the UHT is parallel to the sides of unit and covers the decal.
	d. The CCIG, attached to the ground screen tube, will be lowered to the sur- face so that the orifice faces hori- zontally North.		All loose surface material should be removed from in front of the North - facing orifice. Note: The CCIG includes a strong magnet which would affect LSM if separation is not at least 80 feet.

Table 1. Phase I, (Lunar Surface EVA Phase)


EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	REMARKS
	a. Deploy SWS 12 to 15 feet North of Central Station. (See Figure 2.)	ana an	Limited by 15-foot cable. SWS should be placed in an approx- imately horizontal spot to avoid thermal perturbations.
	 b. Orient SWS so that louvered side (radiator) points North. (Pointing arrow toward sun.) c. Level the SWS within 		Due to A-frame construction,
	5 ⁰ of horizontal about the N-S axis.		there is a pendulous effect about E-W axis; SWS should swing freely N-S orientation is determined from sun sensor TM data.

EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	REMARKS
8.0 Solar Wind Spectrometer Deployment (Cont'd)	d. Align the SWS by rotating about a vertical axis so that the shadow cast by the North edge of the sensor assembly gnomon runs parallel to the orange alignment stripe on the sunshield. (See Figure 8.)		Radiator louvres should face away from RTG due to science and thermal control requirements.
	e. Check alignment of the SWS by touching box with the handling tool near the bottom on the south side to verify that it swings freely on its E-W pivot.		If not free, move the leg assemblies farther apart so that the instrument swings freely. Recheck alignment. No fine leveling is required.

.

19

and the second sec

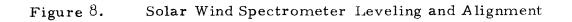
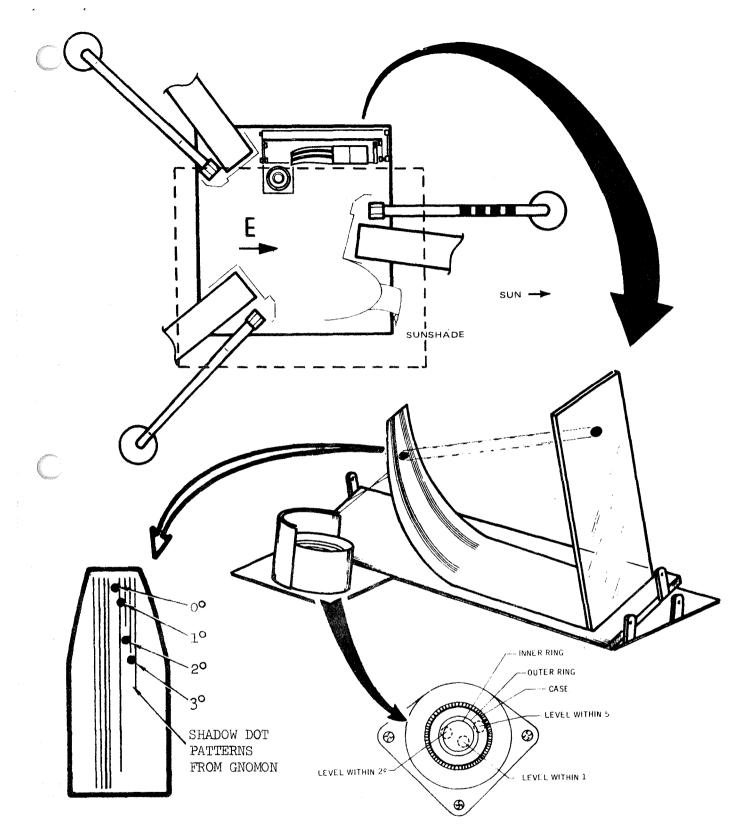
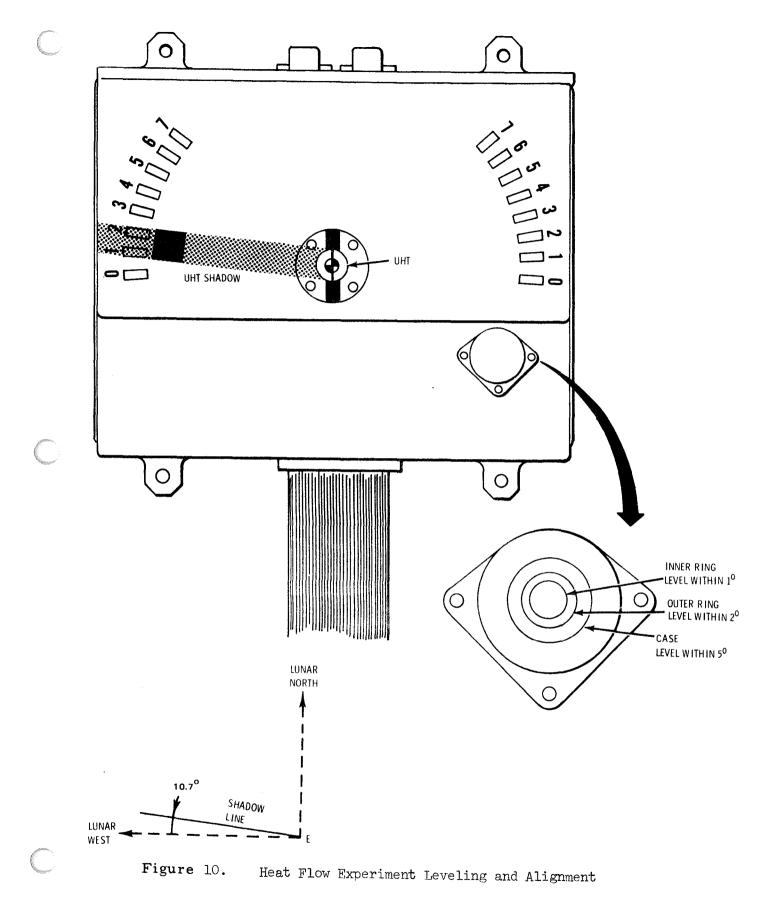



Table 1. Phase I (Lunar Surface EVA Phase)

EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	REMARKS
9.0 Lunar Surface Magnetometer Deployment	 a. Deploy LSM 45 to 50 feet Northwest of C.S., limited by 50-foot cable. b. Deploy shadowgraph, ensure it is tilted to the proper 26° angle. Align LSM within 3° of shadow line using shadow- graph. (Reference Figure 9.) c. Level the LSM within 3° using bubble level and leg adjustment screws. d. Deploy sunshade by pulling ring on sensor head, then recheck level. 		LSM must be a minimum of 80 feet from the CCIG which contains a strong magnet. Astronaut will report shadowgraph reading within 1°. Exact align- ment must be known to interpret LSM data. Turn leg adjustment screw clock- wise to raise that corner of LSM. Bubble should be free of case circle.

Lunar Surface Magnetometer Leveling and Alignment


(Lunar Surface EVA Phase)

EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	REMARKS
10.0 Heat Flow Experiment Deployment	a. Deploy the HFE Elec- tronics Package 25 to 30 feet North of the Central Station. (See Figure 2.)		Limited by 30-foot cable. HFE Electronics Package should be placed in an approximately level area, removed from any surface irregularities or rocks that may obscure the field-of-view of the HFE sunshield reflector.
	b. Align the HFE Elec- tronics Package to with- in 5 ⁰ of the shadow line decal utilizing the shadowgraph. (See Figure 10.)		Radiator must face North away from equator and the Central Station. Alignment of HFE package is accomplished by rotating package until shadow cast by UHT covers alignment decal.
	c. Level the HFE Electronics Package to within 5° of vertical for maximum utilization of the thermal sunshield utilizing the bubble level. (See Figure 10.)		
	d. Deploy the Probe 16 to 18 feet from the Electronics Package.		Limited by length of cable. De- ploy one probe West of the Elec- tronics Package maintaining 30-foot minimum separation between Probe and RTG.

Phase I

Table 1. Phase I (Lunar Surface EVA Phase)

EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	REMARKS
10.0 Heat Flow Experiment Deployment (Cont'd)	e. HFE Probe-to-Probe separation should be at least 30 feet.	n fan en	The HFE probes should be at least 10 feet from all other experi- ments, 20 feet minimum from the PSE, and 30 feet minimum from the RTG. Reference Figure 2 for typical ALSEP deployment arrange- ment.
	f. Use the Apollo Lunar Surface Drill to make a lined bore hole approxi- mately 3 meters deep in the lunar surface and align the HFE Probe to within 15° of vertical.		Each hole should be $l\frac{1}{2}$ diameters from the rims of "fresh" craters more than 1 meter across. Each hole should be 3 or more dia meters from boulders more than 1 meter across.
			Astronaut should try to avoid having a "fresh" crater greater than 2 meters across betwen bore holes.
			Astronaut should try to avoid having a "fresh" crater greater than 5 meters across between the HFE bore holes and the core sample hole.

.

Table 1. Phase I, (Lunar Surface EVA Phase)

EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	REMARKS
ll.0 ALSEP Turn- On		a. Start Data Recorders	Note: Astronaut will read ammeter on shorting switch box (to confirm a value greater than zero) and then connect RTG to Central Sta- tion. After connection is made, the shorting switch is actuated and ammeter reading should go to zero.
	a. Astronaut will noti- fy MCC of readiness status via voice link and actuate Switch S-1.	b. Acknowledge readi- ness message via voice link.	If ALSEP does not respond, ini- tiate command octal Ol3, "Trans- mitter On."
		c. Verify reception of RF signal from ALSEP.	If ALSEP still does not respond, astronaut will actuate Switches SW-2 and SW-3.
		d. Verify transmission of 1060 bps telemetry.	Verify all data are within opera- tional limits (Word 33).
	b. Acknowledge MCC receipt of RF signal and useful data via voice link.	e. Advise astronaut via voice links that ALSEP transmitter is function- ing.	
			Note: Reference the Scientific Experiments Contingency Planning and Procedures Document, Table 19, for ALSEP Activation Contingencies.

0 0

....

 \bigcirc

Table 1. Phase I, (Lunar Surface EVA Phase)

EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	REMARKS
12.0 Passive Seismic Experiment Turn-On		 a. Check experiment status telemetry AB-04. and CS-02 for correct indication and Shunt Reg #1 current status telemetry AE-05 for indication lower than octal 267. b. Initiate command octal 036, PSE Opera- tional Power ON. c. Check experiment status telemetry, AB-04. and CS-02 for correct indication. d. PSE Housekeeping Data Check (Word 33) (1) Long period gain X and Y AL-01. (2) Long period Z amplifier gain AL-02. (3) Level direction and speed AL-03. (4) Short period am- plifier gain Z, AL-04. 	If telemetry data are interrupted for more than 5 minutes, command PSE to Standby (Octal O37). Preset condition: -30 db Preset condition: -30 db Preset condition: + low Preset condition: -30 db

Table 1. Phase I, (Lunar Surface EVA Phase)

EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	REMARKS
12.0 Passive Seismic Experiment Turn-On (Cont'd)		 (5) Leveling mode and coarse sensor mode AL-05. (6) Thermal control status AL-06. (7) Calibration status (L.P. and S.P.) AL-07. (8) Uncage status AL-08. e. Uncage Passive Seismometer (1) Initiate command - octal 073, Uncage Arm/Fire. (2) Verify change in uncage status AL-08. (3) Reinitiate command octal 073. (4) Verify change in uncage status AL-08. (5) Observe short period scientific data on drum recorder for evidence of physical uncaging. 	Auto, Coarse Sensor Out Auto, On All Off Caged. Arm Wait 30 seconds between re- initiation of command octal 073. Uncage Consult P.I. before adjusting any gains. Adjust gain to visible signal.

Table 1. Phase I, (Lunar Surface EVA Phase)

EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	REMARKS
12.0 Passive Seismic Experiment Turn-On (Cont'd)		f. Level Passive Seis- mometer. (1) Verify that feed- back filter is switched OUT by comparing LP Seismic and LP Tidal data on recorders.	During initial leveling or when all LP components are off level, verify feedback position during Step f(7).
		 (2) Initiate command octal 102, COARSE LEVEL SENSOR IN/OUT (3) Check telemetry AL-05 for change in status of COARSE LEVEL SENSOR and verification of AUTO Leveling mode. (4) Initiate command octal 070 LEVELING POWER X MOTOR ON. (5) Observe recording of long period, tidal X-axis data as leveling pro- ceeds. 	Switch as required to obtain COARSE LEVEL SENSOR and AUTO status by commands octal 102 and octal 103. During initial leveling, verify that feedback filter is switched out. This can be done by verify- ing the time lag between tidal and seismic data. If filter is in, execute command octal 101 and note response.

Table 1. Phase I, (Lunar Surface EVA Phase)

EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	REMARKS
12.0 Passive Seismic Experiment Turn-On (Cont'd)		 f. Level Passive Seismometer (Cont'd) (6) Observe SP-Z Seismic data on recorder. (7) When X tidal output reaches a value of + 5 micro radians or less, initiate command octal 070 LEVELING POWER X MOTOR OFF. (8) Repeat Event 12, steps f(4) thru (7) for Y-axis, initiating and verifying command octal 071 LEVELING POWER Y MOTOR (ON/ OFF) while moni- toring appropriate recorder. (9) Initiate and veri- fy command octal lO2 COARSE LEVEL SENSOR. (10) Check AL-05 for change of status. 	

в

Table 1. Phase I, (Lunar Surface EVA Phase)

EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	REMARKS
12.0 Passive Seismic Experiment Turn-On (Cont'd)		fy command octal	

Table 1. Phase I, (Lunar Surface EVA Phase)

EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	REMARKS
12.0 Passive Seismic Experiment Turn-On (Cont'd)		 f. Level Passive Seismometer (Cont'd) (16) Initiate and verify command PSE FILTER IN octal 101. (17) Verify that filter has been switched IN by comparison of LP Seismic and LP Tidal data on recorders. (18) Execute command octal 076 THERMAL CONTROL MODE SELECT as required to keep within limits. g. Passive Seismometer Calibration (1) Initiate and ver- ify command octal 066 CALIBRATION LP ON/OFF (2) Check for status change in AL-07. 	

Table 1. Phase I, (Lunar Surface EVA Phase)

EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	REMARKS
12.0 Passive Seis- mic Experi- ment Turn-On (Cont'd)		 command octal 066 CALIBRATION LP ON/OFF. (4) Check for status change in AL-07. (5) Initiate and verify command octal 065 CALIBRATION SP/ON/OFF. (6) Check for status change in AL-07. (7) Initiate and verify command octal 065 CALIBRATION SP ON/OFF. (8) Check for status change in AL-07. (8) Check for status change in AL-07. (7) Intriate and verify command octal 065 CALIBRATION SP ON/OFF. (8) Check for status change in AL-07. (7) Intriate and verify command octal 065 CALIBRATION SP ON/OFF. (8) Check for status change in AL-07. (7) Internal Stabilization of Passive Seismometer. 	Approximately 60 seconds after step (2). All Off. All Off. All Off. Relevel as required. Command Octal 076 should be used to main- tain 125 <u>+</u> 1°F (DL-07).

ω ω

Table 1. Phase I, (Lunar Surface EVA Phase)

EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	REMARKS
12.0 Passive Seismic Experiment Turn-On (Cont'd)		 i. Collection of Baseline Passive Seismic Data. (1) Record data without further transmission of command for determination of background noise level, frequency and magnitude of detectable seismic events. (2) Fix gains at levels determined from Step i(1) above. 	

Table 1. Phase I, (Lunar Surface EVA Phase)

EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	REMARKS
13.0 Suprathermal Ion Detector Experiment/ Cold Cathode Gauge Experi- ment Turn-On		 a. Turn-On Checks (1) Check experiment status telemetry AB-04, AB-05 and CS-02 for correct indication. (2) Initiate and verify command octal 153 SIDE/CCGE OPERATIONAL POWER ON. (3) Check experiment status telemetry AB-04, AB-05 and CS-02 for correct indication. (4) Initiate the following commands: Octal 105 and Octal 110 b. Telemetry Checks (1) Examine telemetry data and ensure that SIDE frame counter (SIDE Word 1) cycles from 0-127. 	Consult P.I. before initiating commands. SIDE/CCGE average thermal temper- ature must be below 25°C for initial operation. Do not initiate any commands to the channeltron high voltage supply or the gauge high voltage supply.

ω

Table 1. Phase I, (Lunar Surface EVA Phase)

EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	REMARKS
13.0 Suprathermal Ion Detector Experiment/ Cold Cathode Gauge Exper- iment Turn- On (Cont'd)		 telemetry Checks (Cont'd) (2) Check the reference and calibration voltages in SIDE Word 2. (3) Check the power supply output and performance parameters in SIDE Word 2. (4) Check the experiment temperatures in SIDE Word 2. (5) Check the status parameters on SIDE Word 2. (6) Check for appropriate cycling of the Ground Plane Voltage in SIDE Word 2. (7) Check for appropriate cycling of High Energy Curved Plate Analyzer Filter Voltage, SIDE Word 3. 	DI-21, DI-22, DI-23, DI-25, DI-26, DI-27, DI-28, DI-30, DI-2, DI-13, DI-14, DI-15, DI-16, DI-17, DI-18, DI-20, DI-29 DI-4, DI-5, DI-6, DI-9, DI-10, DI-19 DI-12, DI-24, DF-29 DI-11 DI-40 thru DI-60

Table 1. Phase I, (Lunar Surface EVA Phase)

EVENT	ASTRONAUT ACTIVITY	МС	CC ACTIVITY	REMARKS
13.0 Suprathermal Ion Detector Experiment/ Cold Cathode Gauge Exper- iment Turn- On (Cont'd)			parameters in SIDE Word 6. Check for appropriate cycling of Velocity Filter Voltage in SIDE Word 7. Check for appropriate cycling of Low Energy Curved Plate Analyzer Filter Voltage in SIDE Word 8. Check High Energy data in SIDE Words 4 and 5 for base- line level with Dust Cover On.	DI-68, DI-69, DI-70 and DI-71 DI-72 thru DI-99 and DJ-00 thru DJ-97 DJ-98, DJ-99 and DF-00 thru DF-04 DI-61 and DI-62

Table 1. Phase I, (Lunar Surface EVA Phase)

EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	REMARKS
13.0 Suprathermal Ion Detector Experiment/ Cold Cathode Gauge Exper- iment Turn- On (Cont'd)		 b. Telemetry Checks (Cont'd) (13) Check telemetry associated with CCGE perform- ance in SIDE Word 2. 	DI-03, DI-08 and DI-67

¥

Table 1. Phase I, (Lunar Surface EVA Phase)

EVENT	ASTRONAUT ACTIVITY	MC	CC ACTIVITY	REMARKS
13.0 Suprathermal Ion Detector Experiment/ Cold Cathode Gauge Exper- iment (Turn- On (Cont'd)		c. (1) (2)	CCGE Standby Power. Check experiment status telemetry	

Table 1. Phase I, (Lunar Surface EVA Phase)

EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	REMARKS
14.0 Lunar Surface Magnetometer Turn-On		 a. Initiate Command octal 042, LSM Opera- tional Power SELECT. b. Check experiment status telemetry, AB-4 for correct indication. c. LSM Range Adjustment (DM-16) (1) Observe base- line scientific data for X, Y and Z axis on analog recorder. (2) Initiate and verify Command octal 123 RANGE SELECT. 	Consult PI for proper range setting.

Table 1. Phase I, (Lunar Surface EVA Phase)

EVENT	ASTRONAUT ACTIVITY	MC	C ACTIVITY	REMARKS
14.0 Lunar Surface Magnetometer Turn-On (Cont'd)		(Con (3)	stment (DM-16) t'd) Check for	
		(5)	repeat event 14, steps c(2), c(3), and c(4).	Step c(3) should indicate a range change from 50 to 100. gammas.

Table 1. Phase I, (Lunar Surface EVA Phase)

EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	REMARKS
14.0 Lunar Surface Magnetometer Turn-On (Cont'd)		 c. LSM Range Adjustment (DM-16) (Cont'd) (7) Confirm proper setting by examination of data on analog recorders. d. LSM Flip Calibrate No. 1 (1) Initiate and verify Command octal 127 FLIP/ CAL INHIBIT 	LSM Flip Calibrate No. 1 to be initiated one hour before LM ascent. Check PSE scientific data during flip period for crosstalk and detection of motion by the PSE.

Table 1. Phase I, (Lunar Surface EVA Phase)

EVENT ASTRONA	AUT ACTIVITY	MCC ACTIVITY	REMARKS
LVENT ASTRONA	d. LS No. 1 (2 (3) (4)	 SM Flip Calibrate (Cont'd) Check telemetry for status of calibration inhibit gate, DM-23. Initiate and verify Command octal 131 FLIP/ CAL INITIATE 	Consult PI before initiating this command. This command to be initiated 1 hour before LM ascent. Record in running log. Record as FLIP/CAL No. 1 in Flight Controller's log.

Table 1. Phase I, (Lunar Surface EVA Phase)

EVENT ASTRONAUT ACTIVITY	MCC ACTIVITY	REMARKS
EVENT ASTRONAUT ACTIVITY 4.0 Lunar Surface Magnetometer Turn-On (Cont'd)	MCC ACTIVITY d. LSM Flip Calibrate No. 1 (Cont'd) (6) Verify that sensor Flip Positions have changed. (DM-09, DM-10, DM-11). (7) Monitor mode state telemetry for return to original status in approximately 7 minutes. (DM-20.) (8) Initiate and verify Command octal 127 FLIP/ CAL INHIBIT. (9) From LSM data, printout 5 min- utes prior to, during, and 5	Use either real-time data or tap

Table 1. Phase I, (Lunar Surface EVA Phase)

EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	REMARKS
14.0 Lunar Surface Magnetometer Turn-On (Cont'd)		<pre>d. LSM Flip Calibrate No. 1 (Cont'd) (10) Verify change in status on LSM. (DM-20.)</pre>	

Table 1. Phase I, (Lunar Surface EVA Phase)

EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	REMARKS
15.0 Heat Flow Experiment Turn-On		 a. Check experiment reserve power status. b. Initiate Command 055 HFE Operational Power On c. Check experiment status for correct indications AB-05, CS-02. d. Check HFE data channels as shown below: +5V supply AH-01 -5V supply AH-02 +15V supply AH-03 -15V supply AH-03 -15V supply AH-04 Low Conductivity Heater AH-06 High Conductivity Heater AH-07 	Reserve Power CS-02 > 8 watts.

Table 1. Phase I, (Lunar Surface EVA Phase)

EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	REMARKS
15.0 Heat Flow Experiment Turn-On (Cont'd)		 e. Thermal check of HFE: (1) Check telemetry data word 21 for subsystem mode indications 	Should turn-on in Mode 1. Gradient Mode (100) Low Conductivity Mode (010) High Conductivity Mode (001)
		<pre>(DH-90) (2) If system is not in mode l, ini- tiate and verify Command octal l35, HFE mode/ Select.</pre>	Refer to HFE command description.
		<pre>(3) Initiate and ver- ify octal com- mands 144 and 146.</pre>	This sequence of commands selects an operating subsequence which includes ambient temperatures at both probes and at the electronic package.
		(4) Check telemetry indication of HFE thermocouple reference and probe cable temperature (word 21 subcommutated).	DH-13, DH-14, DH-15, DH-24, DH-26, DH-34, DH-36, DH-44, DH-46

年7

and the second

Table 1. Phase I, (Lunar Surface EVA Phase)

EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	REMARKS
15.0 Heat Flow Experiment Turn-On (Cont'd)		 e. Thermal check of HFE: (Cont'd) (5) Continue to moni- tor until stabi- lization of temperatures has been confirmed. 	

÷.

Table 1. Phase I (Lunar Surface EVA Phase)

EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	REMARKS
16.0 Solar Wind Spectrometer Turn-On		 a. Turn-On Checks (1) Check for adequate reserve power, AE-05 (Shunt.regulator current) and adjust PDR's if necessary. (2) Initiate and verify command octal 045 SWS OPERATIONAL POWER SELECT. (3) Check AB-05 for change in status of SWS. b. Telemetry Check (1) Examine tele-metry data and ensure that decommutation is being properly executed and sequence is identified (SWS words 184 & 185). 	

EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	REMARKS
16.0 Solar Wind Spectrometer Turn-On (Cont'd)		b. Telemetry Check (Cont'd) (2) Check A/D Con- verter Calibrations, se- quence ID: LSB = 0 <u>ID Level Words</u> DW-3 9 mv 112,117 DW-4 90 mv 113 DW-5 900 mv 114,118 DW-6 3000 mv 115 DW-7 9000 mv 116,119 (3) Check Electro- meter calibration, SWS words 120-127. (a) 0 amp., DW-19 to DW-26, sequence ID: LSB = 0. (b) 5.76x10 ⁻¹² amp. calibration se- quence, ID: LSB = 01 DW-27 (sum) (7x5.76 x 10 ⁻¹²) DW-28 to DW-34 (Cups 1-7)	

Table 1. Phase I (Lunar Surface EVA Phase)

EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	REMARKS
16.0 Solar Wind Spectrometer Turn-On (Cont'd)		<pre>b. Telemetry Check (Cont'd)</pre>	

Table 1. Phase I (Lunar Surface EVA Phase)

EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	REMARKS
16.0 Solar Wind Spectrometer Turn-On (Cont'd)		b. Telemetry Check (Cont'd) (5) Check DC High Voltage Calibrations sequence ID: LSB = 1110 $\frac{\text{Symbol Level SWS Word}}{\text{DW-51 1 0}}$ $\frac{\text{DW-51 1 0}}{\text{DW-52 2 8}}$ $\frac{\text{DW-53 3 16}}{\text{DW-54 4 24}}$ $\frac{\text{DW-55 5 32}}{\text{DW-56 6 40}}$ $\frac{\text{DW-57 7 48}}{\text{DW-57 7 48}}$ $\frac{\text{DW-58 8 56}}{\text{DW-59 9 64}}$ $\frac{\text{DW-59 9 64}}{\text{DW-60 10 72}}$ $\frac{\text{DW-61 11 80}}{\text{DW-61 11 80}}$ $\frac{\text{DW-62 12 88}}{\text{DW-63 13 96}}$ $\frac{\text{DW-64 14 104}}{\text{DW-65 15 128}}$ $\frac{\text{DW-66 16 136}}{\text{DW-67 17 144}}$ $\frac{\text{DW-68 18 152}}{\text{DW-69 19 160}}$ $\frac{\text{DW-70 20 168}}{\text{DW-71 21 176}}$	

Table 1. Phas

Phase I (Lunar Surface EVA Phase)

EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	REMARKS
16.0 Solar Wind Spectrometer Turn-On (Cont'd)		b. Telemetry Check (Cont'd) (6) Check AC High Voltage calibrations, sequence LD: LSB = 1111 Symbol Level SWS Word DW-72 1 0 DW-73 2 8 DW-74 3 16 DW-75 4 24 DW-76 5 32 DW-76 5 32 DW-77 6 40 DW-78 7 48 DW-78 7 48 DW-79 8 56 DW-80 9 64 DW-81 10 72 DW-81 10 72 DW-81 10 72 DW-81 10 72 DW-83 12 88 DW-84 13 96 DW-85 14 104 DW-85 14 104 DW-86 15 128 DW-87 16 136 DW-88 17 144 DW-89 18 152 DW-90 19 160 DW-91 20 168 DW-92 21 176	

 $\mathcal{L}^{\mathfrak{Q}}$

.

Table 1. Phase I (Lunar Surface EVA Phase)

EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	REMARKS
16.0 Solar Wind Spectrometer Turn-On (Cont'd)		c. Collection of SWS Baseline Data Record data without further transmission of commands to establish background noise level and the frequency and magnitude of plasma current peaks.	

Table 1. Phase I, (Lunar Surface EVA Phase)

EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	REMARKS
17.0 Dust Detector Turn-On		 a. If necessary, initiate and verify reception of command octal 027 Dust Detector - 0N. b. Verify Dust Detector status by observing data in AX-04, AX-05 and AX-06 (cell voltages). c. Check temperature of Dust Detector cells in parameters AX-01, AX-02 and AX-03. 	

Table 1. Phase I (Lunar Surface EVA Phase)

EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	REMARKS
18.0 Experiments Turn-On Verification	Acknowledge report.	a. Advise crewmen that the PSE, SIDE/CCGE, LSM, SWS and HFE experiments have been turned on.	PSE Power ON SIDE/CCGE Standby ON LSM Power ON SWS Power ON HFE Power ON, Mode 1 If experiments cannot be turned on by ground command, astronaut will activate ALSEP backup switch #3.
		b. Monitor PSE data.	
		c. Monitor LSM data.	
		d. Monitor HFE data.	
		e. Monitor SWS data.	

Table 1. Phase I (Lunar Surface EVA Phase)

19.0 Laser Ranging Retro- Reflector Experiment Deployment 2° as indicated by bubble level. (See Figure 11.) c. Align the LR ³ to within 2.5°, using the shadowgraph. (See Figure 11.) Figure 11.) Kather Constant of the shadowgraph of the shadowgraph of the shadowgraph. Correct alignment assumes a shadow angle of 10.7° at the time of LRRR deployment.	EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	REMARKS
	19.0 Laser Ranging Retro- Reflector Experiment	 a. Deploy the LR³ a minimum of 300 feet West of LM. (See Figure 2.) b. Level LR³ within 2° as indicated by bubble level. (See Figure 11.) c. Align the LR³ to within 2.5°, using the shadowgraph. (See 	nantanin il sente estat stata anna timo sette tenanta de cala si anna tenanta de cala si anna estatu	A deployment distance of greater than 500 feet is requested to minimize dust fall-out from LM ascent engine blast. Craters and slopes which would degrade thermal control should be avoided. Shadow of gnomon should fall across center alignment mark on the shadowgraph. Correct alignment assumes a shadow angle of 10.7° at the

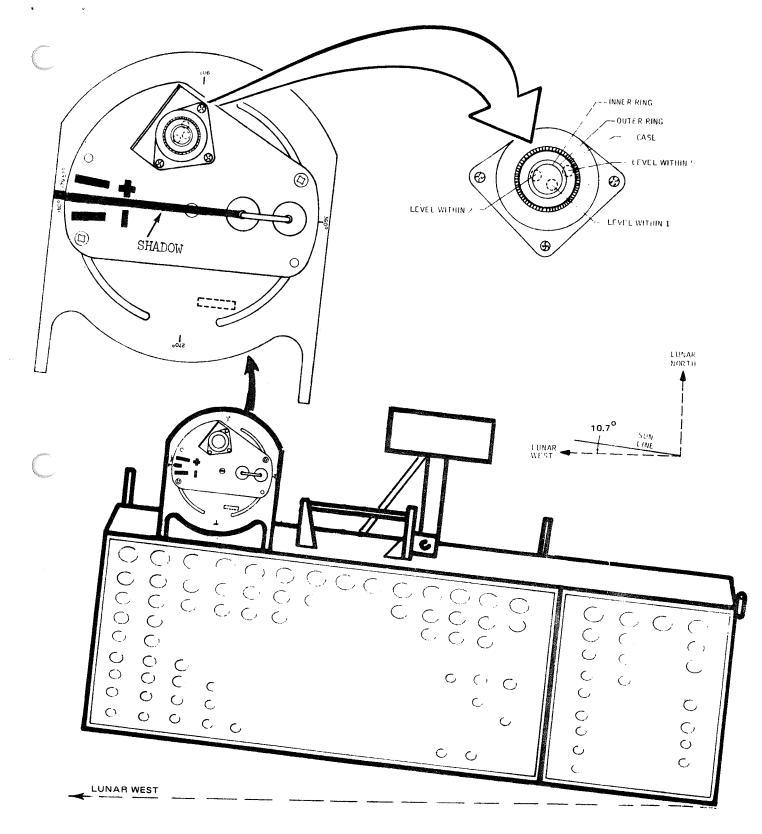


Figure 11. Laser Ranging Retro-Reflector (LRRR) Leveling and Alignment

Table 1. Phase I (Lunar Surface EVA Phase)

EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	REMARKS
	 d. Collect and photo- graphically document large rock samples. Col- lect rock fragments. Try to move large boulders or pry beneath them after photographing their original position. e. In special containers provided, collect special environmental samples. 		Activities a through e will be performed consistent with the Apollo 15 Flight Plan. These activities are not necessarily listed in order or priorities.

and the second

PHASE I (LUNAR SURFACE EVA PHASE)

•

GENERAL PLANNING CHART FOR LUNAR GEOLOGY INVESTIGATION OF HADLEY-APENNINE SITE

Geology Traverse Station Description	Astronaut Activity	
	Ascronaut Activity	
High point enroute to Apennine front	Collect samples, take photos, examine and describe.	
Apennine front	Collect samples, take photos at the front which rings Mare Imbrium.	
Crater on Apennine front	Observe and describe the bend in Hadley Rille. Collect samples in vicinity of craters along the front.	
Hadley Rille	Collect samples along edge of rille. Observe, describe the amount of mare fill in rille. Gather data on the formation of the rille.	
Edge of secondary crater cluster.	Investigate the origin of secondary clusters.	
Mare	Collect samples, take photos to possibly determine volcanic fill of a mare.	
North Complex Investigate, describe large crater, scarp, large boulder. Sample domical structures, collapsed domes and blocky crater.		
The astronaut activity will consist of observation, photography, description, and sampling of certain geologic features conducted along the traverse. At the same time MSC will be monitoring and documenting the astronaut activity.		

TABLE 2. Phase II (Lunar Module Ascent Phase)

٠

Contraction of the second seco

C.

C

Phase II is outlined in Table 2 and covers the period from 30 minutes prior to LM ascent through the checkout and verification of all lunar surface experiment subsystems.

Table 2. Phase II, (Lunar Module Ascent Phase)

EVENT	MCC ACTIVITY	REMARKS
1.0 LM Ascent	Monitor all scientific and engineering telemetry during and after launch noting any changes attributable to LM activity.	Note significant trends in the ALSEP experiments data.

.

Table 2. Phase II, (Lunar Module Ascent Phase)

EVENT	MCC ACTIVITY]	REMARKS
2.0 ALSEP Central Station Power Supply Check	 a. Check the following parameters: (1) 0.25 Vdc Calibration AE-O1 (2) 4.75 Vdc Calibration AE-O2 (3) Converter Input Voltage AE-O3 (4) Converter Input Current AE-O4 	adjustment of th control can be a power dumps in o following comman PDR Load #2 PDR Load #2	ndicates the need for the DC load, the necessary accomplished by switching or out through use of the ds: 2 ON (14W) Octal 022 2 OFF (14W) Octal 023 4 at turn-on is PDR #2 OFF.
×	 b. Verify that system is operating on PCU #1. (1) Shunt Regulator #1 current AE-05. (2) Power Oscillator #1 AT-36. (3) Regulator #1 AT-38 	Optimize Central ment by dumping external power d	Station thermal environ- reserve power into the issipation resistors. s in accordance with the Command
	Current is: 0.6 to 1.1A	PDR Octal Ol7 DSS Htr. #1 ON	
		1.1 to 1.5A	Octal 022 PDR #2 ON
		1.5A	Octal 017 and 022 Both DSS Htr. #1 & PDR #2 ON
		0.6A	Octal O21 and O23, Both DSS Htr. #1 & PDR #2 OFF

£

Table 2. Phase II, (Lunar Module Ascent Phase)

EVENT	MCC ACTIVITY	REMARKS
2.0 ALSEP Central Station Power Check (Cont'd)		

.

Table 2. Phase II, (Lunar Module Ascent Phase)

EVENT	MCC ACTIVITY		REMARKS
3.0 Central Station Temperature Check and Thermal Control	 a. Check telemetry parametrized below for pertinent measurements: TM Meas. Location (1) Sunshield (2) Thermal Plate (3) Structure Sides (4) Structure Bottom and Back (5) Inner Multilayer Insulation (6) Outer Multilayer Insulation (7) Analog Data Processor Base (8) Analog Data Processor Base (9) Digital Data Processor Internal (1) Command Decoder Base (12) Command Decoder 	temperature <u>TM Meas. No.</u> AT-01, 02 AT-03, 04, 05 AT-08, 09 AT-10, 11 AT-12 AT-13 AT-27 AT-28 AT-29	If necessary turn Central Station Back-up Heater #1 On and Off by initiation and verification of following commands: DSS HTR 1 ON (10w) Octal O17 DSS HTR 1 OFF Octal O21 DSS HTR 2 ON (5w) Octal O24 DSS HTR 2 OFF Octal O25 Preset condition at turn-on is: DSS Heater #1 OFF DSS Heater #2 ON

Table 2. Phase II, (Lunar Module Ascent Phase)

EVENT	MCC ACTIVITY	REMARKS	
3.0 Temperature Check and Thermal Control (Cont'd)	 a. (Cont'd) (13) Command Demodulation VCO (14) Power Distribution Unit Base (15) Power Distribution Unit Internal 	AT-33 AT-34 AT-35	

.

EVENT	MCC ACTIVITY	REMARKS
4.0 Transmitter Checkout	 a. Monitor the following transmitter parameters: (1) Transmitter A Crystal Temp. AT-23 (2) Transmitter A Heat Sink Temp. AT-24 (3) Transmitter A AGC Voltage AE-15 (4) Transmitter A Power Doubler Current AE-17 	

.

()

Table 2. Phase II (Lunar Module Ascent Phase)

EVENT	MCC ACTIVITY	REMARKS
5.0 Receiver Checkout	 a. Check Local Osc. Crystal A Temp. AT-21 b. Check Local Osc. Crystal B Temp. AT-22 c. Check Local Osc. Level AE-14 d. Check Receiver Prelimiting Level AE-13 	Central Station will initialize with either Local Osc. A or B on.
	e. Check Command Demodulation, l kHz Present AB-Ol	No modulation 0 to 76 counts Modulation 77 to 127 counts No carrier 128 to 255 counts

.

Table 2. Phase II, (Lunar Module Ascent Phase)

EVENT	MCC ACTIVITY	REMARKS		
6.0 Passive Seismic Experiment Checkout	Monitor all PSE science data measurements on a continuous basis. Level PSE as required.	Note significant trends, especially during the turn-on period for the other experi- ments. During LM ascent, PSE scientific data must be monitored continuously so as to measure any seismic disturbance due to ascent engine blast.		

Table 2. Phase II, (Lunar Module Ascent Phase)

EVENT	MCC ACTIVITY	REMARKS
7.0 Suprathermal Ion Detector Experiment/ Cold Cathode	a. Check experiment status telemetry AB-05 and CS-02 for correct indications.	SIDE/CCGE Standby Power.
Gauge Experiment	b. Initiate command octal 153, SIDE Operational Power ON.	Consult P.I. before sending this command.
	c. Check experiment status telemetry AB-04, AB-05 and CS-02 for correct indications.	SIDE/CCGE Power On.
	d. Initiate the following commands:	Consult P.I. before sending this command sequence.
	(1) Octal 107 (2) Octal 110	107 and 110 SIDE Dust Cover removal.
	e. Check science data for verification of Dust Cover removal.	
	f. Transmit and verify command octals 053 and 054 SIDE/CCGE Standby OFF.	· · ·
	g. Check experiment status telemetry AB-04, AB-05, and CS-02 for correct indication.	SIDE/CCGE STANDBY OFF.

Table 2. Phase II (Lunar Module Ascent Phase)

EVENT	MCC ACTIVITY	REMARKS
EVENT 8.0 Solar Wind Spectrometer Checkout	 MCC ACTIVITY a. Dust Cover Removal (1) Check for the availability of adequate reserve power. Adjust PDR's if necessary. (2) Initiate and verify Command Octal 122 DUST COVER REMOVAL. (3) Check science data for periods before and after dust cover removal to confirm that cover has properly cleared sensor. 	REMARKS Do not initiate Command 122 without direction from P.I.

(<u>)</u>.

ŝ

Table 2. Phase II (Lunar Module Ascent Phase)

	EVENT	MCC ACTIVITY		REMARKS	
	8.0 Solar Wind Spectrometer Checkout	b.	High Voltage Gain Change (1) Initiate and verify Command Octal		
			122 HIGH VOLTAGE GAIN CHANGE.	Octal 122 is received three times within ten seconds.	
			 (2) Check DC and AC High Voltage Calibrations per Table 1, Phase I, Event 16, Steps b(5) and b(6) to confirm execution of the command. 		
CZ		c.	Collection of Baseline SWS Data in High Gain.		
			Record data without further transmission of commands to establish background noise level and frequency and magnitude of plasma current peaks.		

Table 2. Phase II, (Lunar Module Ascent Phase)

EVENT	MCC ACTIVITY	REMARKS
9.0 Lunar Surface Magnetometer Checkout	 a. Housekeeping Data Check Check the following data parameters in the indicated subcommutation of ALSEP word 5, bits 2-8 on printout: X Sensor Temperature. DM-1 Y Sensor Temperature. DM-2 X Sensor Temperature. DM-2 X Sensor Temperature. DM-3 Gimbal Flip Unit Base Temperature. DM-3 Gimbal Flip Unit Base Temperature. DM-4 Internal Electronics Temperature. DM-5 Level Sensor #1 DM-6 Level Sensor #2 DM-7 DC Supply Voltage. DM-8 b. Initial Status Check Check the status of the following parameters in ALSEP word 5, subcommutation as indicated: X-axis Flip Position Frame 1, bits 9-10. DM-9 Y-axis Flip Position Frame 2, bits 9-10. DM-10 	

 \cap

۳

 \mathbf{r}

Table 2. Phase II, (Lunar Module Ascent Phase)

EVENT	MCC ACTIVITY		REMARKS
EVENT 9.0 Lunar Surface Magnetometer Checkout (Cont'd)	MCC ACTIVITY b. Initial Status Check (Cont'd (3) Z-axis Flip Position Frame 3, bits 9-10. (4) X-axis Gimbal Position Frame 4, bit 9. (5) Y-axis Gimbal Position Frame 4, bit 10. (6) Z-axis Gimbal Position Frame 5, bit 9. (7) Temperature Control State Frame 5, bit 10. (8) Heater power status Frame 6, bit 10. (9) Measurement Range Frame 7, bits 9-10. (10) X-axis Field Offset. Frame 10, bit 9. (11) Y-axis Field Offset. Frame 10, bit 9. (12) Z-axis Field Offset. Frame 12, bits 9-10 and Frame 13, bit 9. (13) Calibration Mode State Frame 13, bit 10. (14) Offset Address State.	DM-11 DM-12 DM-13 DM-14 DM-15 DM-28 DM-16 DM-16 DM-17 DM-18 DM-19 DM-19 DM-20	REMARKS Pre-site-survey position Pre-site-survey position X-axis address On or Off 200 gammas O% O% Scientific Neutral
	Frame 14, bits 9-10. (15) Filter Status Frame 15, bit 9.	DM-21 DM-22	IN

 \cap

Table 2. Phase II, (Lunar Module Ascent Phase)

EVENT		MCC ACTIVITY	REMARKS
9.0 Lunar Surface Magnetometer Checkout (Cont'd)	b.	Initial Status Check (Cont'd) (16) Calibration Inhibit status Frame 15, bit 10. DM-23	Inhibited
	с.	Field Offset Determination (1) Initiate and verify Command octal 125 OFFSET ADDRESS	Consult PI before initiating command.
		(2) Check telemetry for indication of OFFSET ADDRESS, ALSEP word 5, LSM Frame 14, bit 9 and 10. DM-21	X-axis
		(3) Initiate and verify Command octal 124 FIELD OFFSET	
		(4) Verify that X-axis offset has changed, (Frame 9, bits 9 and 10 and Frame 10, bit 9).	
		(5) Observe change in X-axis data on analog recorder.	
		(6) Repeat Event 9, Step c(3) as necessary to bring X-axis output to suitable value. Observe the shift in X-axis offset per ana- log recorder and Frame 9 and 10 telemetry.	Consult PI before repeating this step.

Table 2. Phase II, (Lunar Module Ascent Phase)

EVENT	MCC ACTIVITY		REMARKS
9.0 Lunar Surface Magnetometer			
Checkout (Cont'd)	(7)	Confirm optimum range and offset setting by observation of ana- log recorder.	
	(8)	Initiate and verify Command Octal 125 OFFSET ADDRESS.	Y-Axis address
	(9)	Check telemetry of offset add- ress, Frame 14, bits 9-10. DM-21	
	(10)	If required, repeat Event 9, Step c(3).	
	(11)	Confirm that Y-axis offset has changed.	
	(12)	Repeat Event 9, Step c(3) as necessary observing change in Y-axis offset.	Consult PI before repeating this step.
	(13)	Initiate and verify Command octal 125 OFFSET ADDRESS.	
	(14)	Check telemetry of offset address Frame 14, bits 9-10. DM-21	Z-axis address

+

ŵ.

Table 2. Phase II, (Lunar Module Ascent Phase)

EVENT	MCC ACTIVITY	REMARKS
9.0 Lunar Surface Magnetometer Checkout (Cont'd)	 c. Field Offset Determination (Cont'd) (15) Repeat Event 9, Step c(3). (16) Confirm that Z-axis offset has changed. (17) Repeat Event 9, Step c(3) as necessary, observing change in Z-axis offset. (18) Initiate and verify Command octal 125 OFFSET ADDRESS. 	Consult PI before repeating this step.

,

.

Table 2. Phase II, (Lunar Module Ascent Phase)

	EVENT	MCC ACTIVITY	REMARKS
10.	Heat Flow Experiment Checkout	a. Check HFE data on a continuous basis.	Note significant trends, especially during the turn-on period for the other experi- ments.
		b. Check need for leveling of the HFE electronics package.	
		c. Initiate and verify octal command 152 twice.	To ensure heater sequence is operating properly.
		d. Monitor HFE engineering channels as shown below:	Note significant trends.
		Telemetry word 33: (1) +5 v supply (AH-1) (2) -5 v supply (AH-2) (3) +15 v supply (AH-3) (4) -15 v supply (AH-4) (5) Low conductivity heater (6) High conductivity heater	Should be zero except during the conductivity experiment.

TABLE 3. PHASE III (Forty-Five Day Phase)

.

Phase III is outlined in Table 3 and covers the period from experiment checkout and verification through the following 45 calendar days. Table 3 includes lunar surface experiments only; orbital experiment operations are covered in Table 5. Phase V (Lunar Orbit Phase).

Table 3. Phase III (Forty-Five Day Phase)

EVENT	MCC ACTIVITY			REMARKS
1.0 Central Station	a.	Monitor and record all engineering telemetry and utilize reserve power to optimize Central Station thermal environment.		Note any out-of-limit readings and signi- ficant trends toward limits.
		Lunar Cycle	Commands	
		Day/Night	Octal 022 PDR #2 ON	PDR #2 is a 14-watt power dump resistor.
		Day/Night Octal 023 PDR #2 OFF		
		Night Octal O24 DSS Htr #1 ON		DSS Heater #1 is a 10-watt heater.
		Night	Octal Ol7 DSS Htr #2 ON	DSS Heater #2 is a 5-watt heater.
	b.	Confirm an appropriate change for each command executed.		
	с.	Check downlink signal strengths at each "hand-over" from one MSFN station to the next. Log results and note any significant trend.		

*

Table 3. "hase III (Forty-Five Day Phase)

EVENT	MCC ACTIVITY	REMARKS
2.0 Passive Seismic Experiment	 a. Monitor and record all science and engineering data continuously. b. Relevel in Auto Mode as required. Octal 070 - X-Motor ON/OFF Octal 071 - Y-Motor ON/OFF c. Check for evidence of automatic calibration of short period sensor at 18-hour intervals. 	Record impact of spent LM-10 ascent stage on lunar surface.

Table 3. Phase III (Forty-Five Day Phase)

EVENT	MCC ACTIVITY	REMARKS
3.0 Suprathermal Ion Detector Experiment/ Cold Cathode	a. Check experiment status telemetry AB-04, AB-05 and CS-02 for correct indications.	SIDE/CCGE Standby Off.
Gauge Experi- ment	b. Monitor SIDE/CCGE average temperature.	Near the first lunar sunset, the SIDE/CCGE average temperature will approach 25°C.
	c. Initiate command octal 153, SIDE Operational Power On.	Consult P.I. before sending the command. This command is to be issued approximately 10 minutes before impact of the LM ascent stage.
	d. Check experiment status telemetry AB-04, AB-05 and CS-02 for correct indications.	SIDE/CCGE Power on.
	e. Monitor and record all SIDE/CCGE Engineering and Scientific data continuously.	Note any significant trends.
	f. At discretion of the P.I., utilize SIDE/CCGE voltage step commands.	
	g. Initiate and verify the following sequence of commands:	Consult the P.I. before sending these commands.
	CCGE high voltage OFF, octals 104 106, 107 and 110.	These commands to be issued approximately 20 minutes after LM impact.

٠

Table 3. Phase III (Forty-Five Day Phase)

EVENT	MCC ACTIVITY	REMARKS
3.0 Suprathermal Ion Detector Experiment/ Cold Cathode Gauge Experi- ment (Cont'd)	h. Check experiment status telemetry AB-04, AB-05 and CS-02 for correct indications.	<pre>SIDE/CCIG Power On. High Voltage Off. NOTE: The SIDE/CCGE will remain in this power configuration unless directed otherwise by the P.I.</pre>

Table 3. Phase III (Forty-Five Day Phase)

EVENT	MCC ACTIVITY			REMARKS
4.0 Solar Wind Spectrometer	basis	or science data on a continuous and advise SWS PI of significan rement developments.		f-limit conditions and sig- s toward limits.
		per day, log and note signi- t trends of the following:		
	Temp. <u>Meas</u> .		SWS Word	LSB
	DW-11 DW-12 DW-13 DW-14 DW-14 DW-15 DW-16 DW-17	Temp. Mod 200 Temp. Mod 300 Temp. Sensor Cup Assembly Sun Angle Sensor Programmer Voltage	112 113 114 115 116 117 118	1 1 1 1 1 1
	conti			l of-limit conditions and rends toward limits.

Table 3. Phase III (Forty-Five Day Phase)

EVENT	MCC ACTIVITY	REMARKS
5.0 Lunar Surface Magnetometer	a. Monitor science data measurement, DM-25 through DM-27, on a continuous basis.	During non-active periods of LSM activity, printout 5 minutes of data per hour on the high speed printer.
	b. Once per day, record housekeeping data as in Phase II, Event 9, Step a.	Note significant trends.
	c. Once per day, record experiment supply voltage, DM-08.	
	d. Flip Calibrate No. 2	
	(1) Check science data for evidence of automatic flip/calibration.	Turn on high speed printer and brush recorder for continuous recording.
	(2) Repeat Phase I, Event 14, Stepd FLIP/CAL INITIATE octal 131.	, Consult PI before initiating command. Record as FLIP CAL No. 2 in Flight Controller's log.
	e. Housekeeping Data Check	
	Repeat check of Phase II, Event 9, Step a and compare with original data.	
	f. Flip Calibrate No. 3	
	Repeat Phase I, Event 14, Stepd,	Consult PI before initiating command. Record as FLIP/CAL No. 3 in the Flight Controller's log.

Table 3. Phase III (Forty-Five Day Phase)

EVENT	MCC ACTIVITY		REMARKS
5.0 Lunar Surface Magnetometer (Cont'd)	g. Flip Calibrate No. 4 Repeat Phase I, Event 14, Step d,		Consult PI before initiating command. Record as FLIP/CAL No. 4 in the Flight Controller's log.
	h.	After the fourth Flip/Cal cycle, perform site survey as follows: (1) Check for adequate reserve	
		power, AE-05. (2) Initiate and verify Command octal 133 SITE SURVEY	NOTE: First transmission of this command initiates X-axis survey.
		(3) From LSM data, printout 5 minutes prior to, during, and 5 minutes subsequent to the Flip/Cal sequence.	Use either real-time data or tape recorder data for this requirement.
		(4) Verify appropriate change in science data as survey pro- gresses.	PI requires 3 hours for data analysis prior to initiation of next step.

Table 3. Phase III (Forty-Five Day Phase)

EVENT	MCC ACTIVITY	REMARKS
5.0 Lunar Surface Magnetometer (Cont'd)	i. Repeat Step h(1) through h(4) above, twice to perform Y-axis and Z-axis site surveys.	
	j. At least 6 days after completion of site survey, initiate Command octal 132 FILTER BYPASS. Verify as per Frame 15, bit 9.	Filter Out
	k. Record data for 6 hours.	
	 Initiate Command octal 132 FILTER BYPASS. Verify as per Frame 15, bit 9. 	Filter In
	m. Ground Command FLIP/CAL during lunar sunrise:	
	Initiate FLIP/CAL Command every 6 hours commencing 18 hours prior to lunar sunrise and continuing for a period of 18 hours after the event. Procedure will follow Phase I, Event 14, Step d.	
	n. Ascertain from scientific data that the 18-hour automatic Flip/Cal se- quence is in effect at all times other than Step m above.	

ı.

EVENT
5.0 Lunar Surface Magnetometer (Cont'd)

EVENT	MCC ACTIVITY	REMARKS
EVENT 6.0 Heat Flow Experiment	 MCC ACTIVITY a. Monitor the HFE Engineering and Scientific Data. b. Heat Flow Conductivity Experiment. 1. Check HFE data telemetry word 21, bits 3, 4, 5, 6 of HFE word 5 for correct heater state. 2. If bits 3, 4, 5, 6 of HF word 5 are not 0000, send octal command 152 (Heater Advance) until the bits are in the proper state. Reference HFE heater sequence. Figure 12. 	REMARKS Monitor temperature trends at each sensor. Monitor mode, heater, and programmer status and note abnormal readings. Consult PI prior to performing conduct- ivity experiment. During the conductivity experiment consult the PI before making any mode changes or data interruptions. The time interval for hard copy printouts will be a real-time decision by the PI. Octal command 152 advances the heater switch one state for each command sent. The next state after Heater 23 ON is Heater 12 OFF.
	rigure iz.	Heat Flow Cond.Heater Energized1H122H143H114H135H226H247H218H23

EVENT	MCC ACTIVITY	REMARKS	
7.0 Heat Flow Conductivity Experiment 1 Mode 2 Oper- ation H12	Command Sequence (Initiate and verify)	Bridge Measurement	Heater State
A. Initiation	Monitor for 2 hours	DTH 11	0000
B. Heating Phase (a) PI will determine, after 1 hr, to contin- ue in Mode 2 or switch to Mode 3 operation	152, 136	phase will be fr (a) The heater as Mode 2 operat	0001 stay in Mode 2 the heating om 15 to 36 hours. dvance Command 152, in tion, can be sent during nitiation period.

Table 3. Phase III (Forty-Five Day Phase)

EVENT	MCC ACTIVITY	REMARKS
8.0 Heat Flow Conductivity Experiment 1 Mode 3 Oper- ation (Cont'd)		
(D) Monitor Probe 1 gradient bridge for 15 minutes. (see note b)	135, 142, 152 (14 times)	DTH (11, 12) T (11, 12) 0010
(E) Monitor Lower sec- tion ring bridge for		DTR 12, TR 12 0010
15 minutes.		(a) For ring bridge, Mode 3 measurements, the 15 minute period starts when the last command has been initiated and verified.
		(b) For gradient bridge measurements, the 15 minute period starts when command 135 has been initiated and verified.

 \cap

Table 3. Phase III (Forty-Five Day Phase)

EVENT	MCC ACTIVITY	REMARKS
 8.0 Heat Flow Conductivity Experiment 1 Mode 3 Oper- ation (Cont'd) (F) Return to Step 3 and repeat steps (C-E) for a minimum of 6 hours. (G) Return to Mode 1 operation, full sequence. 	135, 141	

Table 3. Phase III (Forty-Five Day Phase)

EVENT	MCC ACTIVITY	REMARKS	
9.0 Heat Flow Conductivity Experiment 2 Mode 2 Oper- ation H 14		Bridge <u>Measurement</u>	Heater <u>State</u>
(A) Initiation	Monitor for 2 hours	DTH 12	0010
(B) Heating Phase	152 , 136	DTH 12	0011
PI will deter- mine, after 1 hour to con- tinue in Mode 2 or switch to Mode 3 oper- ation.			

Conversion of the second

Table 3. Phase III (Forty-Five Day Phase)

EVENT	MCC ACTIVITY	REMARKS	
10.0 Heat Flow Conductivity Experiment 2	Command Sequence	Bridge Measurement	Heater State
Mode 3 Oper- ation	(Initiate and Verify)		
(A) Heating Phase 10 hours Terminate on appro- val of PI.	140, 144	DTR 12, TR 12	0011
(B) Monitor lower sec- tion ring bridge for 15 minutes.		DTR 12, TR 12	0110
(C) Monitor Probe 1 gradient bridge for 15 minutes.	135,142	DTH (11, 12) T (11, 12)	0110
(D) Monitor lower sec- tion ring bridge for 15 minutes.			

X

 \cap

·

Table 3. Phase III (Forty.Five Day Phase)

EVENT	MCC ACTIVITY	REMARKS
 10.0 Heat Flow Conductivity Experiment 2 Mode 3 Oper- ation (Cont'd) (E) Return to Step C and repeat steps (C and D) for a minimum of 6 hrs. (F) Return to Mode 1 Operation, full sequence 	135, 141	

. 97

EVENT	MCC ACTIVITY	REMARKS	
ll.O Heat Flow Conductivity Experiment 3	Command Sequence	Bridge <u>Measurement</u>	Heater State
Mode 2 Oper- ation H 22	(Initiate and verify)		
(A) Initiation	Monitor for 2 hours	DTH 21	0110
(B) Heating Phase	152, 152, 152, 136	DTH 21	1001
PI will deter- mine after one hour, to con- tinue in Mode 2 or switch to Mode 3 oper- ation.			

EVENT	MCC ACTIVITY	REMARKS	
12.0 Heat Flow Conductivity Experiment 3	Command Sequence	Bridge <u>Measurement</u>	Heater State
Mode 3 Oper- ation	(Initiate and Verify)		
(A) Heating Phase 10 hr. Terminate on appro- val of PI.	140, 144	DTR 21, TR 21	1001
(B) Monitor lower sec- tion ring bridge for 15 minutes		DTR 22, TR 22	1010
(C) Monitor upper sec- tion ring bridge for 15minutes.	135, 152, 152, 140, 144	DTR 21, TR 21	1100
(D) Monitor Probe 2 gradient bridge for 15minutes.	135, 143, 152 (14 times)	DTH (21, 22) T (21, 22)	1010

٥.

x

Table 3. Phase III (Forty-Five Day Phase)

EVENT	MCC ACTIVITY	REMARKS	
12.0 Heat Flow Conductivity Experiment 3 Mode 3 Oper- ation (Cont'd)		Bridge <u>Measurement</u>	Heater <u>State</u>
(E) Monitor lower sec- tion ring bridge for 15minutes.		DTR 22, TR 22	1010
(F) Return to Step C and repœt steps (C-E) for a minimum of 6 hrs.			
(G) Return to Mode 1 operation, full sequence.			

EVENT	MCC ACTIVITY	REMARKS	
13.0 Heat Flow Conductivity Experiment 4 Mode 2 Operation H-24	Command Sequence (Initiate and Verify)	Bridge <u>Measurement</u>	Heater <u>State</u>
(A) Initiation	Monitor for 2 hours	D T H 22	1010
<pre>(B) Heating Phase PI will deter- mine, after 1 hour to con- tinue in Mode 2 or switch to Mode 3 oper- ation.</pre>		DTH 22	1011

Table 3. Phase III (Forty-Five Day Phase)

EVENT	MCC ACTIVITY	REMARKS	
14.0 Heat Flow Conductivity Experiment 4 Mode 3 Operation	Command Sequence (Initiate and Verify)	Bridge <u>Measurement</u>	Heater State
(A) Heating Phase 10 hours Terminate on appro- val of PI.	140, 144	DTR 22, TR 22	1011
(B) Monitor lower sec- tion ring bridge for 15 minutes.	135, 152, 152, 152, 140, 144	DTR 22, TR 22	1110
(C) Monitor Probe 2 gradient bridge for 15 minutes.	135, 143	DTH (21, 22) T (21, 22)	1110

Table 3. Phase III (Forty-Five Day Phase)

EVENT	MCC ACTIVITY	REMARKS	
14.0 Heat Flow Conductivity Experiment 4 Mode 3 Oper- ation(Cont'd)		Bridge Heater <u>Measurement</u> <u>State</u>	
(D) Monitor lower sec- tion ring bridge for 15 minutes.	140, 144	DTR 22, TR 22 1110	
(E) Return to Step C and repeat steps (C thru D) for a min- imum of 6 hrs.			
(F) Return to Mode 1 operation, full sequence.			

Table 3. Phase III (Forty-Five Day Phase)

EVENT	MCC ACTIVITY	REMARKS	
15.0 Heat Flow Conductivity Experiment 5 Mode 2 Operation H 11.	Command Sequence (Initiate and Verify)	Bridge <u>Measurement</u>	Heater <u>State</u>
(A) Initiation	Monitor for 2 hours	DTH 11	1110
(B) Heating Phase	152 (7 times), 136	DTH 11	0101
PI will deter- mine after 1 hour, to con- tinue in Mode 2 or switch to Mode 3 Operation.			
	X		

Table 3. Phase III (Forty-Five Day Phase)

EVENT	MCC ACTIVITY	REMARKS	
16.0 Heat Flow Conductivity Experiment 5 Mode 3 Operation.	Command Sequence (Initiate and Verify)	Bridge <u>Measurement</u>	Heater <u>State</u>
(A) Heating Phase 10 hrs. Terminate on appro- val of PI.	140, 144	DTR 11, TR 11	0101
(B) Monitor upper sec- tion ring bridge for 15 minutes.	135, 152 (ll times) 140, 144	DTH 11, TR 11	0000
(C) Monitor Probe l gradient bridge for 15 minutes.	135, 142	DTH (11, 12) T (11, 12)	0000
(D) Monitor upper sec- tion ring bridge for 15 minutes	140, 144	DTR 11, TR 11	0000

 \frown

Table 3. Phase III (Forty.-Five Day Phase)

EVENT	MCC ACTIVITY	REMARKS
 16.0 Heat Flow Conductivity Experiment 5 Mode 3 Operation (Cont'd) (E) Return to Step 3 and repeat steps (C-D) for a minimum of 6 hrs. (F) Return to Mode 1 Operation full sequence 	135, 141	

EVENT	MCC ACTIVITY	REMARKS	
17.0 Heat Flow Conductivity Experiment 6 Mode 2 Operation H 13	Command Sequence (Initiate and Verify)	Bridge <u>Measurement</u>	Heater <u>State</u>
(A) Initiation	Monitor for 2 hours	DTH 12	0000
<pre>(B) Heating Phase PI will deter- mine after 1 hour, to con- tinue in Mode 2 or switch to Mode 3 operation.</pre>	152 (7 times), 136	DTH 12	0111

Table 3. Phase III (Forty-Five Day Phase)

EVENT	MCC ACTIVITY	REMARKS	
18.0 Heat Flow Conductivity Experiment 6 Mode 3 Operation.	Command Sequence (Initiate and Verify)	Bridge <u>Measurement</u>	Heater <u>State</u>
(A) Heating Phase 10 hrs. Terminate on appro- val of PI.	140, 144	DTR 12, TR 12	0111
(B) Monitor upper sec- tion ring bridge for 15 minutes		DTR 11, TR 11	0000
(C) Monitor lower sec- tion ring bridge for 15 minutes	135, 152, 152, 140, 144	DTR 12, TR 12	0010
(D) Monitor Probe 1 gradient bridge for 15 minutes	135, 142, 152 (14 times)	DTH (11, 12) T (11, 12)	0000

Table 3. Phase III (Forty-Five Day Phase)

EVENT	MCC ACTIVITY	REMARKS	
18.0 Heat Flow Conductivity Experiment 6 Mode 3 Operation. (Cont'd)		Bridge <u>Measurement</u>	Heater <u>State</u>
(E) Monitor upper sec- tion ring bridge for 15 minutes		DTR 11, TR 11	0000
(F) Return to Step C and repeat steps (C thru E) for a min- imum of 6 hrs.			•
(G) Return to Mode 1 operation, full se- quence.	135, 141		

EVENT	MCC ACTIVITY	R	EMARKS
19.0 Heat Flow Conductivity Experiment 7 Mode 2 Operation H2L	Command Sequence (Initiate and Verify)	Bridge <u>Measurement</u>	Heater <u>State</u>
(A) Initiation	Monitor for 2 hours	DTH 21	0000
(É) Heating Phase PI will deter-	152 (13 times), 136	DTH 21	1101
mine after 1 hour, to con- tinue in Mode 2 or switch to Mode 3 oper- ation.			

Table 3. Phase III (Forty-Five Day Phase)

EVENT	MCC ACTIVITY	REMARKS	
20.0 Heat Flow Conductivity Experiment 7 Mode 3 Operations	Command Sequence (Initiate and Verify)	Bridge <u>Measurement</u>	Heater <u>State</u>
(A) Heating Phase 10 Hrs. Terminate on appro- val of PI.	140, 144	DTR 21, TR 21	1101
(B) Monitor upper sec- tion ring bridge for 15 minutes		DTR 21, TR 21	1000
(C) Monitor Probe 2 gradient bridge for 15minutes.	135, 143	DTH (21, 22) T (21, 22)	1000
(D) Monitor upper sec- tion ring bridge for 15minutes.	140, 144	DTR 21, TR 21	1000

Table 3. Phase III (Forty-Five Day Phase)

EVENT	MCC ACTIVITY	REMARKS
EVENT 20.0 Heat Flow Conductivity Experiment 7 Mode 3 Oper- ations (Contd) (E) Return to Step C and repeat steps (C thru D) for a min- imum of 6 hrs. (F) Return to Mode 1 operation, full sequence.	135, 141	REMARKS

Table 3. Phase III (Forty-Five Day Phase)

EVENT	MCC ACTIVITY	REMARKS	
21.0 Heat Flow Conductivity Experiment 8 Mode 2 Oper- ation H 23	Command Sequence (Initiate and Verify)	Bridge <u>Measurement</u>	Heater <u>State</u>
(A) Initiation	Monitor for 2 hours	DTH 22	1000
(B) Heating Phase	152 (7 times), 136	D T H 22	1111
PI will deter- mine after 1 hour, to con- tinue in Mode 2 or switch to Mode 3 Oper- ation.			

 \cap

Table 3. Phase III (Forty-Five Day Phase)

EVENT	MCC ACTIVITY	REMARKS	
22.0 Heat Flow Conductivity Experiment 8 Mode 3 Oper- ation	Command Sequence (Initiate and Verify)	Bridge <u>Measurement</u>	Heater State
(A) Heating Phase 10 hrs. Terminate on appro- val of PI.	140, 144	DTR 22, TR 22	1111
	135, 152 (9 times), 140, 144	DTR 21, TR 21	1000
(C) Monitor lower sec- tion ring bridge for 15 minutes	135, 152, 152, 140, 144	DTR 22, TR 22	1010

TLL L \cap

-

Table 3. Phase III. (Forty-Five Day Phase)

EVENT	MCC ACTIVITY	REMARKS	
22.0 Heat Flow Conductivity Experiment 8 Mode 3 Oper- ation (Cont'd)		Bridge Heate <u>Measurement</u> State	
(D) Monitor Probe 2 gradient bridge fon 15 minutes		DTH (21, 22) T (21, 22) 1000	
(E) Monitor upper sec- tion ring bridge for 15 minutes.		DTR 21, TR 21 1000	
(F) Return to Step C and repeat Steps (C thru E) for a min- imum of 6 hours.			
(G) Return to Mode 1 Op- eration, full se- quence	135, 141		

State					Heater	Function	Bridge Energize
	H4	нз	H2	HL			<u></u>
1	0	0	0	0	12	OFF	DTR 11
2	0	0	0	1	12	ON	DTR 11
3	0	0	l	0	14	OFF	DTR 12
4	0	0	1	1	14	ON	DTR 12
5	0	1	0	0	11	OFF	DTR 11
6	0	1	0	1	11	ON	DTR 11
7	0	1	1	0	13	OFF	DTR 12
8	0	1	1	1	13	ON	DTR 12
9	1	0	0	0	22	OFF	DTR 21
10	1	0	0	1	22	ON	DTR 21
11	1	0	1	0	24	OFF	DTR 22
12	1	0	1	1	24	ON	DTR 22
13	1	1	0	0	21	OFF	DTR 21
14	1	1	0	1	21	ON	DTR 21
15	l	1	1	0	23	OFF	DTR 22
16	1	1	1	l	23	ON	DTR 22
	Bore	Hole	l			Bore Hole 2	
Тор	ò	H11		דר הוווות		H21	
		Hl2		DTR 11		H22	DTR 21.
		Hl3				H23	
Bot	ctom	H14		DTR 12		H24	DTR 22

,

n.

ł

Figure 12. Heat Flow Experiment Heater Sequence

TABLE 4. Phase IV (One-Year Phase)

.

Phase IV as outlined in Table 4 covers the period from forty-five (45) days through the first year of operational life for ALSEP. Table 4 includes lunar surface experiments only; orbital experiment operations are covered in Table 5, Phase V (Lunar Orbit Phase).

Table 4. Phase IV, (One Year Phase)

EVENT	MCC ACTIVITY	REMARKS
1.0 Central Station	a. Check Central Station engineering telemetry as in Phase III, Event 1, Step a, and initiate any contingency action indicated.	Check temperatures early in each access period, and every day during continuous coverage.
	b. Optimize the Central Station thermal environment for the next 24-hour period as in Phase III, Event 1, Step a.	

811

Sec. 1

Table 4. Phase IV, (One Year Phase)

EVENT		MCC ACTIVITY	REMARKS		
2.0 Passive Seismic Experiment		a. Early in the access period and every day during continuous coverage, check PSE sensor temperature, DL-07.	Log temperatures a	nd note trends.	
		b. Early in the access period and again near end of access, check Tidal X, Y and Z data, DL-04, DL-05 and DL-06, respectively, for excessive drift of sensor and relevel as required.	Y MTR ON/OFF	Octal 070 Octal 071 Octal 072	
		c. During each continuous coverage access period, check for evidence of auto- matic calibration in short period data, DL-08 and initiate contingency action if necessary. Adjust gain, if necessary, per Phase I, Event 12, Step d.	ce of auto- od data, action if		
		d. During each access period, calibrate long period circuitry as in Phase I, Event 12, Step g.			
		e. Monitor science data for evidence of unusual developments.			
		f. Record seismic event resulting from impact, on lunar surface, of the S-IV-B stage from the Apollo 16 mission.			

611

Contraction of the second

.

Table 4.

Phase IV, (One Year Phase)

EVENT	MCC ACTIVITY	REMARKS
3.0 Suprathermal Ion Detector Experiment/ Cold Cathode Gauge Experi- ment	during continuous coverage, check instru- ment temperatures as in Phase I, Event 13, Step $b(4)$, and initiate contingency action	

Table 4. P

Phase IV,	(One	Year	Phase)
-----------	------	------	--------

EVENT	MCC ACTIVITY	REMARKS
+.0 Solar Wind a Spectrometer d t a r b e	 a. Early in each access period and every day during continuous coverage, check telemetry as in Phase II, Event 8, Step b, and initiate contingency action, if required. b. Near the end of each access period, examine science data for evidence of unusual developments. 	

Table 4. Phase IV, (One Year Phase)

EVENT	MCC ACTIVITY	REMARKS
5.0 Lunar Surface Magnetometer	a. Early in each access period and every day during continuous coverage, check engineering data as in Phase II, Event 9, Step a(1) through a(8) and initiate con- tingency action if required.	Log analog engineering value and note significant trends.
	b. During each continuous coverage access period, check science data for evidence of automatic FLIP/CAL at 18-hour intervals.	
	c. During periods of continuous coverage, perform additional FLIP/CAL cycles as required, per Phase I, Event 14, Step d, Readjust gain and offset per Phase I, Event 14, Step c if required.	
	d. Near the end of each access period, examine LSM scientific data for evidence of unusual developments.	Compare LSM data with data obtained from the Sub-Satellite Magnetometer, S-174.

Table 4.

Phase IV, (One Year Phase)

*

EVENT	MCC ACTIVITY	REMARKS
6.0 Heat Flow Experiment	Command Sequence:	Bridge Measurement: Heater State:
 (A) Check HFE data for 2 hr. periods. 1. Initiation 		Monitor temperature trends at each sensor. Monitor mode, heater, and programmer state and note abnormal readings. Ensure heater state is 0000. If not, send command 152 until state 0000 is reached.
2. M 3 opera- tion - 15 min.	140, 144	DTRLL 0000
3. M l opera- tion - 15 min.	135, 152, 152	Full Sequence 0010
4. M 3 opera- tion - 15 min.	140, 144	DTR 12 0010
5. M l opera- tion - 15 min.	135, 152 (6 times)	Full Sequence 1000
6. M 3 opera- tion - 15 min.	140, 144	DTR 21 1000

Table 4.

Př

		and the second second		
Phase	IV,	(One	Year	Phase)

EVENT		MCC ACTIVITY	REMARKS		
6.0	Heat Flow Experiment (Cont'd)	Command Sequence:	Bridge Measurement:	Heater State:	
	7. M l opera- tion - 15 min.	135, 152, 152	Full Sequence	1010	
	8. M 3 opera- tion - 15 min.	140, 144	DTR 22	1010	
	9. M 3 opera- tion - 15 min.	135, 152 (6 times)	Full Sequence	0000	
			The PI will perform a secon tivity experiments during t months of the lunar year.		

Table 5. Phase V (Lunar Orbit Phase)

.

C

Phase V is outlined in Table 5 and covers the period of all scientific activity for the lunar orbit experiments beyond earth orbit. Table 5 does not include those experiments performed on the lunar surface.

 \cap

Table 5. Phase V (Lunar Orbit Phase)

٠

.

EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	REMARKS
1.0 Orbital Experiments			Most experiments require a field- of-view along the local vertical when mounted in the SIM. However, for calibration purposes, some experiments require CSM orienta- tion to other attitudes for vari- ous time periods. In the case where the SIM is not pointing along the local vertical, some experiments should be turned to Standby or OFF. This decision will be made in Real-Time by the PI. Lunar Orbit experiments must be scheduled relative to time- critical operations such as LM descent and ascent, rendezvous and transearth injection and with- out interference with essential mission profile operations.

M

Table 5. Phase V (Lunar Orbit Phase)

	EVENT	ASI	FRONAUT ACTIVITY	MCC ACTIVITY	REMARKS
2.0	SM Orbital Science Photography	a.	Launch or Powered Flight		
	2.1 24-Inch Panoramic Camera		Place the Panoramic Camera POWER/OFF/ BOOST switch (Sl2) in the BOOST postion.	None	Provides film supply spool tension to prevent slack during launch and other powered flight phases.
		b.	Film Advance Each twenty-four (24) hours (<u>+</u> 6 hours) momentarily place the Panoramic Camera SELF TEST/OFF, HEATERS switch (S10) to the Self Test position.	None	Automatically advances film 5 frames to prevent film set. Not necessary if camera was operated in that 24-hour period.
		с.	Camera Warm-up Non-Operating Conditions Place the Panoramic Camera OPERATE/ STANDBY switch (S11) to STANDBY and the SELF TEST/OFF/ HEATERS switch (S10) to HEATERS (as re- quired).	Monitor camera optical temperatures and house- keeping data.	40 to 100 ⁰ F.

۲

 \bigcap

Table 5. Phase V, (Lunar Orbit Phase)

2.0 (Cont'd)	
 2.1 24-Inch Panoramic Camera (Cont'd) d. <u>Camera Operation</u> (1) Retract the Mass Spectro- meter and Gamma Ray booms prior to camera operation. (2) Select the Pan- oramic Camera power ON/OFF/ BOOST switch (S12) to "ON" and the OPER- ATE/STANDEY switch (S11) to OPERATE. (3) Maintain space- craft attitude. (4) Select AEC Bias and modes per flight plan and/or voice 	mode.

۹

Table 5. Phase V (Lunar Orbit Phase)

×

.

	EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	REMARKS
2.0		e. <u>Camera Shut Down</u>	a. Monitor camera op- tics temperatures,	REMARKS 85 to 95°F. Camera heaters are thermostatically controlled ON at 85.5°F and OFF at 86.5°F when selected to HEATER/STANDBY or OPERATE modes. To assure lens stowage when selecting "OFF", place in the "STANDBY" position for a minimum of twenty seconds then select "OFF." Film cassette should not be exposed to any degree of solar radiation or deep-space sink temperatures for more than 40 minutes. Cassette to be stowed aboard the CM and the cassette orifices taped shut.

Table 5.	Phase V,	(Lunar	Orbit	Phase)

EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	REMARKS
2.0 (Cont'd) 2.2 Three Inch Mapping Camera	a. <u>Launch or Powered</u> <u>Flight</u> Place mapping camera ON/OFF/STANDBY switch (S6) to STANDBY.	None	Activates film supply cassette back-tensioning mechanism. Image motion compensation switch must be "OFF" for launch
	<pre>b. Film Advance (1)Each twenty-four (24) hours (+6) the map- ping camera switch (S6) is placed to STANDBY.</pre>	Monitor film cassette and optical temps.	40 to 100 ⁰ F. To prevent film set. Not necessary if camera was operated during that 24-hour period.
	(2)Place switch (S6) to "ON" for 5 camera cycles (approximately 2 minutes for normal V/H setting). Then select switch (S6) to "OFF".	Monitor optical and film cassette temps.	40 to 100°F.
	c. <u>Camera Warm-Up</u> Twenty-five (25) hours prior to mapping camera experiment place the ON/OFF/ STANDBY switch (S6) to STANDBY.	Monitor camera optical and cassette temperatures.	40 to 90 [°] F. Twenty-five (25) hours will be required if the optical system temperatures are between 40 [°] and 60 [°] F. at the beginning of the warm-up period.

υ**Γ**

 \frown

Table 5. Phase V (Lunar Orbit Phase)

•

٠

EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	REMARKS
2.0 (Cont'd) 2.2 Three Inch Mapping Camera (Cont'd)	 d. <u>Camera Operation</u> <u>Extend Boom</u> Open camera lens contamination cover. Prior to beginning of camera operations the Panel 181 Logic Switch must be placed in the DEPLOY position. Place the mapping camera Panel 230 Track EXTEND/RETRACT switch (S14) to the EXTEND position. 	Monitor camera optical temperatures.	Talkback indicator is gray when cover is open or closed and "barber pole" when in transition. 40 to 90°F. The camera boom system requires four minutes to extend 18 inches. The track indicator should show a barber pole during the extension period and gray when extension is complete.

<u>1</u>31

Table	5	Phase V,	($\cap \mathbb{L}^{+} + \mathbb{L}^{+}$	
rabre)•	rnase v.	Lunar	Urbit	rnase)
			(

EVENT ASTRONAUT ACTIVITY		MCC ACTIVITY	REMARKS
2.0 (Cont'd) 2.2 Three Inch Mapping Camera (Cont'd)	 e. <u>Operation with Image</u> <u>Motion "ON"</u> Place the mapping camera ON/OFF STANDBY switch to the STAND- BY position. Place the image motion increase ON/OFF switch Select the Map- ping Camera ON/ OFF/STANDBY switch (S6) to "ON". Select the Image Motion Increase switch (S27) to INCREASE upon request from MCC 	 a. Monitor optical temperatures and housekeeping data. b. Monitor optical temperatures and housekeeping data. 	Image motion ON or OFF is enabled only when mapping camera switch is set to Standby position, and the camera is in its "Home" position. $70^{\circ}F \pm 10^{\circ}F.$ $70^{\circ}F \pm 10^{\circ}F.$ Image motion increase is enabled only when mapping camera switch is set to ON position. Each time the image motion switch is set to its
	(V/H correction).		momentary increase position, and released (causing the switch to return to the ON position), a .(Continued on next page.)

Table 5. Phase V, (Lunar Orbit Phase)

EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	REMARKS
2.0 (Cont'd) 2.2 Three Inch Mapping Camera (Cont'd)	(3) Continued)		pulse is produced. This pulse causes the MC internally generated V/H signal to increase in value by approximately 1.0 milliradian/ second. A total of five such rates is provided: 12.1, 13.1, 14.1, 15.1 and 16.1 milliradians/second. Upon reaching its highest value, the next pulse produces the lowest V/H signal, so that the 5 step cycle can be repeated. (Barber pole only while in momentary increase position for 14.1 V/H rate.) Setting the image motion switch to OFF position locks out the image motion correction capa- bility of the camera. Setting the image motion switch to ON position permits image mo- tion correction mechanism to
	(4) Maintain Space- craft Attitude		function.

Table 5. Phase V (Lunar Orbit Phase)

	EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	REMARKS
2.0	(Cont'd) 2.2 Three Inch Mapping Camera (Cont'd)	 f. <u>Completion of Map-ping Camera Pass</u> (1) Select Mapping Camera image motion switch (S-27) to OFF. Place ON/OFF/STANDBY switch (S6) to STANDBY. 	Monitor optical temperatures	40 to 90 ⁰ F
		 g. End of Mapping <u>Camera Photographic</u> <u>Mission</u> h. <u>Repeat Mapping</u> <u>Camera Operations</u> <u>per Flight Plan or</u> <u>Photo Team Requests</u> (1) Place Mapping Camera ON/OFF/STANDBY switch (S6) to STAND- BY. Place Image motion switch (S27) to OFF. Place ON/ OFF/STANDBY switch (S6) to OFF. 		

	EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	REMARKS
2.0	(Cont'd) 2.2 Three Inch Mapping Camera	(2) Place DEPLOY/RETRACT logic switch (Panel 181) to RETRACT.		Retraction requires approximately 4 minutes.
	(Cont'd)	i. <u>EVA</u> : Retrieve film cassette.		Film cassettes should not be exposed to any degree of direct solar radiation or deep-space sink temperature for more than 40 minutes.

Table 5. Phase V (Lunar Orbit Phase)

 \bigcap

Table 5. Phase V, (Lunar Orbit Phase)

EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	REMARKS
2.0 (Cont'd) 2.3 Laser Altimeter (S-175)	 a. Laser Altimeter <u>Operation</u> Select Laser Altimeter power ON/OFF switch (S8) to "ON". (2) Maintain required spacecraft attitudes. 	Monitor Altimeter data word and housekeeping data.	32 to 131°F. Altimeter may be operated at any- time after SIM door removal (retracted or extended). The laser altimeter is sun sensitive. The laser altimeter is automat- ically slaved to the Mapping Camera whenever the laser altimeter is ON and the Mapping Camera is operating.

Table 5. Phase V (Lunar Orbit Phase)

EVENT	ł	ASTRONAUT ACTIVITY		MCC ACTIVITY	REMARKS
3.0 Gamma Ra Spectrom (S-160)	neter	. Extend Gamma-Ray Sensor & Boom	a.	Monitor Sim Bay environmental temp- erature.	Less than 110 [°] F. Following SIM Bay Door removal, the Gamma Ray Spectrometer must be extended (not necessarily full extension) when the SIM Bay envir- onment reaches or exceeds 110 [°] F. Cover opens automatically when Boom is extended.
		 Activate Gamma-Ray Spectrometer. (1) Accomplish exper- iment gain changes per PI request. (2) Maintain required spacecraft attitude. Experiment Inhibit (SHIELD OFF) 	Ъ.	Spectrometer output and housekeeping data. Request gain changes as required and monitor Gamma-Ray Spectrometer science data output. Select utes without boom end five hout after. Check.	Extend boom to 25 feet. Turn Spectrometer ON for a minimum of 10 hours operation (not necessar- ily continuous). Operation to be concurrent with Alpha and X-Ray experiments. Sensor orientation must be within <u>+</u> 11 1/2 [°] of local vertical. Select to "SHIELD OFF" for 10 min- utes within one hour after initial boom extension and once after each five hours of operation there- after. (Instrument Functional Check.) (This is not a require- ment during crew rest periods.)

, **1**37

	EVENT		ASTRONAUT ACTIVITY		MCC ACTIVITY	REMARKS
3.0	(Cont'd) Gamma Ray Spectrometer (S-160)	d.	Retract Boom to 8- foot position prior to Mapping or Pan Camera operations.	d.	Monitor SIM Bay Environment temp- erature.	Less than 110°F. The sensor should be partially extended if the SIM Bay Envigonment tempera- ture exceeds 110 F. (Sensor should be fully retracted for TEI burn.)
		e.	Post-TEI Gamma-Ray Activation.	e.	Monitor Gamma-Ray Spectrometer output and housekeeping data.	As soon as practical after TEI, for 30 cumulative hours of data. (Not to constrain PTC.)
		f.	Retract Boom (3 step sequence).	f.	Monitor Gamma-Ray Spectrometer output and housekeeping data.	Retract Boom 10 feet to the 15- foot position. Collect 2 hours of highly desirable plus 2 hours of additional data.
						Retract Boom 7 feet to the 8 foot position. Collect 2 hours of highly desirable plus 2 hours of additional data.
						Retract Boom fully. Collect 1 hour of highly desirable plus 1 hour of additional data.

Table 5. Phase V (Lunar Orbit Phase)

C. State

	EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	REMARKS
3.0	· ·	g. Deactivate Gamma-Ray Experiment. Select power switch to OFF.		

Table 5. Phase V (Lunar Orbit Phase)

Table	5.	Phase	V	(Lunar	Orbit	Phase)

	EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	REMARKS
4.0	X-Ray Fluorescence (S-161)	a. Open solar monitor door		Collects data on lunar sunlit side.
		b. Open experiment cover before operation.		Talkback indicator is "barber pole" during cover transition.
		c. Select to Standby.	a. Monitor SIM Bay Environment tempera- ture and experiment housekeeping data.	Experiment must be set to STANDBY once SIM Door is jettisoned to provide thermal protection. (When SIM Bay temperature falls below 0° F.)
	· · · ·	d. Activate experiment and maintain required spacecraft attitude.	 b. Monitor X-Ray Pulse Height Amplitude and housekeeping data. c. Monitor spacecraft attitude. 	Minimum of 10 hours of continuous operation required. Operation to be concurrent with Gamma-Ray and Alpha Particle Spectrometer exper- iments. Fluid dumps and certain thrusters must be inhibited during operations. Surface sensor to be within $\pm 6.5^{\circ}$ of local vertical. Should the surface sensor field- of-view approach within $\pm 60^{\circ}$ of the sun, the experiment must be set to STANDBY. Background data will be obtained once each activ- ity day while over the dark side of the moon by rolling the fluore- scence sensor 135 to 180° to view deep space.

 \cap

Table 5. Phase V (Lunar Orbit Phase)

۲

EVENT	A	ASTRONAUT ACTIVITY	MCC ACTIVITY	REMARKS
4.0 X-Ray Fluore (S-16) (Cont	escence	e. TEC Operation	Monitor X-Ray Pulse Height Amplitude and housekeeping data.	Collect TEC data for a minimum of 15 hours.
	,	f. Galactic Object Survey	Monitor X-Ray science and housekeeping data. Monitor spacecraft attitude.	Selected objects will be observed during TEC.

Table 5. Phase V, (Lunar Orbit Phase)

	EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	REMARKS
5.0	EVENT CSM/LM S-Band Transponder (S-164)		MCC ACTIVITY	REMARKS All functions that cause CSM translation (water dumps, purges, water boiler operations, etc.) must be inhibited. MSFN will obtain and record S-Band doppler measurement during front side passes of the CSM/IM in lunar orbit, the undocked CSM, the LM ` descent, and the LM ascent stage during descent for impact on lunar surface.

142

.

Table 5	. Phase	v (Lunar	Orbit	Phase)
		•			

	EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	REMARKS
6.0	EVENT Particles and Fields Subsatellite Experiment (S-173) (S-174) (S-164)	 ASTRONAUT ACTIVITY a. Spacecraft shall be in inertial hold for subsatellite launch. b. Position Panel 181 logic switch to JETT. c. Position Panel 230 switch to EXTEND/ LAUNCH. d. Following launch, or unsuccessful attempt to launch, position panel 230 switch to RETRACT. e. Photograph the sub- satellite immediately after launch. 	MCC ACTIVITY	REMARKS In a nominal 60 NM circular orbit at time of launch. Power to Panel 230. Protective cover opens automati- cally. Barber pole will show on initia- tion. On completion of launch, indicator will return to grey and the event will be transmitted via PCM. Launch must occur within <u>+</u> 10 minutes of the crossing of the reference plane.

Table 5.	Phase V,	(Lunar	Orbit	Phase)

EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	REMARKS
7.0 Alpha Particle Spectrometer Experiment	a. Open experiment cover.		Talkback indicator is a barber pole during cover transition.
(S-162)	b. Set to OPERATE.	Monitor experiment science and housekeeping data - SIM Bay Environ- ment.	Experiment must be turned on to provide thermal protection when SIM Bay Environment falls below O ^O F after SIM Bay door jettison.
	c. Maintain required spacecraft attitudes.	data.	Experiment to be operated con- currently with Gamma and X-Ray Experiments. 10 hours operation minimum. The sensor is to be pointed within $\pm 6\frac{10}{2}$ of local vertical. Once each operational day, while over the lunar dark side, the spacecraft is to be rolled 135 to 180° to expose the sensor to deep space for a 15 minute period to obtain back- ground data. Direct sunlight should not enter to within $\pm 45^{\circ}$ of the sensor field of view for more than 5 minutes at any one time or for more than a total exposure of 30 minutes.
	d. Select to OFF	Monitor SIM Bay temper- ature environment.	Experiment may be set to OFF prior to TEI to conserve power.
	e. TEC Operation per Flight Plan		

Contraction of the Indiana

Table 5. Phase V (Lunar Orbit Phase)

	EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	REMARKS
8.0	Mass Spectrometer Experiment (S-165)	a. Experiment Boom Deployment Following SIM Bay Door removal the experiment boom must be extended prior to initiating the 6-hour ion source heater operation.	Monitor astronaut activity.	Select the Mass Spectrometer Boom Deploy Logic Switch on Panel 181. Set Boom Deploy/Retract Switch S-7/S-4 to Deploy. Switch S-7/S-4 may be left in either the Extend or Retract position as a boom position crew reminder. Protec- tive cover opens automatically. An Extension Talkback indicator is provided.
		b. Experiment Ion Source Heater Operation	Monitor cumulative Ion Source Heater "ON" time, and effluent dumps.	Set Mass Spectrometer Experiment ON/OFF/STANDBY Switch (S-18) to "STANDBY". The boom will be fully extended for all mass spectrometer ion source heater operations, and waste water and urine dumps. Before initial data collection, the ion source heaters will be operated for a cumulative period of 6 hours of which the last hour will be continuous. One half hour of heater operation will be added to the 6-hour total each time heater operation is interrupted. Waste water and urine dumps will be inhibited 1 hour before ion source heater operation (i.e., heater OFF for 1 hour after dump). Before a dump is initiated, the

.

Table	5.	Phase	v	(Lunar	C.	it	Phase)
			•	(

	EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	REMARKS
8.0	Mass Spectrometer Experiment (S-165) (Cont'd)	-		heater will be set to OFF for at least 15 minutes but it is highly desirable that the heater be OFF for 1 hour. RCS jets A2, A4, B1, B4, C1, and C3 which could con- taminate the experiment will be inhibited during heater operation. CSM attitude will not be critical during ion source heater opera- tion. Before each data collection period, following the initial period, the ion source heaters will be operated continuously for 30 minutes. Waste water and urine dumps will be inhibited 2 hours before and during data collection, and a minimum of 5 minutes follow- ing data collection. RCS jets A2, A4, B1, B4, C1 and C3 will also be inhibited during data collection.
		 c. Experiment Operation (1) Initiate experiment approximately one hour prior to crew sleep periods. 	 a. Monitor experiment scientific and house- keeping data. b. Evaluate science data and prepare up- link multiplier and discriminator switch changes via voice request. 	For data collection, the CSM -X axis will be oriented to within TBD degrees of the velocity vector and the centerline of the SIM pointed toward the lunar local vertical. (Tolerances: $\pm 10^{\circ}$ pitch, $\pm 15^{\circ}$ yaw, and $\pm 60^{\circ}$ roll with respect to the velocity vec- tor.) Drift rates in all axes are not critical.

Table 5. Phase V, (Lunar bit Phase)

.×.

4

EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	REMARKS
8.0 Mass Spectrometer Experiment (S-165) (Cont'd)	 c. (2) Set experiment ON/OFF/STANDBY Switch (S-18) to "ON" and the Ion Source Switch (S-19) to "ON" (3) During the initial hour of operation or following crew sleep periods the astronaut will operate the multiplexer and discriminator Switches (S-16 and S-15) per up-link voice request. (4) Maintain space- craft attitudes. 		The lunar surface area of prime interest extends ± 15° longitude each side of the sunset and sun- rise terminators. Background contamination data will be collected for one complete revolution with the CSM +X axis pointed in the direction of the velocity vector. It is desirable that these data be obtained toward the end of the experiment period. The experiment will be operated and data collected for a minimum of two complete revolutions, not necessarily consecutive nor con- tinuous, during each of three separate periods. During each of these six revolutions, a Mapping Camera photograph of the boom will be obtained at sunrise, at noon, and at sunset to determine the extent of boom thermal distortion and the resultant change in exper- iment scoop orientation. Mass spectrometer data collection for three additional revolutions dur- ing the above separate periods is highly desirable.

Table 5. Phase V (Lunar Orbit Phase)

EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	REMARKS
8.0 Mass Spectrometer Experiment (S-165)	d. <u>Boom Retractions</u>		Periodically the Mass Spectrometer boom will be retracted from the Panoramic Camera and Mapping Camera fields-of-view.
(Cont'd)	(1) TEI Boom Retraction.		The mass spectrometer boom will be fully retracted prior to the TEI SPS burn.
	(2) Post TEI oper- ation	Monitor experiment scientific and house- keeping data.	The experiment will be operated during transearth coast no sooner than 6 hours after TEI or an MCC burn. Before data collection, the ion heaters will be operated for a cumulative period of 3 hours of which the last hour will be con- tinuous. During this ion source heater activity, the boom may be in the one-half extension posi- tion, if required by operational constraints. Effluent dumps will be inhibited 1 hour before and during ion source heater opera- tion and data collection.

EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	REMARKS
8.0 Mass Spectrometer Experiment (S-165) (Cont'd)			RCS jets A2, A4, B1, B4, C1, and C3 will be inhibited; the heater will be set to OFF 15 minutes before a dump is initiated, and for 1 hour after the dump. Data will be collected for 1 hour mini- mum with the boom fully extended. The boom will then be retracted in five equal steps with data being collected for 7 minutes after each retraction step, for a total of 35 minutes. The last 7-minute data collection period will occur with the boom in a fully retracted position. CSM attitude is not critical during this transearth coast activity.

Table 5. Phase V, (Lunar Orbit Phase)

Table 5. Phase V (Lunar Orbit Phase)

EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	REMARKS
9.0 UV Photo- graphy Earth and Moon (S-177) (2) As early 23 prescription The	 be taken as follows: a. Earth Parking Orbit (1) Clouds Earth Lumb (2) Land and water b. <u>TLC Earth Disc</u> (3) 60K N.M. from earth. (4) 120K N.M. from earth. (5) 180K N.M. from earth. c. Lunar Orbit 	Conners, the opticle in is of which is normal to the	At least one frame of protective hilm will be run offore and after each set of photographs. It is highly desirable that one color photograph be obtained with each set of four above, using the 70 mm Hasselblad electric camera and showing approximately the same scene that is taken in the set of four photographs. Tolerance on the times of TLC and TEC photography is ± 30 minutes from the time of passage through the indicated distances, except that photography is not to inter- fere with scheduled crew sleep periods. The spacecraft attitude must be such that the photo- graphic subject area is in the field-of-view of the RH side window. The CSM attitude rates will not exceed ± 0.05 degrees/ second during periods of photo- graphy.

 \cap

 \cap

Table 5. Phase V (Lunar Urbit Phase)

•

.

	EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	REMARKS
9.0	UV Photo- graphy Earth and Moon (S-177)	 d. <u>TEC Earth Disc</u> (10) 180K N.M. from earth. (11) 120K N.M. from earth. (12) 60K N.M. from earth. (13) As Lote 2: portion Crew will be required to change filters and timer settings per Flight Plan. 	al interec	A set of calibration photos with another of late in the TEC per- iod. To ma HE camera will be used.

 \bigcirc

Table 5. Phase V (Lunar Orbit Phase)

•

EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	REMARKS
10.0 CM Orbital Science Photography			
10.1 Hasselblad Electric Camera - 70 mm	 a. Color photo with each set of UV photos. b. Solar Corona photos, 		This HD requirement uses 70 mm HEC with 80 mm lens. Three series of 7 photos each,
	after CSM sunset and before CSM sunrise.		using 70 mm HEC with 80 mm lens, bracket-mounted.
	c. TEI Calibration Photos		Three photos of moon through right-hand rendezvous window, bracket-mounted HEC with 80 mm lens. Minimum interior lighting.
	d. Lunar Eclipse Photos		Two series of photos of the moon during lunar eclipse by the earth. Photos to be taken thru left-hand rendezvous window.
	e. Near-Terminator		Use both 80 mm and 250mm lenses. Point HEC vertically. Use 80 mm
	Photos		and 250 mm lensesBracket-
	Set Intervalometer to provide stereo strips with 55-60% overlap.		

				-40 CL	Automatical Automatica Automatical Automatical Automatica Automatical Automatical Automatica Automatical Automatical Automatica Automatical Automatical Automatica	
Table	5.	Phase	V	(Lunar	Orbit	Phase)

et the second

EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	REMARKS
10.1 Hasselblad Electric Camera - 70 mm (Cont'd)	f. Low Resolution Photos		B&W photos using 80 mm lens. Provide 55-60% overlap. Medium resolution photos of selected lunar regions will be taken with 250 mm lens.
	g. TEI Photos <i>overlapping</i> Take 5Aphotos visible disc. <i>covering -16.2</i>		Use 250 mm lens.

EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	REMARKS
10.2 Maurer Data Acquisition Camera - 16 mm	a. Solar Corona Photos, after CSM sunset and before CSM sunrise		Bracket-mounted camera shooting through CM window.
	Run camera at 1 fps. Use, 18 mm lens.		Pitch CSM at approximately the orbital rate. Maintain CSM attitude deadbands within $\pm 5^{\circ}$.
	b. Junar <u>Ec</u>ipse Photos Comet Photos		If comet is in favorable posi- tion. For lunar eclipse and comet photos, CSM attitude rates will be allowed to damp automat- ically after acquisition of each photographic target.
	c. Star Field Photos During TEC. Use DAC connected by optical adapter to the CM sextant optics.		Selected star fields. When photos are being taken, electrical power to the sextant optics internal lighting will be disconnected. Two additional sets of star field photos during TLC are HD.
	d. Low Resolution Photos Set DAC at frame/ second. Photograph selected lunar regions.		

¥

Table 5. (Lunar Orbit Phase) Phase V

Table	5.	Phase	V	(Lunar	Orbit	Phase)

EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	REMARKS
10.3 35 mm Camera	 a. Lunar Eclipse During lunar eclipse by the earth. Mount 35 mm camera in R.H rendezvous window. b. Lunar Libration Photos Take 4 photos of lunar libration point L-4. 	С	Two series of 6 photos each, entering and leaving earth's umbra.
	 c. Zodiacal Light Photos Take a series of 23 photos as the CSM approaches sunrise. d. Earthshine photos with camera pointed vertically. Provide stereo strips with 55-60% overlap. 		Use automatic exposure feature of the shutter speed selector. Bracket mounting of camera is desirable. It is HD that CM cabin lighting be reduced while earthshine photos are taken.

0	Table 5. Phase V	(Lunar Orbit Phase)	
Six 3.	5 mm comport		
EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	- REMARKS -
ll.0 Gegenschein from Lunar Orbit (S-178)	 Where photographs to be taken in three different directions as follows: a. Three photographs with camera pointed in the anti-solar direction. b. Three photographs with camera pointed toward the Moulton point. c. Three photographs with camera pointed midway between the anti-solar and the Moulton point directions. 		The photographs should be taken while the CSM is in total dark- ness in lunar orbit with all exterior lights turned off, and window shades deployed. Immer orbit photographs of the Gegenscholn and Moulton point regions should be obtained with a darkened CM cabin and window shades installed. Following the attitude maneuver for each of the three camera pointing angles, the CSM attitude rates must not exceed 0.05 degrees per second. Forward- firing SM RCS jets should be inhibited during film exposure. An additional 6 photographs of histed under a. b. and C. are highly desirable. Two addional photographs of infed under a should be inside under a should be indicated the state. Two addional photographs of infed under a should be indicated the state. Two addional photographs of infed under a should be indicated the state. Two addional photographs of infed under a should be indicated the state.

EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	REMARKS
12.0 Downlink Bi-Static Radar Experiment (S-170)	The CSM will be maneuvered so that a preselected position of the antenna radiation pattern remains pointed near the instantaneous point on the lunar surface from which the maximum power will be reflected toward the earth. (Specular point) Deviation of the point- ing direction from the specular point will be restricted so that the specular point will lie within 5° half angle cone, symmetric about the nominal pointing direction.	Turn off uplink TLM during S-Band test period.	S-Band VHF 0 0 <u>Antenna</u> <u>Antenna</u> <u>Deg.</u> <u>Deg.</u> Hi Gain RH(A) 145 <u>+</u> 15 129.5 Hi Gain LH(B) 145 <u>+</u> 15 309.5 OMNI A RH(A) 106 132.25 OMNI C LH(B) 106 312.25 Data will be collected during at least one-half of a front side pass for both VHF and S-Band.

Table 5. Phase V (Lunar Orbit Phase)

157

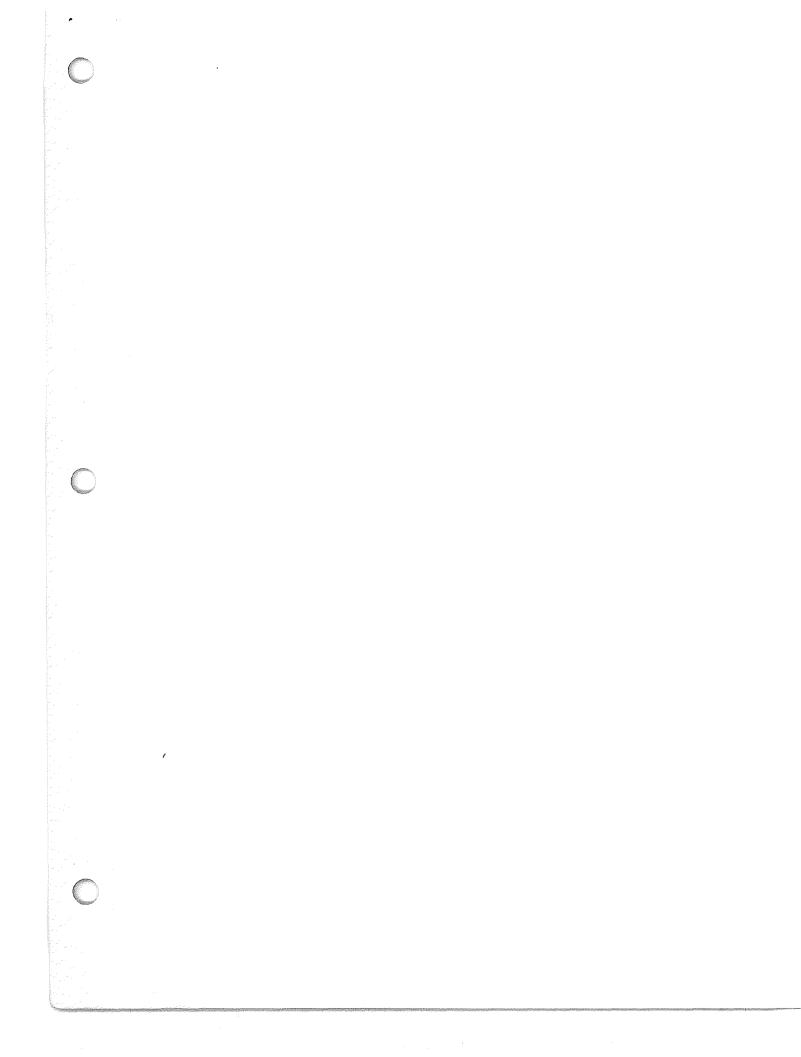
ť

 \bigcap

Table 5.	Phase '	V ((Lunar	Orbit	Phase)

EVENT	ASTRONAUT ACTIVITY	MCC ACTIVITY	REMARKS
13.0 Apollo Window Meteoroid Experiment (S-176)	None. This is a passive experiment. The standard spacecraft window subjected to meteoroid environment encountered in flight.	None	The Apollo windows must be scanned at 20X magnification and any surface imperfections noted before flight. The Apollo windows must be recovered and delivered to MSC for post-flight analysis.

APPENDIX A


١

,‡

ABBREVIATIONS DEFINTIONS ALSEP Apollo Lunar Surface Experiments Package CCGE Cold Cathode Gauge Experiment* CCIG Cold Cathode Ion Gauge* C.S. Central Station Շ HFE Heat Flow Experiment LGE Lunar Geology Experiment \mathbf{LP} Long Period LRRR or LR³ Laser Ranging Retro-Reflector LSM Lunar Surface Magnetometer MCC Mission Control Center MESA Modularized Equipment Stowage Assembly MHz MegaHertz PCU Power Conditioning Unit PDR Power Dissipation Resistor PDU Power Distribution Unit ΡI Principal Investigator PSE Passive Seismic Experiment RTG Radioisotope Thermoelectric Generator SEQ Scientific Equipment Bay Suprathermal Ion Detector Experiment SIDE SIM Scientific Instrument Module SP Short Period SRC Sample Return Container SWS Solar Wind Spectrometer

*The acronyms CCGE and CCIG are used interchangeably in this document.

A-1

MASTER WORK

MSC-04104

Addressees: CA/D. K. Slayton CB/J. P. Allen CG/J. W. Bilodeau CG3/R. G. Zedekar (5) CG3/J. McKee (3) CG5/T. W. Holloway (3) EE3/L. Leopold EH/D. G. Wiseman (5) FC9/J. E. Saultz (5) JM2/E. Hill (3) PD4/J. R. Sevier PD7/J. Peacock PG/R. Newlander TA/A. J. Calio TA/J. A. Lovell TA/G. Simmons TD4/R. A. Moke (10) TD5/R. R. Baldwin TD5/F. J. Herbert TD5/J. R. Bates TN/P. W. Gast (3) TF/D. E. Evans TDX/R. Miley (5) NASA Hqs, W. T. O'Bryant, MAL (3) KSC, C. M. Vaughn, PSK

Addressees:

Dr. Gary V. Latham Lamont-Doherty Geological Observatory Columbia University Palisades, New York 10964

Dr. Marcus E. Langseth Lamont-Doherty Geological Observatory Columbia University Palisades, New York 10964

Dr. Francis S. Johnson University of Texas at Dallas P.O. Box 30365 Dallas, Texas 75230

Dr. John W. Freeman Department of Space Science Rice University Houston, Texas 77001

Dr. Conway W. Snyder Jet Propulsion Laboratory 4800 Oak Grove Drive Pasadena, California 91103

Mr. James R. Bates Mail Code: TD5 Science Requirements and Operations Branch NASA-Manned Spacecraft Center Houston, Texas 77058

Dr. J. Faller Scott Laboratory Wesleyan University Middletown, Connecticut ''06457

Dr. Palmer Dyal, Code N204-4 Space Science Division Electrodynamics Branch Ames Research Center Moffett Field; California 94034

Dr. Gordon Swann Center of Astrogeology U.S. Geological Survey .601 E. Cedar Avenue Flagstaff, Arizona 86001 Dr. Robert O. Pepin School of Physics and Astromony University of Minnesota Minneapolis, Minnesota 55455

Dr. James K. Mitchell Department of Civil Engineering 440 Davis Hall University of California at Berkeley Berkeley, California 94726

Dr. Johannes Geiss University of Berne Physikalisches Institut Sidlerstrasse 5 Berne, Switzerland

Mr. Lawrence Dunkelman Planetary Optics Section Mail Code: 673 Goddard Space Flight Center Greenbelt, Maryland 20771

Mr. H. T. Howard Stanford Electronic Laboratories Stanford University Stanford, California 94305

Mr. F. J. Doyle U.S. Geological Survey Topographic Division 1340 Old Chain Bridge Road McLean, Virginia 22101

Dr. William M. Kaula Institute of Geophysics and Planetary Physics University of California at Los Angeles Los Angeles, California 90024

Dr. James R. Arnold Chemistry Department University of California at San Diego La Jolla, California 92037

Addressees:

Dr. Isidore Adler Theoretical Studies Branch - Code 641 NASA-Goddard Space Flight Center Greenbelt, Maryland 20771

Dr. Paul Gorenstein American Science and Engineering, Inc. 11 Carleton Street Cambridge, Massachusetts 02142

Dr. John H. Hoffman Atmospheric and Space Sciences University of Texas at Dallas P.O. Box 30365 Dallas, Texas 75230

Mr. William L. Sjogren Mail Code: 156-251 Jet Propulsion Laboratory 4800 Oak Grove Drive Pasadena, California 91103

Dr. Kinsey A. Anderson Space Science Laboratory University of California at Berkeley Berkeley, California 94726

Dr. Paul J. Coleman, Jr. Department of Planetary and Space Science University of California at Los Angeles Los Angeles, California 90024

Mr. D. S. Crouch Martin Marietta Corporation Denver Division Mail Code 1640 P.O. Box 179 Denver, Colorado 80201