Plate 18. Colors of TNOs and Centaurs (108 objects) in the orbital eccentricity vs. semimajor axis plane. The sizes of the symbols are proportional to the corresponding object’s diameter. A color palette has been adopted to scale the color spread from B-R = 1.0 (coded as dark blue) to B-R = 2.0 (coded as red). In comparison, B-R = 1.03 for the Sun and 1.97 for the Centaur 5145 Pholus (the reddest known object in the solar system). Resonances with Neptune [2:3 (a ~ 39.5 AU) and 1:2 (a ~ 48 AU)] are marked, as well as the q = 40 AU perihelion curve. The advantage of this representation is that it offers to the eye the global color distribution of the TNOs. Interesting patterns clearly emerge from this color map. For instance, objects with perihelion distances around and beyond 40 AU are mostly very red. Classical objects (mostly between the 2:3 and 1:2 resonances) with high eccentricity (and also inclination) are preferentially neutral/slightly red. In contrast, no clear trend is obvious for scattered TNOs (a > 50 UA), nor for the Plutinos, which appear to lack any trends in their surface colors. Data obtained from the Meudon multicolor survey (2MS, Doressoundiram et al., 2002) and the ESO Large Program (Boehnhardt et al., 2002; Peixinho et al., 2003).