Sorting the Solar System

What's this activity about?

Big Questions:

- What types of objects are in our Solar System?
-Why do the definitions of the objects change?
Big Activities:
- Using images of Solar System objects, start discussions of the characteristics of asteroids, comets, planets, and moons.
- Practice scientific thinking by sorting objects into categories according to their common qualities.

Participants:

From the club: A minimum of one person.
With larger groups, up to four presenters can participate.
Visitors: This activity is appropriate for families, the general public, and school groups ages 10 and up. With small groups, one set of cards can be used. Four sets are included for use in classrooms or larger groups.

Also, a large set of objects is included in this manual. You may print them yourself, but it is recommended that you do this at a print shop. Printing them requires a lot of ink.

Duration:

Ten minutes, up to a half hour, depending on the depth of questions and conversation.

Topics Covered:

- Review of the diversity of objects in our Solar System
- How scientists use common characteristics to classify the world around us

Barringer Crater

Ceres

- This crater is located in Arizona, USA
- It was created 50,000 years ago by a chunk of METAL from space
- It measures about 1.2 km in diameter

Size of crater compared to a stadium

Earth

- It orbits the Sun between Venus and Mars
- Earth is made of ROCK, a METAL core and both solid and liquid ICE (water, that is) on its surface
- Its diameter is $\mathbf{1 2 , 6 5 0} \mathbf{~ k m}$

Titan

- Titan orbits Saturn
- It is made of ROCK and ICE and has a thick atmosphere
- It is $\mathbf{5 , 1 5 0} \mathbf{~ k m}$ in diameter, between the size of the Earth and Moon
 the Earth and Moon

Wild 2

- Wild 2 orbits the Sun between Mars and Jupiter though its orbit used to be much more distant
- It is made of ICE and DUST
- It is about $\mathbf{4} \mathbf{~ k m}$ across

Size of Wild 2 compared to Manhattan

Eris

- The orbit of Eris is very distant, mostly beyond Pluto's orbit.
- It is made of ICE and ROCK
- The diameter of Eris is about 2,600 km

Shoemaker-Levy 9

- Its orbit originally took it beyond Pluto. After it was captured by Jupiter's gravity, it was torn apart and eventually smashed into Jupiter.
- Made of ICE and ROCK
- Largest pieces were $\mathbf{1 k m}$ and left huge marks on Jupiter

Sun

- The Sun is located in the center of our Solar System
- It is made mostly of hydrogen and helium GAS

Victoria Crater

- This crater is one of the smaller craters on Mars
- The rim's jagged edges are due to erosion caused by ROCK and DUST
- It is $\mathbf{7 5 0}$ meters across

Phobos

- Phobos closely orbits Mars and will eventually collide with it
- It is mostly made of ROCK but may have ICE inside
- Phobos is about $\mathbf{1 1} \mathbf{~ k m}$ across

Size of Phobos compared to Manhattan

Pluto \& Charon

- Pluto and Charon orbit orbit each other, together are mostly outside Neptune's orbit
- These round objects are made of ICE and ROCK
- Pluto is about 2,300 km across

Size of Pluto \& Charon compared to Earth and Moon

Saturn

- Saturn orbits the Sun between Jupiter and Uranus
- Saturn is mostly made of GAS
- The main body is $\mathbf{1 2 0 , 0 0 0} \mathbf{k m}$ across

Size of Saturn compared to Earth

Mars

Meteor

Meteorite

- The orbit of Mars is between Earth and the Asteroid Belt
- Mars is made of ROCK with a METAL core and some solid ICE on its surface
- It is $\mathbf{6 , 8 0 0} \mathbf{~ k m}$ in diameter about half as wide as the Earth

Size of Mars compared to Earth

- Meteors occur in Earth's atmosphere, about 75 km above the surface
- We see the glowing pieces of ROCK
- The pieces of rock are mostly less than $\mathbf{1 c m}$, or the size of a coin

Size of rock compared to a coin

- Meteorites are pieces of asteroids that land on other worlds
- They are made of METAL and ROCK
- Almost all meteorites on Earth are smaller than $\mathbf{1}$ meter

Ida and Dactyl

Itokawa

- Together they orbit the Sun between the orbits of Mars and Jupiter. Dactyl (the smaller object) orbits Ida.
- They are mixtures of ROCK and METAL
- Ida is about $\mathbf{1 5} \mathbf{~ k m}$ across

Size of Ida compared to Manhattan

Jupiter

- Jupiter orbits the Sun between the Asteroid Belt and Saturn
- It is made of GAS
- Its diameter is about

143,000 km

Hale-Bopp

- Hale-Bopp orbits between Earth's orbit and the distant Solar System - far beyond the orbit of Pluto
- Hale-Bopp is made of ICE and DUST
- The tail shown here extends more than $\mathbf{1}$ million $\mathbf{k m}$

Hoba

- This object landed on Earth 80,000 years ago in what is now the country of Namibia
- Hoba is made of METAL
- It measures about $\mathbf{3}$ meters across

lapetus

- lapetus orbits Saturn
- This walnut-shaped object is made of ICE with some ROCK
- It is $\mathbf{1 , 5 0 0} \mathbf{~ k m}$ across, or about half as wide as the Earth's Moon

Size of lapetus compared to Moon

Earth's Moon

- The Moon orbits Earth
- It is made of ROCK with a small METAL core
- The Moon is $\mathbf{3 , 5 0 0} \mathbf{~ k m}$ in diameter or about $1 / 4$ the width of Earth

Size of Moon compared to Earth

Gaspra

- This object orbits the Sun between Mars and Jupiter
- It is made of a mixture of ROCK and METAL
- It is $\mathbf{1 8} \mathbf{~ k m}$ on the longest side

Size of Gaspra compared to Manhanttan

Hale-Bopp

- Hale-Bopp orbits between Earth's orbit and the distant Solar System - far beyond the orbit of Pluto
- Hale-Bopp is made of ICE and DUST
- The tail shown here extends more than $\mathbf{1}$ million $\mathbf{k m}$

Key to Sorting the Solar System Cards

Object	Description	Size (km)	Picture Credits
Barringer Crater	Also known as Meteor Crater, it is located in Arizona, USA. Created by the impact of a meteorite about 50,000 years ago, this crater was formed before humans inhabited the Americas.	1.2	B.P. Snowder
Ceres	Ceres is the largest object in the Asteroid Belt. The International Astronomical Union classifies Ceres as a Dwarf Planet. It is the target of the Dawn spacecraft in 2015.	950	NASA, ESA, J. Parker (SwRI) et al.
Earth	Earth is the third planet from the Sun and is the fifth largest planet in the Solar System. About 71% of Earth's surface is water, the remainder consists of land.	12,650	Taken from Apollo 17 in 1972, credit NASA
Earth's moon	The moon is the fifth largest satellite in the Solar System. It is the only celestial body on which humans have landed. Although it appears bright in the sky, it is actually as dark as coal.	3,500	NASA/JPL/USGS
Eris	Eris is a Dwarf Planet with a moon called Dysnomia. It is more massive than Pluto and orbits the Sun three times farther. It was discovered in 2005 and caused a stir after initially being described as the 10th planet.	2,600	NASA/ESA/M. Brown
Eros	Eros was the first near-Earth asteroid discovered. It is also one of the largest. The probe NEAR Shoemaker landed on this asteroid in 2001. Eros orbits between Earth and Jupiter, crossing Mars's orbit.	34	NASA/JPL/JHUAPL
Gaspra	Gaspra is an asteroid that orbits the inner edge of the main Asteroid Belt. The Galileo spacecraft flew by Gaspra on its way to Jupiter.	18	NASA/JPL/USGS
Hale-Bopp	Hale-Bopp was one of the brightest and most widely viewed comets of the 20th century. It came into the inner Solar System in 1997 and has an orbital period of over 4,000 years.	1,000,000	E. Kolmhofer, H. Raab; Johannes-KeplerObservatory
Hoba	The Hoba meteorite is the largest known meteorite on Earth. It landed here about 80,000 years ago in what is now Namibia. Hoba weighs over 60 tons and is the most massive piece of naturally-occurring iron on Earth's surface.	0.003	Patrick Giraud
Iapetus	Iapetus is the third largest moon of Saturn. It has an equatorial ridge that makes it look a bit like a walnut, as well as a light and a dark side. Astronomers think that the dark side is covered with a thin layer of residue from the icy surface sublimating.	1,500	NASA/JPL/Space Science Institute
Ida and Dactyl	Ida is a main belt asteroid and the first asteroid found to have a moon, Dactyl. It was imaged by the Galileo spacecraft on its way to Jupiter.	15	NASA/JPL
Itokawa	Asteroid Itokawa crosses the orbits of both Mars and Earth. It is a rubble pile of rocks. In 2005, the Hayabusa probe landed on Ittokawa to collect samples.	0.5	ISAS, JAXA
Jupiter	Jupiter is the largest planet in the Solar System, more massive than all the other planets combined. This gas giant has been explored by many spacecraft, notably the Galileo orbiter It has four large moons and dozens of smaller moons.	70,000	NASA/JPL/University of Arizona

Key to Sorting the Solar System Cards

Object	Description	Size (km)	Picture Credits
Mars	Mars is the fourth planet from the Sun. Iron oxide gives it a reddish appearance. It has polar ice caps and a very thin atmosphere. Two tiny moons might be captured asteroids.	6,800	NASA
Meteor	Small pieces of asteroids or comets collide with Earth's atmosphere to create meteors. The compressed air in front of the rock heats up, causing it to glow and leave a trail of ionized gas.	0.00001	Chuck Hunt
Meteorite	Most meteorites are pieces of the Asteroid Belt that land on Earth's surface. Over 90% of meteorites are considered stony meteorites. About 5% are iron meteorites. Both types contain a significant about of iron.	0.001	Dr. Svend Buhl www.meteorite-recon.com
Phobos	Phobos is the largest moon of Mars, but still quite small. It is likely a captured asteroid and will break up and crash into Mars in the next 40 million years.	11	NASA/JPLCaltech/University of Arizona
Pluto and Charon	Pluto is the 2nd largest dwarf planet in the Solar System (after Eris). It has a large moon Charon and two smaller moons, Nix and Hydra. Pluto and Charon are sometimes treated as a binary system since their center of gravity is between the two.	2,300	ESA/ESO/NASA
Saturn	Saturn is the second largest planet in the Solar System. It is made of gas and has very thin icy rings. It also has dozens of moons. The Cassini-Huygens spacecraft has been orbiting Saturn since 2004.	120,000	NASA/JPL/Space Science Institute
Shoemaker-Levy 9	Comet Shoemaker-Levy 9 provided the first direct observation of the collision of extraterrestrial solar system objects. It broke into many fragments, called the "String of Pearls," and impacted Jupiter in 1994.	1	NASA/HST
Sun	The Sun is the star at the center of our Solar System, about 150 million km from Earth. It contains 99.9% of all the mass in our Solar System. It travels once around the Milky Way Galaxy in about 250 million years.	1,400,000	ESA/NASA/SOHO
Titan	Titan is the largest moon of Saturn, comprising 96\% of the mass of all Saturn's moons combined. It is a cold world with a thick nitrogen atmosphere and liquid methane lakes on its surface. The Huygens probe landed on its surface in 2005 and took pictures of icy conditions.	5,150	NASA/JPL/Space Science Institute
Victoria Crater	This impact crater near the equator of Mars was visited by the Mars Exploration Rover Opportunity. The scalloped edges of the crater are caused by erosion. Although Mars has very little atmosphere, it does have dust storms.	0.75	NASA/JPL- Caltech/University of Arizona/Cornell/Ohio State University
Wild 2	Comet Wild 2 is officially named 81P/Wild. It once orbited beyond Jupiter but got too close to the giant planet in 1974 and was tugged into a smaller orbit between Jupiter and Mars. The Stardust sample return mission took pictures and captured some of the comet's coma in 2004.	4	NASA/JPL-Caltech

Helpful Hints

Common misconceptions addressed by these resources:

- The Solar System contains more than one star
- The planets are the only things in our Solar System
- Science is a rigid set of facts to be memorized

Other Games:

Sort It:

With a group of 20+, give each person a card and ask them to sort themselves by size, distance from the Sun, common materials, alphabetically, or shape. There may be more than one way to sort. All reasonable attempts should be accepted.

With smaller groups, each person (or group of up to 3 people) gets their own deck to answer the same questions. The first group to sort them correctly wins. Allow each group to finish and hold their hand up when they're done. Once they raise their hand, they can't change their order. If the first group has anything out of order, go to the second, and so forth.

20 Questions:

Have the presenter pick an object but don't tell the visitors. Let the visitors take turns asking yes/no questions until they guess the object. The person who guesses correctly gets to pick the next object. Give time during games and between rounds for visitors to look at the backs of the cards.

Background Information

This activity was adapted from a classroom activity originally developed by Anna Hurst Schmitt for the Teacher's Newsletter Universe in the Classroom: http://www.astrosociety.org/education/publications/tnl/70/pluto.html - 10

For a history of the definition of a planet, see these websites: http://www2.ess.ucla.edu/~jlm/epo/planet/planet.html
http://www.astrosociety.org/education/publications/tnl/70/pluto.html
http://www6.cet.edu/dawn/multimedia/makeplanet.asp

Detailed Activity Description

Sorting Our Solar System

Misconception Tip:

Many people don't understand the difference between Solar System, Galaxy and Universe. Here is a chance to talk at length about the smallest of these scales.

Presentation Tips:

These cards can be used to illustrate many points. The activity described here is one example, but you may find others that work in different situations. You can also find other ideas in the "Helpful Hints" section.

Using more than one deck and breaking visitors into small groups can be interesting because they see that there are different ways to categorize the same objects.

If you would like to use more than one set of cards, it is recommended that you print them on various color card stock. The individual sets get easily combined into a single pile if they are all one color.

Before you get started:

Remove the Ceres card from the deck and put in your pocket. You will bring this out later.

Leader's Role	Participants' Role (Anticipated)
To say:	Planets, stars, people, airplanes
Ahh! How many stars are there in our Solar System?	Billions and billions
There is actually only one star in our Solar System. The	
term "Solar System" refers just to our own star, the Sun	
and everything orbiting it.	
That includes planets, like you said. What else is in the Solar System that's not here on Earth?	Comets, moons, To do:
To sand in our Solar System?	
Great! Take a look at this. I've got pictures here that Gepresent a sample of the different kinds of objects found in	
our Solar System. Now, you can't tell how big each object is just from the picture. Some pictures are taken close up and others from far away. You'll want to check the backs of the cards to see how big each object is. What else does the back of the card tell us?	
To do:	Where it is, what Pick up one of the cards (in the following example, we are using Gaspra)
To say:	
Scientists sort things made of, how	
by their physical	
characteristics. What	
are some	
characteristics of this	
object? Can you	
describe what it looks	
like?	

Leader's Role	Participants' Role (Anticipated)
To say: Great! We also know from the information on the back that it's as big as a city and that it orbits the Sun between Mars and Jupiter. These are characteristics too. Now it's your turn to be the scientist. Work together to sort these objects into some categories using their characteristics. Get creative! You get to choose the categories.	Participants sort the cards into various groups.
Presentation Tip: If you are working with a large group, give each person a card and have them sort themselves into categories. This can be very fun and collaborative!	
To say: There are no limits to the number of categories you can have. But think about the characteristics that objects in each of your categories have. Tell me about the categories you picked. Did any of the objects fit into more than one category? Tell me why you decided on the category you put them in. Okay, now where would this object fit? To do: Hand the group the Ceres card. To say: What characteristics does it share with that group? Could it fit in more than one group? (Extension) Could you refine your category definitions so that nothing fits in more than one category?	Describe groups Usually they do Put it in one of the categories Sometimes the groups are flexible enough

Leader's Role	Participants' Role (Anticipated)
To say:	
This is great! You are being real scientists. This is exactly	
what biologists, chemists, geologists, and astronomers do.	
And as new bacteria or birds or fossils are found, they use	
their knowledge of what has already been discovered to	
help them think about this new object.	
That's exactly what happened when Eris was discovered.	
Eris is another Pluto-sized object that's also orbiting way	
out past Neptune. And many more objects are being found	
out there all the time.	
Sometimes new discoveries even cause the definitions to	
change! The definition of a planet changed in 2006 and a	
whole new category was created: dwarf planet. That	
category includes both Ceres and Pluto.	
(If before an observing evening) Can you see any of these	
categories in the sky right now?	Sun or Moon or
Actually, do you see that bright star-like light over there?	
Well, it's not a star at all. That's Jupiter! Which category	
does that fit onto?	none

Materials

What materials from the ToolKit do I need?

In the activity bag:
At least one set of Solar System Cards (4 sets included in 2 decks)

What must I supply?

- Table or flat surface for organizing the cards, unless you have a big group that can hold one card each

Where do I get additional materials?

You can order additional sets, while supplies last, from the Night Sky Network. For more information, send an email to: nightskyinfo@astrosociety.org

To make additional copies of the cards, just print the following five pages in color, one-sided on card stock (or other thick paper).

Cut each page into 3 strips so that the image and description stay together.

Fold each strip in half to make two-sided cards. You can paste them with glue or tape around the edges.

For large groups where each person will hold a single card, you may want to print the large size cards. In that case, simply fold them in half and glue them together, as shown.

This activity can be done with any set of images in any size. The Hubble Site and the NASA Image archive have a wealth of pictures of Solar System objects.

- http://hubblesite.org/newscenter/
- http://www.nasa.gov/multimedia/imagegallery/

Where could I use this activity?

ACTIVITY	$\begin{array}{\|l\|l} \hline \text { Star } \\ \text { Party } \end{array}$	Pre-Star Party Outdoors	Pre-Star Party Indoors	Girl Scouts / Youth Group Meeting	Classroom			$\begin{aligned} & \hline \text { Club } \\ & \text { Mtg } \end{aligned}$	Gen Public Presentation (Seated)	Gen Public Presentation (Interactive)
					K-4	5-8	$\begin{aligned} & 9- \\ & 12 \\ & \hline \end{aligned}$			
Sorting the Solar System		$\sqrt{ }$	$\sqrt{ }$	\checkmark		$\sqrt{ }$	$\sqrt{ }$	\checkmark	\checkmark	$\sqrt{ }$

What do I need to do before I use this activity?

What materials from the ToolKit are needed for this activity?	What do I need to supply to run this activity that is not included in the kit?	Preparation and Set Up
At least one set of Sorting the Solar System Cards. Four sets are included for use with larger groups.	A table or flat surface is preferred.	Remove the Ceres card from the deck(s). These will be used later.

