Moon 101

by Karen Abruzzo, Delina Levine, and Pragati Muthukumar

IMAGE 1

Image 1 Features

- Domes evidenced by shadows
- Cones evidenced by shadows
- Mare materials

Image 1 Domes

- Domes formed at an early time geographically, when the magma ocean was still active
- Domes formed by silica- rich lava that came from localized vents, and cooled very slowly
- One can see how certain domes (A) are older because they have been covered by layers of rock, rather than others (B)
- Younger domes are noticeable and prominent because the bump and clear dome shape can be seen (B)
- Dome A is about 200m wide, Dome B is about 112m wide

Image 1

Mare Materials and Cones

- Cones form from lava erupting from a central vent
- Cone C is about 50m wide
- The domes and cones have formed on a layer of rock called lunar maria
- Some maria were formed from volcanic lava flows, others from pyroclastic flow however, all mare materials were formed from some type of volcanic activity
- The maria formed before the domes, and is made of mostly basalt, an igneous volcanic rock.

IMAGE 2

Image 2 Ridge

Ridges have two parts: the arch (in green) and the spine (in blue)

Most ridges are on the nearside of the moon and are made

spine

from mare materials as well

- The ridge is about 5.8km in length

Image 2 Ridge

There are two interpretations as to how ridges could have been formed:

- volcanic interpretation the ridge was formed from the intrusion or extrusion of lava
- tectonic interpretation the surface of the moon crumpled under stress, buckling to form the ridge
- The ridge is younger than the lunar rock because the ridge cuts through and displaces the rock around it

Image 3 Background

- Hadley Rille and Hadley Crater
- Landing site for Apollo 15 (1971)
- Hadley Rille 100km long, 1.5km wide, 400m deep
- Hadley Crater- 5.7km diameter

Image 3 Features

- Sinuous rille (C)
- Impact crater (D)
- Mare materials (A)
- Lunar highlands (B)

Sinuous rille

Simple crater smooth, bowl shape

Image 3

Sinuous Rille and Lunar Highlands

- Formed through lava flows, similar to lava channels or tubes
- Interior is "U" or "V" shaped (picture a mountain valley)
- Highlands formed when magma erupted from the moon's surface, and as the lava cooled, large rocks floated to the surface and the impact craters resulted in these fragments of rock
- The relief shown in the highlands are a result of seismic activity

Image 3 Impact Craters

- The crater seen is a simple impact crater (D)
- Simple impact craters form in three phases:
 - compression phase energy from impactor is transferred to the surface, impactor explodes
 - excavation phase material ejected from impact moves radially outwards with shock waves, crater is formed
 - modification phase final crater is formed, fallback occurs
- This crater is a simple impact crater because it has a smooth, bowl-shaped interior. This means it formed from a relatively low-energy impact.

Image 3 Relative Ages

- The sinuous rille formed after the rock around it, as evidenced by the fact that it overlays the maria
- The simple impact crater is younger than the rille because the ejecta from the crater is overlaying the rille in spots
- The maria and highlands formed around the same time: both formed as a result of the magma ocean, and seem to overlap each other in spots
- Most of the maria in this picture, however, likely formed after the highlands as a result of volcanic activity