New Horizons Team Finds Haze, Flowing Ice on Pluto

July 29, 2015
Source: NASA/JPL

Pluto

Speeding away from Pluto just seven hours after its July 14 closest approach, the New Horizons spacecraft looked back and captured this spectacular image of Pluto’s atmosphere, backlit by the Sun. The image reveals layers of haze that are several times higher than scientists predicted. Credit:  NASA/JHUAPL/SWRI.

Flowing ice and a surprising extended haze are among the newest discoveries from NASA’s New Horizons mission, which reveal distant Pluto to be an icy world of wonders.
 
“We knew that a mission to Pluto would bring some surprises, and now — ten days after closest approach — we can say that our expectation has been more than surpassed,” said John Grunsfeld, NASA’s associate administrator for the Science Mission Directorate. “With flowing ices, exotic surface chemistry, mountain ranges, and vast haze, Pluto is showing a diversity of planetary geology that is truly thrilling.”

Just seven hours after closest approach, New Horizons aimed its Long Range Reconnaissance Imager (LORRI) back at Pluto, capturing sunlight streaming through the atmosphere and revealing hazes as high as 130 kilometers (80 miles) above Pluto’s surface. A preliminary analysis of the image shows two distinct layers of haze — one about 80 kilometers (50 miles) above the surface and the other at an altitude of about 50 kilometers (30 miles).

“My jaw was on the ground when I saw this first image of an alien atmosphere in the Kuiper belt,” said Alan Stern, principal investigator for New Horizons at the Southwest Research Institute (SwRI) in Boulder, Colorado. “It reminds us that exploration brings us more than just incredible discoveries — it brings incredible beauty.”

Studying Pluto’s atmosphere provides clues as to what’s happening below.

“The hazes detected in this image are a key element in creating the complex hydrocarbon compounds that give Pluto’s surface its reddish hue,” said Michael Summers, New Horizons co-investigator at George Mason University in Fairfax, Virginia.

Models suggest the hazes form when ultraviolet sunlight breaks up methane gas particles — a simple hydrocarbon in Pluto’s atmosphere. The breakdown of methane triggers the buildup of more complex hydrocarbon gases, such as ethylene and acetylene, which also were discovered in Pluto’s atmosphere by New Horizons. As these hydrocarbons fall to the lower, colder parts of the atmosphere, they condense into ice particles that create the hazes. Ultraviolet sunlight chemically converts hazes into tholins, the dark hydrocarbons that color Pluto’s surface.

Scientists previously had calculated temperatures would be too warm for hazes to form at altitudes higher than 30 kilometers (20 miles) above Pluto’s surface.

“We’re going to need some new ideas to figure out what’s going on,” said Summers.

The New Horizons mission also found in LORRI images evidence of exotic ices flowing across Pluto’s surface and revealing signs of recent geologic activity, something scientists hoped to find but didn’t expect.

The new images show fascinating details within the Texas-sized plain, informally named Sputnik Planum, which lies within the western half of Pluto’s heart-shaped feature, known as Tombaugh Regio. There, a sheet of ice clearly appears to have flowed — and may still be flowing — in a manner similar to glaciers on Earth.

“We’ve only seen surfaces like this on active worlds like Earth and Mars,” said mission co-investigator John Spencer of SwRI. “I’m really smiling.”

Additionally, new compositional data from New Horizons’ Ralph instrument indicate the center of Sputnik Planum is rich in nitrogen, carbon monoxide, and methane ices.

“At Pluto’s temperatures of –390° Fahrenheit, these ices can flow like a glacier,” said Bill McKinnon, deputy leader of the New Horizons Geology, Geophysics and Imaging team at Washington University in St. Louis. “In the southernmost region of the heart, adjacent to the dark equatorial region, it appears that ancient, heavily-cratered terrain has been invaded by much newer icy deposits.”

The New Horizons mission will continue to send data stored in its onboard recorders back to Earth through late 2016. The spacecraft currently is 12.2 million kilometers (7.6 million miles) beyond Pluto, healthy and flying deeper into the Kuiper belt.

The Johns Hopkins University Applied Physics Laboratory in Laurel, Maryland, designed, built, and operates the New Horizons spacecraft, and manages the mission for NASA’s Science Mission Directorate. SwRI, based in San Antonio, leads the science team, payload operations and encounter science planning. New Horizons is part of the New Frontiers Program managed by NASA’s Marshall Space Flight Center in Huntsville, Alabama.

For more information, visit

NASA’s New Horizons mission website

APL’s New Horizons mission website

JPL’s Pluto Toolkit

New Horizons’ Twitter account

New Horizons’ Facebook page

Simulated flyover using New Horizons’ close-approach images of Sputnik Planum and Pluto’s newly-discovered mountain range, informally named Hillary Montes

 

Community News home page

Last updated July 29, 2015