

### **Outcome of MARE?**





- Demonstration of what can now be done using new technology and recent developments in cratering chronology
- Opportunities for the future direction of LEAG (see Conclusion)

#### **MARE** Team



- PI: F. Scott Anderson
  - DPI: Phil Christensen
  - PS: David Draper
  - DPS: Samuel Lawrence
  - PM: Kim Ess
  - DPM: Jon Olansen
  - PSE: Ken Bollweg
  - Payload: John Andrews
- Science:
  - Marc Norman: Geochronology, geochemistry
  - Jeff Plescia: Cratering, Geochronology
  - Stuart Robbins: Crater counting
  - Jim Head: Crater counting, geology
  - Josh Bandfield: Mineralogy, thermophysics
  - Vicky Hamilton: Mineralogy
  - Rachel Klima: Mineralogy
  - Jonathan Levine: Geochronology
  - Ryan Ziegler: Geochemistry

- Alan Treiman: Geochemistry
- Harry Hiesinger: Crater Counting
- Jacob Bleacher: Geology, Volcanology
- Michelle Minitti: Geology, operations

#### Instruments

- Tom Whitaker: Lunar CDEX (µscopic chemical imaging & Rb-Sr dating)
  - Peter Wurz: Lunar geochemistry & mass spectrometer subsystem
  - Steve Beck: Laser subsystem
- Phil Christensen: IRES (NIR/IR point spectrometer; mineralogy and thermophysics)
- Aileen Yingst: EEC (Context and microscopic imager; MAHLI variant)
- Sean Dougherty: MDA: Arm, gripper, rake
- Kris Zacny: HoneyBee Grinder (RAT variant)
- Morpheus/NAVIS & ALHAT team

#### **MARE** Goals



- Goal 1: Determine the impact history of the inner solar system
  - Determine age of lunar mare basalts SE of Schiaparelli crater
  - Fill major gap in lunar crater chronology to bridge young and old terrain
  - Assess implications for lunar and inner solar system history
- Goal 2: Assess evolution and differentiation of the interiors of one-plate planets
  - Determine geochemistry and mineralogy of young basalts
  - Determine petrological and thermal evolution of the lunar mantle
  - Apply insights to understanding of one-plate planet evolution
- Addresses Goals and Objectives of DS, LEAG, SCEM

## What is the problem?



- Multiple crater flux models with major differences
- Many crater counts consistently higher than previous efforts
- More craters observed in LROC data; implies higher impactor flux



# Robbins, Marchi Models Imply 1 Ga Correction





Time (Gyr)

## Goal 1: Reveal the history of the inner solar system



- Important solar system events occurring during 3-3.5 Ga
- Flux curve defines solar system events



#### **MARE** Overview



- Land and measure the chronology (CDEX-LARIMS) and composition (CDEX-LAMS, IRES, EEC) of a 1.8-2.8 billion year old planetary surface
  - MARE's robotic arm & rake will acquire and assess 20 lunar rock samples
    - Threshold: 5
    - Baseline 10
    - 10 more as operational contingency
    - Plus acquisition contingency: ~50 samples, 30% usable
    - Binomial jujitsu: 98%+ odds of 9 measurable samples
- Stereoscopic, panoramic and microscopic images provide geospatial context
- NIR & TIR mineralogy and thermophysics of sample and site

# DRR 1 Site ~23.7°N 47.4°W: SE of Schiaparelli







- Crater count well understood
- Lunar Prospector:
  - Chemically homogenous
  - 4-6 ppm Th => 7-8 ppm Rb

- Extremely smooth
- 2-m DTM for ALHAT
- 50-1000+ rocks + rake results
- DRR2: N of Flamsteed Crater

# **NAVIS Lander based on JSC Morpheus**





# **NAVIS Lander** Solar Panels CDEX Radiators Grinder based Liquid Oxygen & on RAT Methane Tanks by HBR **IRES** 4-Degree of Rock Selection Zone: EEC Freedom Arm 12 m<sup>2</sup>, 226° Arm Rotation Soil Rake Based on Mars Phoenix by MDA Rock Gripper

# **Chemistry and Dating Experiment**





- CDEX-LARIMS for Rb-Sr
- CDEX-LAMS for elemental abundance
- Miniaturization under MatISSE



## **Lunar Analog Duluth Gabbro**





- TIMS:  $1094\pm14$  Ma  $^{87}$ Sr/ $^{86}$ Sr =  $0.7055\pm3$ 
  - Dates for Duluth and
    Zagami are published
- Accurate abundances, e.g.
  Rb ~4.4 ppm
  - 2X harder than DRR1
- Intercept good to <1%</li>
  - Precision meets
    requirement, but
  - Accuracy 3X worse
  - Further calibration
    expected to improve this

### What does this mean for flux-curves



- Can differentiate models at 2-σ (2 x 200 Ma) for expected age range
- 3 samples to be confident of provenance
- Improvement in age to ~140 Ma (current limit due to systematic error)



Time (Gyr)

# **Science Instrument Complement**



#### **Chemistry and Dating Experiment (CDEX)**

Laser-Ablation Mass Spectrometry (LAMS)

- Elemental, and isotopic analysis
- ±2% accuracy for >1 wt%
- ±5% for >1000 ppm abundance
- 240 point analyses per sample

(CDE+, LARIAS) Geochemistry (Cochemistry)

Rock Lithology **Laser-Ablation Resonance Ionization** 

**Mass-Spectrometry (LARIMS)** 

- Rb-Sr age ± 200Ma
- Minimal sample preparation
- Robust Aerospace laser system
  - High TRL mass spectrometer

Infrared Reflectance and **Emission Spectroscopy (IRES)** 

- Point NIR and TIR spectra
- Wavelengths 1 to 2.5 um and 5.5 to 50 um
- Based on MER Mini-TES
- 10 cm<sup>-1</sup> resolution

Petrology Discovery Crater Flux

Thermophysics

Geospatial EEC Context

**Eagle Eye Camera (EEC)** 

- Hi-res, stereoscopic images
  - Pre/post analysis images
    - Focus 2.1cm to ∞
    - Based on MSL MAHLI

**EEC** 

### **Conclusions: Clives Questions**



- What are the implications of new observations for the geologic evolution of the Moon and solar system geology?
  - Recent crater flux models have major implications for the history of the Moon and inner solar system requiring new chronology measurements from multiple terrains
- How do current mission results affect the current Decadal Survey and influence our planning for the next?
  - Add unifying theme for a campaign of dating missions for the Moon and inner solar system
- How do these new discoveries affect planning for future human missions?
  - Humans provide the perfect sample acquisition for in-situ triage and sample return
- What future measurements are needed to address unknowns, including strategic knowledge gaps, regarding the Dynamic Moon?
  - More chronology!

