Planetary Basalt Construction & Material Science

PISCES / NASA KSC
Briefing to LEAG

Material Science of Dust on the Lunar Surface

- Lander descent engines create high velocity / horizontal flow across surface
- Relatively flat sheet of dust (1-3 deg to surface)
 - Particles lifted by aero forces

CONCLUSION - Need to sinter/stabilize the surface of Moon/Mars for VTVL pads

Planetary Construction Phase I – Basalt "lunar" sidewalk construction project – March 2015

Planetary Construction Phase 2 – 2015 VTVL Basalt Pad Construction Demonstration

Strategic Partners for ACME Landing Pad

End Goals for VTVL Pad Construction

- 1. Be the first demonstration of robotic landing pad construction using planetary analogue material
- 2. Investigate construction materials made from basalt
- 3. Advance the TRL of robotic VTVL pad hardware and processes
- 4. Provide a gateway to fabricating VTVL pads in precursor space missions (prior to humans arriving) with in-situ resources

Aerial view of the PISCES VTVL basalt lunar landscape

Sept 2015

VTVL pad area before grading.

3m x 3m bullseye

"Lunar" crater in foreground

PISCES rover / KSC blade removing crown from bullseye pad

PISCES rover / KSC blade compaction operations of bullseye

Completed
Technical
Milestone
#1

30 Sept 2015

Tire imprints in the basalt fines.

Similar to prints on lunar / Mars surface

VTVL Landing Pad Interlocking Paver System

VTVL Landing Pad Paver Fabrication

Run Time: ~30hours Max Temp: 2100 deg F

Landing pad paver April / May 2015

PISCES

Material: Hawaii basalt fines

- Nice defined edges
- Solid material

Landing pad paver June 11, 2015

SUCCESS!

Major
breakthrough in
paver
development
process

PISCES

Paver
Deployment
Mechanism

Concept of Operations

VTVL PAD TEST SCHEDULE

September:

leveling, grading and compression of the bullseye pad

October:

- Data analysis from Sept tasks
 - ASTM nuclear gauge testing for density of compression
- PDM/robotic arm integration/test onto PISCES rover

November / December:

tele-op, robotic paver construction

January:

Ablation/erosion tests: cold gas, hot gas engine firings

Landing Pad Construction Phases

- PHASE 1 Prep the "lunar" site. Leveling and grading with PISCES rover/KSC blade. 50' x 50' area
- PHASE 2 Compaction and fine finish. PISCES' blade on rover with sod roller attached. 10'x10' area
- PHASE 3 PISCES rover emplaces pavers using KSC PDM
- PHASE 4 PISCES rover/roller compact outer apron
- PHASE 5 Rover places/levels additional gravel on apron

Roles of the PISCES' Rover

Pioneering Space

Goal – create economic development and hi-tech workforce by providing research and development in planetary surface systems for maturing technologies for sustainable operations on the Moon, Mars and asteroids.

PISCES Strategic Plan Objective

TECHNOLOGY DEVELOPMENT / DUAL-USE TECHNOLOGY IN:

- 1. Basaltic construction (R&D)
- 2. PISCES Planetary Rover systems upgrade/integration
- 3. Expand the PISCES Planetary Analogue Test Site (PPATS)
- 4. PISCES lunar surface flight experiment MoonRIDERS
- 5. International Robotics Mining Competition in Hawaii PRISM
- 6. NASA Laser Communications Relay Demonstration (LCRD) and ground terminal
- 7. Workforce Development Intern and Coop Program

Ceramic mold for interlocking paver

April 2015 –initial tests with interlocking pavers—but stress concentrations were causing cracking.

VTVL Lunar Analogue Site

Planetary Surface "Systems of Systems"

PREPARE

FUTURE

MISSIONS

Planetary Site Characterization

Planetary Mobility

Planetary Construction

Operations/Flight Communications Network

ACIFIC INTERNATIONAL STACE CENTER FOR XPLORATION SYSTEMS | PISCES.HAWAII.GOV