Low Frequency Radio Astronomy from the Lunar Surface

R. J. MacDowall (1), T. J. Lazio (2), J. Burns (3)

- (1) NASA/GSFC, Greenbelt, MD, USA
- (2) JPL/Caltech, Pasadena, CA, USA
- (3) U. Colorado, Boulder, CO, USA

Radio astronomy observatories

- Significant radio astronomy from ground-based observatories - VLA, LOFAR, LWA, GMRT, etc.
- Mapping of radio sky and imaging of transients
- Longer wavelengths <30 MHz
 need larger aperture to image
 (kilometers) + need to be
 outside the ionosphere
- Lunar surface is a potential location with key advantages

VLA sky map (Credit: MRAO/AUI/NSF)

Solar Radio Targets

- CMEs and other solar activity produces radio bursts
- These bursts have never been imaged at <30 MHz
- Lunar radio observatory would address this issue
- Specific questions:
 - Where on shock does electron acceleration occur?
 - Does shock acceleration or reconnection cause Type III-Ls?
 - Does CME "cannibalism" produce enhanced Type II bursts and solar energetic particle (SEP) events?

CME Magnetic Fields and Evolution

State-of-the-art can determine magnetic field strength, approximate location

- Ground-based measurements limited to $r\sim 2~R_{\odot}$
- Limited frequency range cannot track evolution, limits extent to which radio-optical images can be aligned/correlated

CME (white light)

80 MHz Gauribidanur image

SDO-AIA 193 Å and SOHO-LASCO C2 images

Other low frequency radio targets

- Doppler shifted 21 cm emission from the Dark Ages is detectible from 20-200 MHz.
- Provides structure and evolution of Universe (in absorption of 21 cm emission)
- Requires low noise (far side of Moon) and high sensitivity (large array)

Magnetospheres of exoplanets

- Detection of exoplanet magnetospheres is typically oriented towards detection of magnetospheric radio emissions, similar to those of Earth, Jupiter, etc.
- Frequencies explored to date are those available from ground-based observatories. For example, see "Search for 150 MHz radio emission from extrasolar planets in the TIFR GMRT Sky Survey," Sirothia et al., A&A 562, A108 (2014)

Fig. 9. TGSS (left panel) and NVSS images (right panel) of the 61 Vir field at 150 MHz and 1.4 GHz.

Exoplanet magnetosphere detection

Low frequency radio environment at moon

- Wind Waves RAD2 dynamic spectrum
- 24 hour interval from 1999/4/2 when Wind flew by the moon
- Moon on terrestrial nightside, as it would be for solar observations
- Note terrestrial transmissions & type IIIs

Early design lab - ROLSS

GSFC concept study components from the days of "lunar sortie science": Segmented solar array, electronics boxes with thermal control, high gain antenna, S-band antenna, science antenna (to be connected to boxes by astronaut); now called Radio Observatory on Lunar Surface for Solar Studies (ROLSS)

Double-probe Instrumentation for Measuring Electric-fields (DIME)

A spinning CubeSat, like DIME, would permit deployment of much longer antennas. Investigation of the maximum stable length is required.

Figure 11. The DIME sensor-sat risk-reduction mission.

- The DIME spin rate is intended to be 1.5 Hz, to support 3 m cable booms.
- Lunar orbit, like that of Lunar IceCube would provide window of time when Earth transmissions were blocked

Deployed wire boom antennas

- The Wind spacecraft has 2 sets of electric field dipole antennas – each consisting of wire antennas held straight by the force of spacecraft spin on antenna tip masses.
- Longer antennas ~ 100 m dipole
- Wind spins at 20 RPM.
- A spinning spacecraft can support much longer antennas than stacer or other mechanically-erected antennas used on spinstabilized spacecraft.
- Contemplate an array of >30 6U CubeSats with antenna lengths close to Wind's

Summary

- Although other antennas designs exist, testing funded by the NLSI indicates that antennas on Kapton film would work well for solar radio bursts.
- The ROLSS concept, adapted to robotic deployment, would have:
 - 3 antenna arms of 500 m length each appropriate for solar radio imaging
 - Central electronics box with COM antennas, thermal and power systems
 - Data rate of 80 Mbs, unless correlation down on-site
- We continue to work the technology issues and to look for a ride for a first pathfinder; CubeSat arrays are also being studied
- Need to carry out sensitive studies before lunar radio frequency interference levels become significant.

Backup

Lunar photoelectron sheath

- Moon's photoelectron sheath and any "ionosphere" will interfere with low frequency measurements; otherwise, important to study
- Measuring the ionosphere has proven difficult; assume that maximum electron densities are of order 500 cm⁻³
- Yields max ionospheric electron plasma freq ~ 200 kHz
- Bill Farrell says daytime photoelectron sheath has 0.5 m scale height – 100 cm⁻³ at surface, 10 cm⁻³ at 1 m
- ROLLS will provide data (or upper limits) for the electron density (from type III burst cutoffs).

ROLSS Science Requirements

Parameter	Values	Comments	
Wavelength (Frequency)	30-300 m (10-1 MHz)	 Matched to outer corona radio emissions Probe lunar ionosphere Operate longward of terrestrial ionospheric cutoff 	
Angular resolution	2 deg (at 10 MHz)	Required to separate sourcesCorresponds to coronal scattering	
Bandwidth	100 kHz	Track evolution of bursts	
Lifetime	1 year	Measure >10 solar rotations	

ROLSS: Science Antennas

- The three 500-m arms of ROLSS (in GSFC concept) are multilayer as shown above for strength and durability
- Total (terrestrial) weight for 1500 m by 1.5 m= 188 kg (using multilayer above)
- Signal transmission uses a planar wave guide, shown at left
- Losses are 0.05 dB/m at 10 MHz, acceptable for solar studies, but active preamp desirable. Multiple implications.

ROLSS: Antenna Testing

- Material is 5 microns of Cu on 25 microns of Kapton; roll is 12 inches wide
- Manufactured by Sheldahl
- Tested at Goddard "optical site"
- Goal was to demonstrate that modeling software agreed with observed impedance
- Good agreement on sandy soil and asphalt (need to demonstrate in dry desert)
- Vacuum chamber testing at U. Colorado

ROLSS: Synthesis Testing

Far left: Nominal science antenna distribution along the antenna arms (16 per arm)

Left: Point-spread function ("beam") for a snapshot image. The maximum sidelobe is at -5.9 dB, and the rms sidelobe level is -15 dB.

Right: Model of a CME

Far Right: The imaged CME. Front & back of CME are clearly distinguished, even though residual beam effects also apparent. Only modest amount of CLEANing used.

ROLSS concept study mass budget

	Mass CBE	% of Total
Sections	(kg)	Instrument Mass
Antenna Arms	187.73	34.91%
Central Electronics Package	257.34	47.86%
Lithium Ion, Battery 80 Ah 90% DOD	148.00	27.53%
CEP Thermal Subsystem	26.86	5.00%
RF/Comm Subsystem	25.18	4.68%
Solar Panel Assembly	22.34	4.15%
Anntenna Arm Deployment Mechanical Assembly	19.50	3.63%
TOTAL (+ 5% hardware and no margin):	537.69	

- Consolidation/miniaturization critical; has been studied, but need more development
- A number of antenna deployment methods have been studied; mini-rover preferred