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Introduction




Radio astronomy observatories

Significant radio astronomy
from ground-based
observatories - VLA, LOFAR,
LWA, GMRT, etc.

Mapping of radio sky and
imaging of transients

Longer wavelengths <30 MHz
need larger aperture to image
(kilometers) + need to be
outside the ionosphere

Lunar surface is a potential ==

location with key advantages _
VLA sky map (Credit: MRAO/AUI/NSF)



Solar Radio Targets

e CMEs and other solar activity produces radio bursts

* These bursts have never been imaged at <30 MHz

* Lunar radio observatory would address this issue

e Specific questions:
 Where on shock does electron acceleration occur?
* Does shock acceleration or reconnection cause Type lll-Ls?
* Does CME “cannibalism” produce enhanced Type Il bursts

and solar energetic particle (SEP) events?

Complex type Il burst source
10 MHz beam
6 MHz beam

1) shock
acceleratio

SOHO LASCO CME SOHO LASCO CME
of 1997/11/06 . ’ of 1997/11/06



CME Magnetic Fields and Evolution

State-of-the-art can determine
magnetic field strength, approximate
location

* Ground-based measurements
limitedtor ~2 Rg

e Limited frequency range cannot
track evolution, limits extent to
which radio-optical images can be
aligned/correlated

CME (white light)

C2: 2015!05!02 05:36 AlA 193: 05/02 05:34
SDO-AIA 193 A and SOHO-LASCO C2 images

80 MHz Gauribidanur image




Other low frequency radio targets

Time since the

Lunar Radio
Array

~500 million

~1 billion

JWST, ALMA,
MWA, LOFAR

* Doppler shifted 21 cm emission from the
3 Dark Ages is detectible from 20-200 MHz.
~9 billion . Teel ' : * Provides structure and evolution of

' N Universe (in absorption of 21 cm emission)
e Requires low noise (far side of Moon)
and high sensitivity (large array)

~13.7 billion




Magnetospheres of exoplanets

 Detection of exoplanet magnetospheres is typically oriented towards
detection of magnetospheric radio emissions, similar to those of Earth,
Jupiter, etc.

* Frequencies explored to date are those available from ground-based
observatories. For example, see “Search for 150 MHz radio emission from
extrasolar planets in the TIFR GMRT Sky Survey,” Sirothia et al., A&A 562,
A108 (2014)
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Fig. 9. TGSS (left panel) and NVSS images (right panel) of the 61 Vir field at 150 MHz and 1.4 GHz.

Oct 6, 2015 5th International Workshop on LunarCubes



Flux density from Earth (Jy)

Exoplanet magnetosphere detection
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Low frequency radio environment at moon
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Early design lab - ROLSS

GSFC concept study components from the days of “lunar sortie science”:
Segmented solar array, electronics boxes with thermal control, high gain antenna,
S-band antenna, science antenna (to be connected to boxes by astronaut);

now called Radio Observatory on Lunar Surface for Solar Studies (ROLSS)



Double-probe Instrumentation for Measuring Electric-fields (DIME)

A spinning CubeSat, like DIME, would permit deployment of much longer antennas.
Investigation of the maximum stable length is required.

Photo Diodes (x6) Langmuir Probe (x2)
Strap-Down Magnetometer

Deployable solar panels
provide enhanced power

. Tungsten Masses for enhanced
margins (x4)

,,.// balance and MOI margin (x4)

Fine Sun-sensor (x2) Electric Field

Turnstile Antenna Element (x4) / ““e—  Probe (x4)

Figure 11. The DIME sensor-sat risk-reduction mission.

e The DIME spin rate is intended to be 1.5 Hz, to support 3 m cable booms.

e Lunar orbit, like that of Lunar IceCube would provide window of time when Earth
transmissions were blocked

Oct 6, 2015 5th International Workshop on LunarCubes 11



Deployed wire boom antennas

The Wind spacecraft has 2
sets of electric field dipole
antennas — each consisting
of wire antennas held
straight by the force of
spacecraft spin on antenna
tip masses.

Longer antennas ~ 100 m
dipole

Wind spins at 20 RPM.

A spinning spacecraft can
support much longer
antennas than stacer or
other mechanically-erected
antennas used on spin-
stabilized spacecraft.

Contemplate an array of >30
6U CubeSats with antenna
lengths close to Wind’s
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Summary

Although other antennas designs exist, testing funded by the NLSI indicates

that antennas on Kapton film would work well for solar radio bursts.

The ROLSS concept, adapted to robotic deployment, would have:
— 3 antenna arms of 500 m length each appropriate for solar radio imaging
— Central electronics box with COM antennas, thermal and power systems
— Data rate of 80 Mbs, unless correlation down on-site

We continue to work the technology issues and to look for a ride for a first

pathfinder; CubeSat arrays are also being studied

Need to carry out sensitive studies before lunar radio frequency interference

levels become significant.



Backup



Lunar photoelectron sheath

* Moon’s photoelectron sheath and
any “ionosphere” will interfere with
low frequency measurements;
otherwise, important to study

* Measuring the ionosphere has
proven difficult; assume that
maximum electron densities are of
order 500 cm™

* Yields max ionospheric electron
plasma freq ~ 200 kHz

* Bill Farrell says daytime photo-
electron sheath has 0.5 m scale
height — 100 cm™3 at surface, 10 cm?3
atlm

e ROLLS will provide data (or upper
limits) for the electron density (from
type Il burst cutoffs).
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ROLSS Science Requirements

Parameter Values Comments

Wavelength (Frequency) 30-300 m (10-1 MHz) e Matched to outer corona radio
emissions
* Probe lunar ionosphere
e Operate longward of terrestrial
ionospheric cutoff

Angular resolution 2 deg (at 10 MHz) * Required to separate sources
e Corresponds to coronal scattering

Bandwidth 100 kHz Track evolution of bursts

Lifetime 1 year Measure >10 solar rotations



ROLSS: Science Antennas

[.OF 7,

| | Cover - Kapton® - 12 pm
Trace - Au - flash

[ Trace - Cu - 10 pm

Substrate - Kapton® - 25 um

| | Scrim - Nomex® - 20 um

e The three 500-m arms of ROLSS (in GSFC
concept) are multilayer as shown above — for
strength and durability

* Total (terrestrial) weight for 1500 m by 1.5 m
= 188 kg (using multilayer above)

e Signal transmission uses a planar wave
guide, shown at left

* Losses are 0.05 dB/m at 10 MHz, acceptable
for solar studies, but active preamp desirable.
Multiple implications.



ROLSS: Antenna Testing

e Material is 5 microns of Cu on 25 microns

of Kapton; roll is 12 inches wide
* Manufactured by Sheldahl
 Tested at Goddard “optical site”

* Goal was to demonstrate that modeling
software agreed with observed impedance

* Good agreement on sandy soil and

asphalt (need to demonstrate in dry desert)
* Vacuum chamber testing at U. Colorado
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ROLSS Array Design
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Far Right: The imaged
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CME are clearly
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ROLSS: Synthesis Testing

Far left: Nominal science
antenna distribution along the
antenna arms (16 per arm)

Left: Point-spread function
(“beam”) for a snapshot image.
The maximum sidelobe is at
-5.9 dB, and the rms sidelobe
level is -15 dB.



ROLSS concept study mass budget

Mass CBE % of Total
Sections (kg) Instrument Mass
Antenna Arms 187.73 34.91%
Central Electronics Package 257.34 47.86%
Lithium lon, Battery 80 Ah 90% DOD 148.00 27.53%
CEP Thermal Subsystem 26.86 5.00%
RF/Comm Subsystem 25.18 4.68%
Solar Panel Assembly 22.34 4.15%
Anntenna Arm Deployment Mechanical Assembly 19.50 3.63%
TOTAL (+ 5% hardware and no margin): 537.69

* Consolidation/miniaturization critical; has been studied, but need more development
A number of antenna deployment methods have been studied; mini-rover preferred
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