Percussive and Pneumatic Approaches to Lunar Heat Flow Probe Deployments

Why measuring heat flow?

- Heat flow will tell us the bulk structure and composition of the Moon relative to heat producing elements (radioactive ⁴⁰K, ²³²Th, ²³⁵U and ²³⁸U) and the extent of crustal differentiation.
- If we know the age of the Moon, then the heat flow will reveal if it had a hot or cold origin.

Required measurements

Thermal conductivity k:

- heat regolith,
- measure T change

The big issues:

- thermal isolation between thermocouples themselves
- and from a surface lander/system

Apollo Experience

HONEYBEE ROBOTICS

- Drill, pull out, put a probe into the hole
- 2 Heat Flow probes 10 m apart: 2 independent measurement and lateral variation
- A15: drill got 'stuck' and never managed to drill deep enough (2.4 m)
- A16: astronaut tripped over the cables
- A17: success but it was a tough work!

HFP Approaches

	Percussive System Pneumatic Sys			
Getting to 3 m	Hammer-driven penetrometer.	Gas driven proboscis.		
Deploying thermal sensors	Ring-shaped heaters with temperature sensors deployed against the borehole as penetrometer penetrates. Conductive coupling to regolith.	Thermal sensors either housed in a flexible proboscis (radiative coupling) or spring deployed point sensors (conductive coupling).		
Mass/Power/Energy	10 kg / 100 W / 100 Whr	1 kg / 10 W / 10 Whr		
Advantage	 Fast penetration rate in dense soils Conductive coupling to soil Easy to model sensor geometry	Low volume, mass and energySimple deployment		
Disadvantage	Need electrical energy (<200 Whr)Need a carousel to feed rods	- Radiative (in worst case) coupling		

Percussive Approach

Design and Operation

HONEYBEE ROBOTICS

- Ring sensors: T and k measurement
- Top-Down and Bottom-Up approach
- Optimum thermal isolation between consecutive heat flow sensors.
 - Sensors decoupled from the and the rest of the lander
 - The only physical connection between the borehole and the spacecraft is the electrical tether to the first sensor.
- Direct contact between the sensors and regolith.

Tests in compacted JSC-1a

- Resistance is a function of a cone diameter and rod diameter
- 1 meter reached in 1-3 minutes

10 Meter Tests in GSFC-1

Top-Down Demonstration

Pneumatic Approach

Proof of Concept

- Excavation accomplished by injecting gas
- Use dedicated gas tank or He from propulsion system

• Large gas efficiencies possible if deployed in vacuum

Toet#	Cone Geom.	Gae Tuno			Gas Density [kg/m^3]	Mass Flow Rate [grams/sec.]	Actual Avg. WOB [lbf.]	Penetrated
1620								[in.]
1	no hole	n/a	n/a	n/a	n/a	n/a	100	<2
2	4 holes	air	20	1.5	3	2.12	0	25
3	4 holes	air	5	0.8	1.7	0.65	0	25
4	4 holes	He	5	0.8	0.2	0.09	0	25 ¹²

Components and Deployment

Development History

2008/09 1st generation TRL 3

2009/10 2nd generation TRL 3/4

2011 3rd generation TRL 4

2012-14 4th generation TRL 5

TRL 5 (1.2 kg)

Thermal Conductivity Probe Tests

- Conducted k tests in JSC-1a
- Varied pressure from 760 torr to 1 mtorr
- Used standard needle probe as reference
- Data agrees with A17 data

TRL5 1 m test in JSC-1a in Chamber

TRL5 1 m test results in JSC-1a

TRL5 1 m test results in JSC-1a

Pneumatic Spear

- Tests at 760 torr
- 20 N Force
- Approx. 1 min to 3 m
- Gas Flow 2-2.5 ft^3/min. Approx. 67-83 grams of air at 120 PSI.

Tests in NU-LHT-2M

• Approx 2 m

 Stop and Go successful (required for getting k at various depths)

Acknowledgements

- NASA Small Business Innovation Research
- NASA Planetary Instrument Definition and Development Program

Thank You!

