

2015 Annual Meeting of the Lunar Exploration Analysis Group

Vision and Plan for Korea Lunar Resource Prospecting

October 20, 2015 / Columbia, Maryland

Tai Sik Lee, Byung Chul Chang, Hyu-Soung Shin, Janggeun Lee, Jaeho Lee

Korea Institute of Civil Engineering and Building Technology

Contents Vision and Plan for Korea Lunar Resource Prospecting

- 1. Introduction of KICT
- 2. Background
- 3. Vision and Goal
- 4. Research Group
- 5. Research Plan

1. Introduction of KICT

Personnel & Budget

Executives & Employees 725 / Budget for 2015 \$133.2M (about KRW 150.4 billion)

1. Introduction of KICT

Organization

- Ten Research Institutes, Three Departments, Three Divisions, One Center
 - Reoriented to become a more task—oriented organization (July 2015)

I. Introduction of KICT

30 years Experience

Establishment of KICT

Completion of KICT Research Complex

Completion of Fire Research Center

Completion of River Experiment Center

I Gov. sponsored Research Institute under the Jurisdiction of NST under the MSP

Multidisciplinary R&D Areas

I. Introduction of KICT

Field Scale R&D

KICT Main Research Complex

- Goyang, Gyeonggi-Do
- Area: 141,552.6 m²
- Est. 1997

The Fire Research Center

- Hwaseong, Gyeonggi-Do
- Area: 60,842 m2
- Est. 2006

Andona

Yeoncheon

Goyang

Hwaseong

- Yeoncheon, Gyeonggi-Do
- Area: 692,119m²
- Under construction(~2015)

The River Experiment Center

- Andong, Gyeongsangbuk-Do
- Area: 193,051m2
- Est. 2009

1. Introduction of KICT

International Cooperation

I Strategic Relationships Based on MOU (48 Institutions as of June 30, 2015)

- Delft University of Technology, Netherlands
- Fraunhofer Institute Bauphysik, Germany
- Colorado State University, USA
- Transport Research Laboratory, UK
- Department of Roads, Mongolia
- Asian Institute of Technology, Thailand
- BRE Global Limited, UK

l International Joint Seminars

- Japan Institute of Construction Engineering, Japan
- Institute of Water Resources and Hydropower Research, China
- Public Works Research Institute, Japan
- Research Institute of Highway, China

2. Background - Space Exploration

Engineering enables science, and science enables engineering."

Dr. Michael Wargo(1951-2013), NASA HEOMD Chief Exploration Scientist

2. Background – Global Trend

- Global Trend of Space Exploration
 - Golden time for lunar exploration and international cooperation
 - Rise of Asian countries to space exploration
 - Remote mission to surface mission

2. Background - ISRU

AIAA SPACE Topics (%)

- Topics related to ISRU topics are continuously increasing
 - Science decreased, others are similar

EUCASS Topics (%)

 ISRU topics start to present from the European Conference for Aeronautics and Space Sciences (EUCASS)

2. Background - ISRU

Lunar/Mars Manned Exploration

2. Background – National Trend

정부정책

- Government 13th policy task, "Space technology secure to be advanced space nation"
- Space technology development for launch vehicle, satellite, lunar exploration
- Diversify cooperating countries and technologies to improve Korea's contribution

Mid and Long Term National Space Development Plan (November, 2013)

3. Vision, Goal and Tasks

Advance, Low Cost, High-efficient Space Resource In-situ Prospecting and Analysis Technology Development

3. Research Group

ISRU Technology Verification Facility

Team Lead

Development of dirty vacuum chamber

KRISS 한국표を平年位子程

KICT

DVC design and qualification

KIGAM 한국자실자원연구원

Simulant chemical property

Resource Prospecting and Analysis

Team Lead

Active x-ray spectrometer
Grinder
Ground penetrating radar

∠ NuCare MEDICAL SYSTEMS

KIGAM

한국지질자원연구원

Spectrometer electrical system and algorithm

Team Lead

In-situ drilling and motor development

КІСТ

KITECH

Frozen simulant development System verification and optimization in cryogenic vacuum environment

Surface Mission Infrastructure

Team Lead

In-situ automated construction and operation technology development

ISRU construction material

Total 33 researchers, USD 25.5 million

Task 1

Task 2

Tack S

Task a

Final Goal

ISRU Technology Verification Facility — Dirty vacuum chamber—

Key technology

- DVC design
- Key parts withstand extreme environment
- Solar simulator
- Technology verification process
- Regolith simulant(mech./chem.) considering different planetary condition

Output

Dirty vacuum chamber and ISRU technology verification process

Application

- Surface mission device testing
- Science experiment
- Establish standards for planetary exploration device

10-7 torr
-1900

System testable size (50m³)

Regolith simulant

Task 1 Task 2 Task 3 Task 4

Final Goal

EQM level AXS, grinder, UWB full-Pol GPR development

Key technology

- AXS design, build
- UWB full-Pol GPR
- System integration and integrated platform operation
- Landing site decision process
- Geological resource investigation

Output

In−situ resource prospecting AXS/grinder, GPR, landing site candidate report

Application

- X-ray spectrometer for medical, industrial
- Extreme environment element investigation
- Cultural asset, underground detection
- Underground structural analysis

Task 3 **Final Goal** space environment (10⁻⁷ Compact, light drilling design Key technology Monitoring and automated control system for safety and efficiency Thermal control system ▶ High efficient motor for space environment Output EQM level drill/motor, auto control S/W, drilling system operation manual **Application** Planetary stratigraphy investigation Science mission and sampling Regolith strength investigation ▶ Terrestrial polar region ground investigation and sampling

Task 1 Task 2 Task 3 Task 4

Final Goal

ISRU additive construction material (20MPa strength), automated construction technology and integrated testing environment

Key technology

- Infrastructure automated construction
- ISRU additive construction material
- Material forming/control
- Site topography, geological information analysis
- Site measuring, monitoring, modelling

Output

Water-free construction material, automated construction system, monitoring system, 3D VR simulator

Application

- Planetary infrastructure (landing pad, apron, roads, blast wall, habitat)
- Construction for military, disaster, refugee region
- ▶ Eco- friendly construction
- ▶ Terrestrial construction automation and site monitoring system

BB level system
20MPa strength
25mm/s construction speed

(USC Contour Crafting)

3. Vision, Goal & Tasks

Space Resource In-situ Prospecting and Analysis Payload (EQM) Development until 2020

Task 1

- Dirty Vacuum Chamber for ISRU Technology Verification
 - System scale dirty thermal vacuum chamber
 - Cryogenic shroud
 - Regolith simulant characterization and development
 - ISRU technology verification process

Task 4

- o ISRU additive construction material and method
- BB level automated construction device
- Site measuring and modelling

Task 2

- Space Resource In-situ Prospecting and Analy
 - EQM level active x-ray spectrometer/grinder
 - EQM level ground penetration radar
 - Primary resource prospecting site selection

- Space Resource In-situ Drilling
- EQM level drilling and motor
- Thermal control system
- Automated operation

- 극한지 신공간 건설 사업 지원 - 미래 건설시장 마케팅

4. Research Group

Manufacturing technology development and commercialize

Role

Drill design, build, and system integration

- Horizontal direction drill

KIGAM

Construction and maintenance robotic system.

Land/undersea geological survey, underground resource investigation/development/utilization

Role

In-situ resource prospecting and analysis technology development

Key Technology

- Planetary exploration science device
- Lunar geological/resource investigation
- Planetary resource geochemistry investigation

Construction and land management technology development

Role

Extreme environment construction technology development, drilling operation optimization

한국건설기술연구원 Key Technology

是四号

- Frozen land pipeline design and construction
- South pole base management
- Deep underground drilling

Mission

National measurement standards. measurement technology R&D

Role

Development of dirty vacuum chamber and testing facility

Key Technology

- Vacuum technique
- Ultra thin film measuring technology
- Vacuum environment measuring technology

5. Research Plan - Application

DVC and other technologies can be apply not only to the Moon, but also Mars and other target environments

KI GAM 한국지질지원연구원

KRISS 한국표준과학연구원

KAERI 한국원자력연구원

사람과 미래를 생각하는 -

한국건설기술연구원 KICT 미래기술 강국 대한민국의 내일을 밝혀갑니다.

남극대륙

극한지 신공간 건설 사업 지원

- 극한지 신공간 건설 사업 지원
- 미래 건설시장 마케팅
- 에너지 자원 확보

범례

- → 극지: 극권(極圈)에서 극에 이르는 사이의 지역
- → 심해저 : 대륙사면에 연속되는 비교적 평탄하고 광대한 해저 지형
- → 혹서지