

HERACLES CONCEPT – AN INTERNATIONAL LUNAR EXPLORATION ARCHITECTURE STUDY

M. Landgraf, J. Carpenter, **ESA**H. Sawada, **JAXA**

SCIENCE OPPORTUNITIES IN THE FRAME OF HUMAN-ROBOTIC LUNAR EXPLORATION

- In the frame of and coordinated by ISECG, ESA leads a study ("HERACLES") to assess the benefits of a human-robotic lunar exploration mission in the mid-2020s
- Full coordination of science objectives with the community is required
- Content: Context, Architecture scenario, capabilities, surface campaign, volatiles, role of human spaceflight infrastructure, conclusions
- Objective: advance coordination of near-term exploration goals between communities and agencies

HERACLES IN THE GLOBAL EXPLORATION **ROADMAP**

Mission Scenario – Launch to Sampling Complete

Mission Scenario – Moon Departure to Earth Return

Item	Mass [kg]
Ascent stage	620
Descent stage	1442
Rover	505
Sample container	22
Ascent propellant	1564
Descent propellant	5196
total	9349

TESTING THE CAPABILITIES IN A SCHRÖDINGER TRAVERSE

INTEGRATING RESOURCE UTILISATION INTO A HUMAN ARCHITECTURE

- Inspiration: first "drink of non-Earth water"
- What comes after characterisation phase?
- Is there a role of a HERACLES-type architecture in this?
- How could an "interface" to a human architecture look like?

THE ALTERNATIVES AND THE ROLE OF HSF INFRASTRUCTURE

- Today there are considerations of various bilateral or domestic lunar sample return missions
- Given the need for international cooperation in exploration there is an opportunity for considering a common capability for preparing human missions and providing high-quality sample return
- Such an architecture relies on functional support by the human spaceflight infrastructure (cis-lunar habitat) in a critical way
- It is thus important to support agencies in understanding the value of this functional support being built into the human spaceflight infrastructure

CONCLUSION

- One possible option for lunar exploration for the mid-2020s is a coordinated multi-lateral human precursor and sample return architecture
- An on-going study has confirmed the claimed capabilities utilising human spaceflight infrastructure
- There are open questions remaining
 - Sub-system level feasibility
 - Distribution of roles of crew and ground
 - Assignment of functions to architecture elements
- There is significant flexibility in the architecture
 - Launch mode
 - Resupply logistics
 - Landing sites
- A cross-community (HSF planetology) effort is needed to advance both in agency programmatics as well as in community involvement

