ARTEMIS' Perspective on a Dynamic Moon

A. R. Poppe^{1,2}, J. S. Halekas^{2,3}, S. Fatemi^{1,2}, H. Fuqua^{1,2}, G. T. Delory^{1,2}, and the THEMIS/ARTEMIS Team

¹Space Sciences Lab., Univ. of California at Berkeley ²NASA/SSERVI, Ames Research Center ³Dept. of Physics and Astronomy, Univ. of Iowa

October 20, 2015

The Lunar Plasma Environment A dynamic interaction

ARTEMIS Measurements at the Moon

Two-satellite mission, entered lunar orbit in June and July 2011

- Low & high energy electrons and ions
- Electromagnetic fields & waves

Elliptical orbits – distances 0.01 R_L up to ~10-12 R_I

Dual probe mission allows separation of external and lunar-induced space physics phenomena

Exospheric science: solar wind alpha delivery, (pick-up ions, sputtering rates)

Geophysical investigation: Electromagnetic sounding of the lunar core

Surface interactions: SW proton reflection from surface / magnetic anomalies

Surface-Plasma-Exosphere Interactions

Surface (airless)

ARTEMIS

Atmospheric sputtering
Charge exchange

Pick-up ions Current generation

Thermal accommodation Re-cycling Self-sputtering

Exosphere

Plasma / Magnetosphere

LADEE/ARTEMIS Synergy: He Exosphere

The lunar helium exosphere "breathes" according to the alpha content of the solar wind → highly *dynamic* over short and long timescales [Benna et al., 2015]

Investigating the Lunar Interior with ARTEMIS

Courtesy: R. Weber /NASA MSFC

Electromagnetic Sounding leverages the dynamic nature of the solar wind – and its effect on the Moon – to probe the lunar interior

Investigating the Lunar Interior with ARTEMIS

Solar wind perturbations induce a magnetic moment in the lunar core depending on the size/conductivity of the lunar interior and the magnitude of the perturbation

Modern plasma simulations are providing unprecedented insight into the physics of lunar induction [Fatemi et al., GRL, 2015]

The Lunar Reflected Proton Budget

Ion and electron "fore-moon"

hhmm 2013 May 09 0000

0100

Mapping SW Proton Reflection with ARTEMIS

Non-SW protons from individual ARTEMIS fly-bys are mapped back to the lunar surface using observed ambient electric and magnetic fields

Summary and Future Work

- ARTEMIS is a well-placed and well-timed investigation into the dynamics of the lunar plasma environment
 - Exospheric science (collaboration with LADEE)
 - Geophysical investigations

 Iunar interior
 - Generation of non-SW waves and particles
 - Surface interaction / weathering science
- From ARTEMIS' perspective, much of the dynamic nature of the lunar environment is driven by the Sun
 - Solar wind / UV irradiation variability
- ARTEMIS continues to be in good health and to provide excellent data for both heliophysics and planetary science goals

