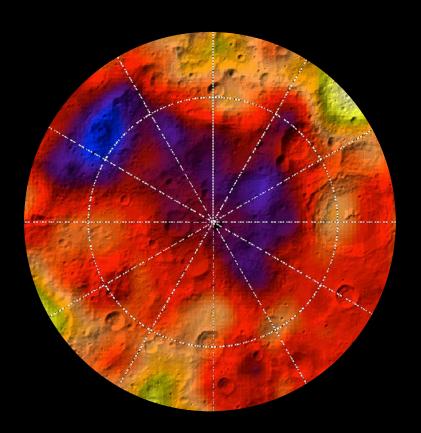


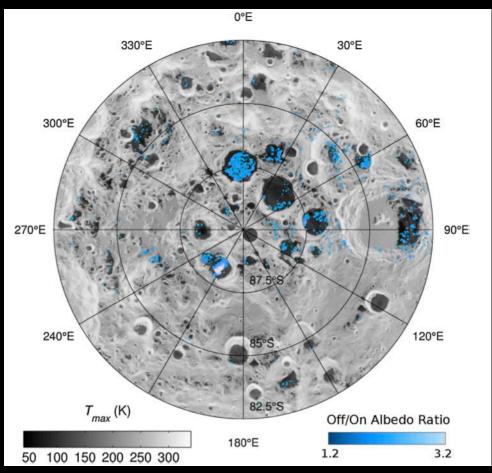
Field Testing Near-IR and Neutron Spectrometer Prospecting: Applications to *Resource Prospector* on the Moon

R. C. Elphic¹, A. Colaprete¹, J. L. Heldmann¹, M. C. Deans¹, A. M. Cooke¹ And the Mojave Volatiles Project Science Team:

B. Cohen, C. Stoker, S. Karunitillake, J. R. Skok, M. Marinova, K. Ennico, D. Lim, E. Noe, N. Button

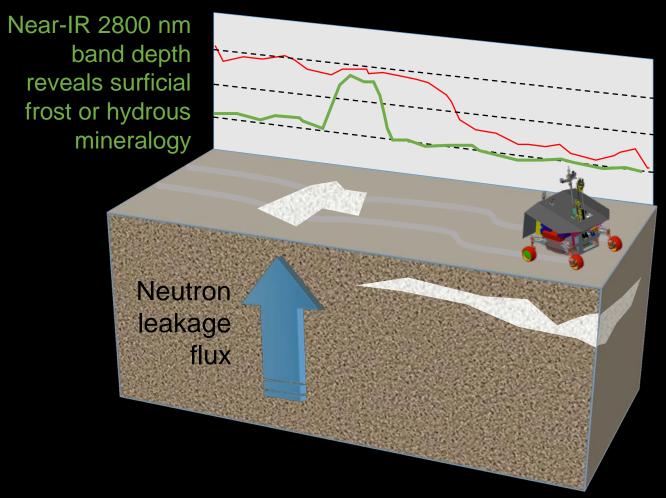
Rover operations, field support and xGDS teams included:


M. Allan, V. To, R. Gogni, L. Kobayashi, L. Flückiger, M. Furlong, M. Dille, J. Gin, D. Lees, T. Cohen, T. Smith, Rusty Hunt


Prospecting for Lunar Polar Volatiles

Volumetric Hydrogen

Surface Frost?



Hayne et al., Icarus, 2015

How Near-IR and Neutron Spectrometers Work in Tandem on *Resource Prospector*

Neutron fluxes reflect presence of buried hydrogenous materials

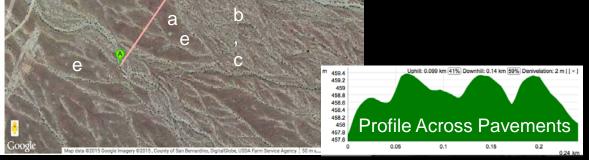
Mojave Volatiles Prospecting Project

Goal 1: Mature RP instrument (Near-IR and Neutron Spectrometers) prospecting operations concept through robotic testing in natural setting.

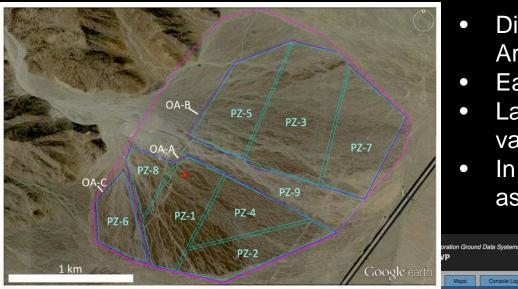
Goal 2: Mature the ARC Exploration Ground Data System (xGDS) real-time science tools through analog science ops in natural setting.

Goal 3: Conduct scientific investigation of water content on a Mojave Desert alluvial fan with low but possibly variable water abundance.

MVP Field Site

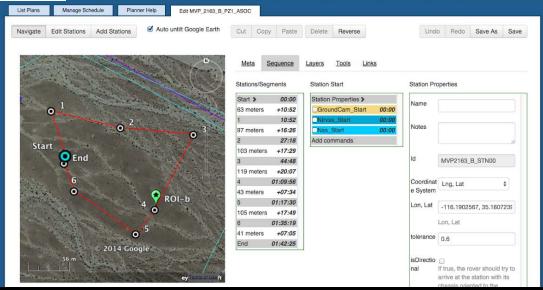


- a. Mature desert pavement (dark visible reflectance)
- b. Partially dissected pavement (medium tone)
- c. Bar-and-swale (lighter tone)
- d. Wash/channels (lightest tone)
- e. Isolated mounds of bioturbated materials in dark pavement (light tone)



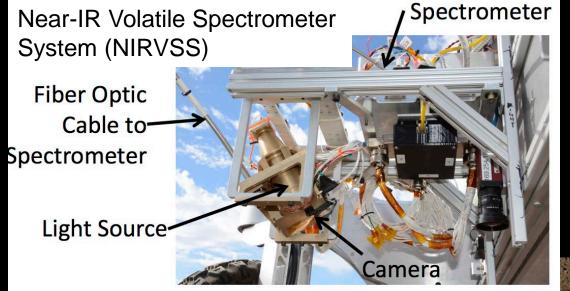
~ 2-3 m of relief

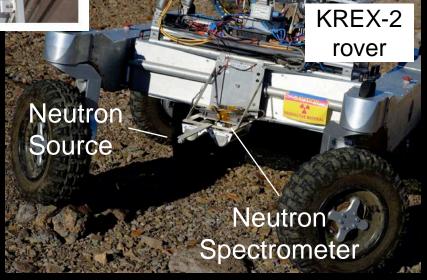
Traverse Planning



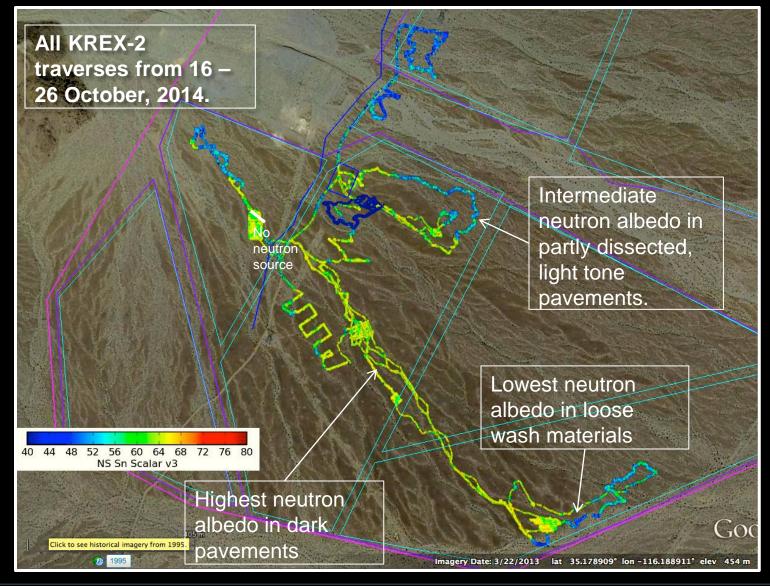
- Divide up field test site into Objective Areas and Prospecting Zones.
- Each contains variety of terrain types.
- Lay out traverse plans that cover the various terrains, priority order.
- In some cases, traverses designed to assess variations within a single type.

Instruments Images Notebook System Status

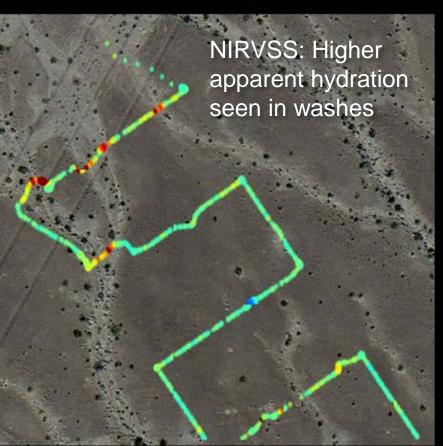

- Exploration Ground Data System (xGDS) used to create traverse plans, including instrument commanding.
- xGDS also provides an estimate of time to complete traverse.


MVP Used Two Resource Prospector Payload Instruments

- NIRVSS: Near-IR Volatile
 Spectrometer System
- 1600 3400 nm band
- Covers major H₂O, OH and other mineral features


- NSS: Neutron Spectrometer System
- Thermal and epithermal neutron flux
- Volumetric hydrogen abundance

Thermal Neutron Albedo for MVP Traverses

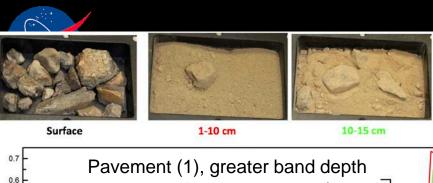


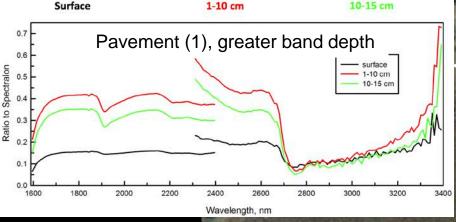
Comparison of NIRVSS Hydration Indicator and NSS Thermal Neutron Albedo

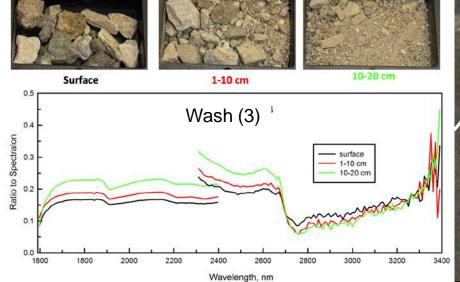
NIRVSS Hwaration

MSS Meutrons

Surface Types


Type #1: Mature desert pavement with dark varnish, high density of clast cover.


Type #4: Isolated mounds of light-tone material, evident bioturbation.


- 1. Mature, well-developed, heavily varnished pavements, mapped as the oldest units in the fan, Qf2 (70-140ka).
- Highest neutron albedo, lower NIR hydration signature
- Lighter tone units are younger, with weak to moderate pavement and varnish development (Qf3 and Qf4, 15 – 2 ka)
- Intermediate neutron albedo, lower NIR hydration
- 1. End member is Qf5 active wash and floodplain (1 0 ka).
- Lowest neutron albedo, higher NIR hydration
- 1. Isolated light-toned mounds occur in the midst of the mature dark pavements. Evident bioturbation.
- Low-intermediate neutron albedo, medium NIR hydration

NIRVSS Spectra & NSS

Semi-Quantitative XRD Mineralogy & Evolved Gas Analysis

	Sample	2:1 clays wt%	2:2 clays wt%	EGA Water Released% *	Neutrons
#1. Pavement	Surface 1 - 10 cm 10 - 20 cm	n.d. 16 13	n.d. 6 6	n.a. 41.4 14.7	High
#1. Pavement	Surface 1 - 10 cm 10 - 20 cm	4 15 17	n.d. 6 6	n.a. 46.1 72.1	High
#2. Bar unit	Surface 1 - 10 cm 10 - 20 cm	4 7 9	n.d. 3 4	n.a. -23.5 -22.9	Low- intermediate
#3. Wash	Surface 1 - 10 cm 10 - 20 cm	4 14 8	2 3 3	n.a. -9.2 *0.0 (ref)	Low
#4. Bioturb. Mound	Surface 1 - 10 cm 10 - 20 cm	3 7 11	n.d. 4 5	n.a. 8.2 -0.1	Low- Intermediate

- Clay mineral abundance higher in dark pavement Av1 soil horizon
- Lower clay abundance in bar, wash and mounds
- EGA: Total H₂O goes with clay abundance
- Thanks to Tom Bristow for XRD and Mary Beth Wilhelm for EGA work!

RP Prospecting Matrix

NIRVSS hydration

No NIRVSS Hyd.

NSS detects hydration Both surface and subsurface ice/hydrous mineralogy

Only subsurface ice/hydrous mineralogy

NSS no hydration

Only surface frost/hydrous minerals

No surface or subsurface frost/hydrous minerals (<1m depth)

What is the Upshot for RP?

Prospecting:

- NIRVSS can sense surface frost, hydrous mineralogy
- NSS senses bulk hydration
- Estimate simple 2-layer model depth to ice-bearing material

Drilling - Near-surface assay:

- Didn't drill in Mojave, instead dug samples after test
- Moon: NIRVSS can assess cuttings extracted from depth
- NIRVSS assessment constrains NSS depth distribution model

MVP exercise demonstrated RP prospecting tools

Capable of

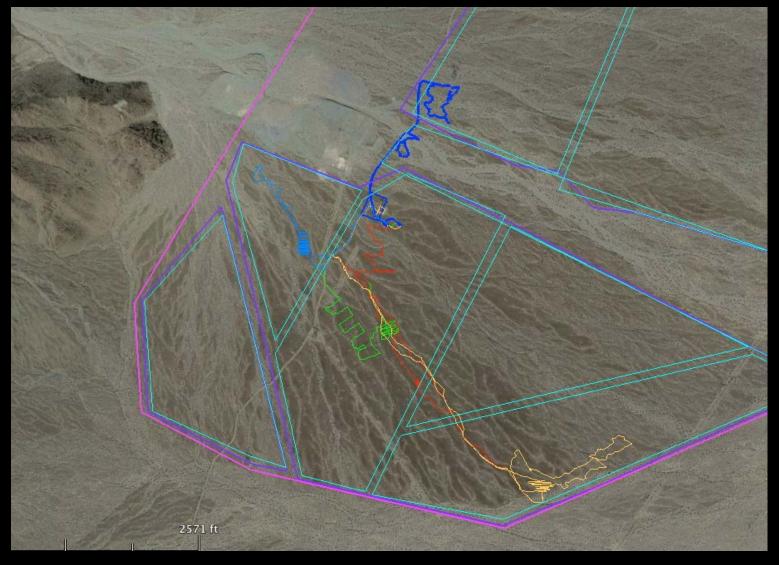
Clive's Questions: Lunar Resources

- What resources are most relevant for both near-term and medium-term use within the context of the LEAG Lunar Exploration Roadmap as well as the Global Exploration Roadmap (cis-lunar, lunar surface, asteroids, Mars)?
- Most readily exploited: surface frosts and subsurface volatile reservoirs, H₂?
- What is(are) the major impediment(s) for developing lunar resources and how can it(they) be overcome?
- Understanding the selenological (geological) setting for volatile resources (Compare to how petroleum industry locates/characterizes oil deposits)
- What is our current understanding of the location and characteristics of the resources?
- Limited to 10's km scales for subsurface volatiles don't understand why some cold traps have H-bearing volatiles/frost and others don't.
- During the resource prospecting phase:
 - What are the major questions to be answered?
 - Where is it, what is it, what physics controls emplacement and sequestration?
 - What measurements are critical for ISRU, engineering, and science?
 - Determine 3D distribution, assess resource inventory, characterize environment/geological setting (esp. geotechnical challenges)
 - What new technologies are required to make these measurements and answer these questions (i.e., what techniques/technologies are required to extract and process the ore, and store/transport the refined products)?

The State of the S

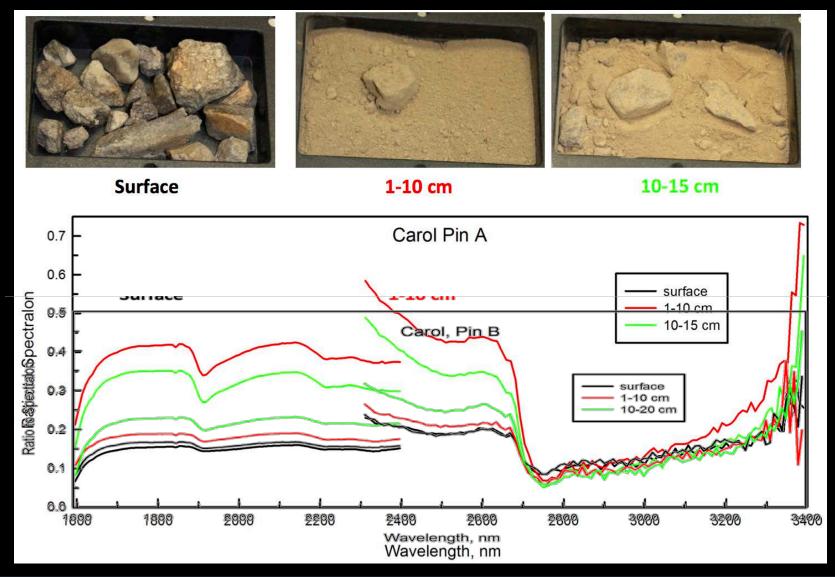
Ground Truth Samples

- The four surface types in the study area were sampled
- Top layer of clasts (or soil).
- Immediate substrate 1 10 cm.
- Deeper 10 20 cm.



- 1. Dark varnish, mature pavement
- 2. Lighter swale material
- 3. Wash deposits (active)
- 4. Bioturbation mound

Science Traverses During 5 Days of Test



Spectra

Clive's Questions

- Lunar Resources:
 - What are the best targets for in-situ measurements, technical demonstrations, and sample return?
 - Poles for cold-trapped volatiles, high-Ti mare basalts for oxygen reduction
 - What new observations could LRO make and what new mission(s) would be required to address lunar ISRU questions?
 - Acquire highest achievable resolution DEMs of polar regions.
 - What knowledge and conditions would enable commercial sector involvement in the extraction, refinement, and utilization of lunar resources?
 - What could be the next mission after "Lunar Resurs" (Luna 27; Russia) and Resource Prospector (USA)?