

Distribution of H₂ in the Lunar Exosphere from LAMP Observations

Dana Hurley (JHU/APL), J. C. Cook, K. D. Retherford, T. K. Greathouse, G. R. Gladstone, K. Mandt, C. Grava, D. Kaufman, A. R. Hendrix, P. D. Feldman, W. Pryor, A. Stickle, J. Cahill, R. M. Killen, and S. A. Stern

Conservation of solar wind H+

LAMP Atmosphere Observations

latitude (deg)

Lyman Alpha Mapping Project (LAMP)

- FUV imaging spectrograph
- 0.3° x 6° field of view
- 570-1960 Å
- Onboard LRO

Nadir pointed

- Illuminated atmosphere over dark surface
- Limited to near-terminator "Twilight"
- Polar regions for low β orbits
- Entire nightside for β ~ 90°

Initial H₂ Detection

- Stern et al., Icarus, 2013
- Average "Twilight" Observation
 - High latitude, nightside
 - Residual: red, Fluorescence model: blue
 - Density 1200 cm⁻³ consistent w/ Apollo 17 UVS upper limit: <9000 cm⁻³

Dawn/Dusk Spectra

wavelength (nm)

- Coadd data
 - Latitude 35°-75°
 - Post-dusk

(LT=18:22-19:18)

Or pre-dawn

(LT=4:42-5:34)

Dawn/Dusk H₂ Spectra

H₂ spectrum obtained by subtracting

- Background
- H (Lyman series)
- He (multiple orders)
- Ar, Ne
- Known instrumental effects

Dawn/Dusk H₂ Spectra

Fit model of H₂ fluorescence

Lyman and Werner bands

Dusk 410±130 cm⁻³

Dawn 690±170 cm⁻³

Enhanced H₂ is detected at dawn compared to dusk

H₂ Model—Solar Wind Source

 Immediate diffusion of incident p⁺ as H₂ does not reproduce a dawn/dusk asymmetry

H₂ Model, Many Processes

density (cm^-3)

H2

H₂ Model—Micrometeoroid Release

Distribution of source

- Global isotropic background
- Enhancement for morning hemisphere representing motion of Earth-Moon system sweeping into particles

H₂ Model—Micrometeoroid Release

 Source centered on the dawn terminator reproduces the dawn/dusk asymmetry.

> Density consistent with 12% of solar wind (assuming T=1000 K)

 (cm^{-3})

density

Inventories of H₂

			T=3000 K	T=1000 K
	Flux (g cm ⁻² s ⁻¹)	Mass rate (g s ⁻¹)	Efficiency that would produce 22 g s ⁻¹	Efficiency that would produce 3 g s ⁻¹
Micrometeoroid delivery	6.67 x 10 ⁻¹⁶	250	8.8%	1.5%
Micrometeoroid release	1.77 x 10 ⁻¹⁵	670	3.3%	0.6%
Solar wind delivery	3.34 x 10 ⁻¹⁶	32	70%	12%

the LCROSS Impact Vapor

-50 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -

time (s)

Species	Observed (kg)	Mass released (kg)
H ₂	1.33	117±16
СО	0.70	41±3
Ca	0.16	16±1
Mg	0.04	3.8±0.3
Hg	0.12	12.4±0.8

Gladstone et al., Science, 2010; Hurley et al., JGR, 2012

Conclusions

- LAMP observes a dawn/dusk asymmetry in the distribution of H₂ in the lunar exosphere.
- Modeling shows:
 - An asymmetric source is required to reproduce a dawn-dusk asymmetry
 - Higher energy release mechanisms produce lower density for a given source rate
 - □ For T=1000 K, 3 g s⁻¹ source rate needed to reproduce density
- Modeling of micrometeoroid vaporization of implanted hydrogen reproduces LAMP observations.
 - Steady state achieved with a source rate of a few 10s% conversion of solar wind (through subsequent impact vaporization).
 - Perhaps the H₂ observed in the LCROSS plume was analogously released.

