Distribution of H₂ in the Lunar Exosphere from LAMP Observations Dana Hurley (JHU/APL), J. C. Cook, K. D. Retherford, T. K. Greathouse, G. R. Gladstone, K. Mandt, C. Grava, D. Kaufman, A. R. Hendrix, P. D. Feldman, W. Pryor, A. Stickle, J. Cahill, R. M. Killen, and S. A. Stern ### **Conservation of solar wind H+** ### **LAMP Atmosphere Observations** latitude (deg) #### Lyman Alpha Mapping Project (LAMP) - FUV imaging spectrograph - 0.3° x 6° field of view - 570-1960 Å - Onboard LRO #### Nadir pointed - Illuminated atmosphere over dark surface - Limited to near-terminator "Twilight" - Polar regions for low β orbits - Entire nightside for β ~ 90° ## Initial H₂ Detection - Stern et al., Icarus, 2013 - Average "Twilight" Observation - High latitude, nightside - Residual: red, Fluorescence model: blue - Density 1200 cm⁻³ consistent w/ Apollo 17 UVS upper limit: <9000 cm⁻³ ## Dawn/Dusk Spectra wavelength (nm) - Coadd data - Latitude 35°-75° - Post-dusk (LT=18:22-19:18) Or pre-dawn (LT=4:42-5:34) # Dawn/Dusk H₂ Spectra # H₂ spectrum obtained by subtracting - Background - H (Lyman series) - He (multiple orders) - Ar, Ne - Known instrumental effects # Dawn/Dusk H₂ Spectra Fit model of H₂ fluorescence Lyman and Werner bands Dusk 410±130 cm⁻³ Dawn 690±170 cm⁻³ Enhanced H₂ is detected at dawn compared to dusk #### H₂ Model—Solar Wind Source Immediate diffusion of incident p⁺ as H₂ does not reproduce a dawn/dusk asymmetry ## H₂ Model, Many Processes density (cm^-3) H2 #### H₂ Model—Micrometeoroid Release #### Distribution of source - Global isotropic background - Enhancement for morning hemisphere representing motion of Earth-Moon system sweeping into particles #### H₂ Model—Micrometeoroid Release Source centered on the dawn terminator reproduces the dawn/dusk asymmetry. > Density consistent with 12% of solar wind (assuming T=1000 K) (cm^{-3}) density # Inventories of H₂ | | | | T=3000 K | T=1000 K | |-------------------------|---|-----------------------------------|--|---| | | Flux
(g cm ⁻² s ⁻¹) | Mass rate
(g s ⁻¹) | Efficiency that would produce 22 g s ⁻¹ | Efficiency that would produce 3 g s ⁻¹ | | Micrometeoroid delivery | 6.67 x 10 ⁻¹⁶ | 250 | 8.8% | 1.5% | | Micrometeoroid release | 1.77 x 10 ⁻¹⁵ | 670 | 3.3% | 0.6% | | Solar wind delivery | 3.34 x 10 ⁻¹⁶ | 32 | 70% | 12% | # the LCROSS Impact Vapor | -50 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | |---| | | time (s) | Species | Observed
(kg) | Mass
released
(kg) | |----------------|------------------|--------------------------| | H ₂ | 1.33 | 117±16 | | СО | 0.70 | 41±3 | | Ca | 0.16 | 16±1 | | Mg | 0.04 | 3.8±0.3 | | Hg | 0.12 | 12.4±0.8 | Gladstone et al., Science, 2010; Hurley et al., JGR, 2012 #### Conclusions - LAMP observes a dawn/dusk asymmetry in the distribution of H₂ in the lunar exosphere. - Modeling shows: - An asymmetric source is required to reproduce a dawn-dusk asymmetry - Higher energy release mechanisms produce lower density for a given source rate - □ For T=1000 K, 3 g s⁻¹ source rate needed to reproduce density - Modeling of micrometeoroid vaporization of implanted hydrogen reproduces LAMP observations. - Steady state achieved with a source rate of a few 10s% conversion of solar wind (through subsequent impact vaporization). - Perhaps the H₂ observed in the LCROSS plume was analogously released.