Canadian Lunar & Planetary Rover

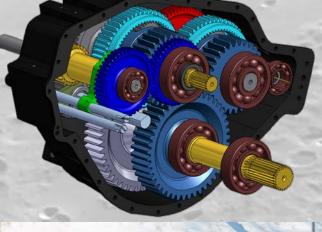
Guy who likes rovers

Development

Lunar Exploration Analysis Group Meeting

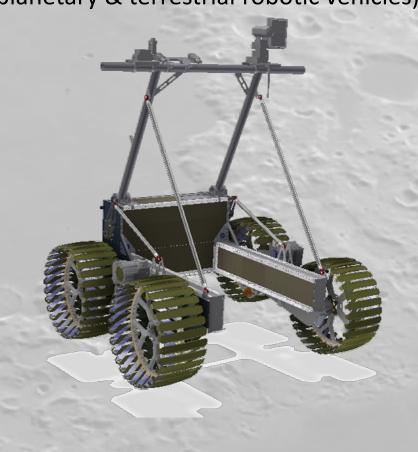
October 21, 2015

Peter Visscher, P.Eng. – Argo/Ontario Drive & Gear Ltd.
Perry Edmundson, P.Eng. – Argo/Ontario Drive & Gear
Nadeem Ghafoor – Canadensys Aerospace Corp.
Howard Jones – Canadensys Aerospace Corp.



Ontario Drive & Gear Ltd.

ODG Gear Division (transmissions & gears)

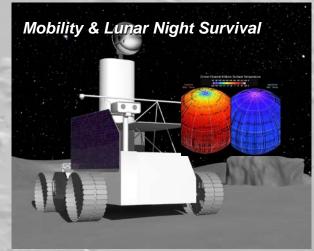

ARGO Vehicle Division (extreme terrain amphibious vehicles)

Space/Robotics Division (lunar/planetary & terrestrial robotic vehicles)

ODG Space/Robotics Division

- Est. 2008
- Concept Generation
- Design & Analysis
- Manufacturing & Assembly
- Deployment & Support

Canadensys Aerospace


- Space systems company based in Toronto, Ontario, Canada
 - Staff drawn from across Canadian space industry landscape with extensive flight heritage from big & small space
- Focus on "Accessible Space"
 - Small exploration systems & commercial space
 - Participative science & exploration
- Enabling technologies for New Exploration
 - Micro / Nano platforms
 - Lunar surface instruments
 - Lunar environment robustness
 - Lunar night survival
 - Thermal & Energy storage
 - Low temperature systems

Role on Current Rover Programs

- Path-to-flight design
- Thermal design & analysis
- Lunar environmental qualification

Lunar Rover Development in Canada

Current Projects

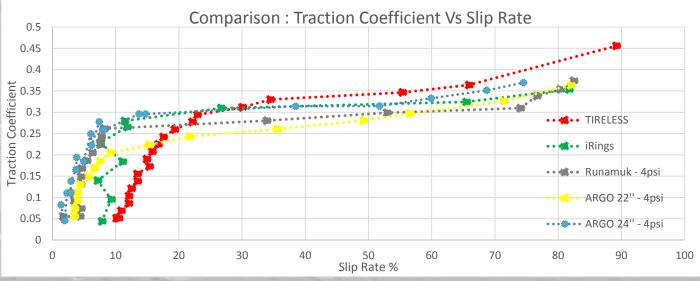
- Midsize Rover Development (TRL-6 Drivetrain)
 - ODG-Argo (Canadensys, Bombardier Rec.)
- Lunar Rover Night Survival
 - Canadensys (ODG-Argo)
- **Lunar Rover GN&C**
 - MDA, NDG
- Small Lunar Rover Development
 - ODG-Argo (Canadensys, Bombardier Rec.)
- **Soil Hazard Detection**
 - Mission Control (ODG-Argo, Canadensys)
- **Lunar Rover Wheel**
 - ODG-Argo

Lunar Rover Development at ODG

- First became involved in lunar rover prototype development for the Canadian Space Agency in 2008
 - CSA was looking to inject terrestrial off-road vehicle design expertise into lunar rover program
- Led mobility platform design for six generations of rovers, including prime on two current programs
 - Juno → Juno II → Artemis → Artemis Jr. → LRPDP → SPRP

Rover Traction Systems

- Two generations of metallic tracks for Canadian Space Agency
- Five generations of compliant metallic wheels



Rover Traction Systems

- Lab testing in GRC-1 simulant
- Over 100 km of real world testing in analogue terrain
- Scalable: ~25-100 cm

RESOLVE Analog Field Tests

Nov. 2008

- RESOLVE Gen II on Scarab Rover
- Power, avionics, and ground support equipment on separate trailer

FEB. 2010

- RESOLVE Gen II+ on CSA Juno Rover
- Power, avionics, and ground support equipment on separate Juno

July 2012

- RESOLVE Gen IIIA on CSA Artemis Jr. Rover
- Everything on single rover platform

March 2016

- TRL-6 Drivetrain
- 120 kg platform mass
- 280 kg launch mass

Apollo Valley Hawaii

MMAMA testing

- Rover
- Wheel
- Rough terrain mobility
- Power system

Mauna Kea Hawaii

RESOLVE test

- Wheel
- Drive system
- Power system
- De-landering

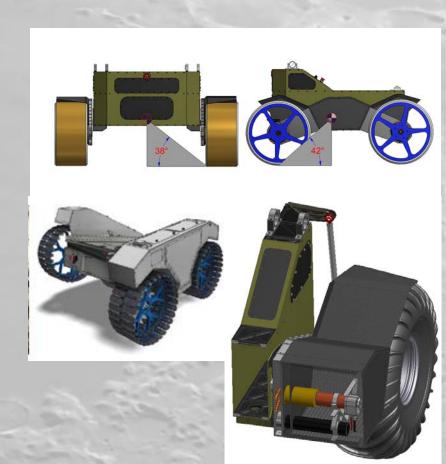
ODG Rover Design Philosophy: K.I.S.S.

(Keep It Simple, Scientist)

Fewer parts

- 2 inboard motors with chain drive vs. 12 outboard motors
- Reduced mass
- Lower cost

Skid steering


- Typical for terrestrial vehicles operating with low ground pressure
- Reduces envelope of vehicle, allows for bigger wheels

Modular

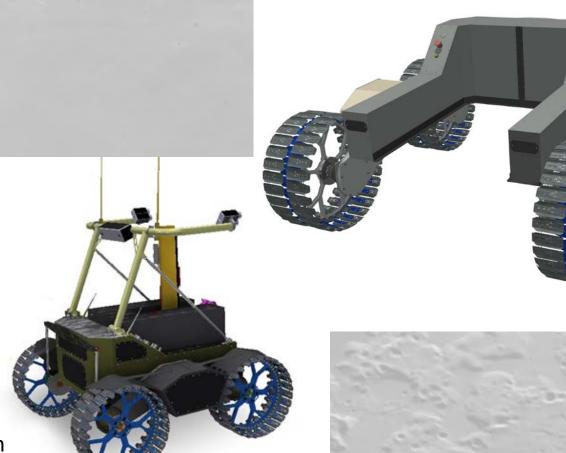
- Self-contained drive system
- Accommodates multiple payloads
- Multiple mission compatibility

Highly Mobile

- High terrainability reduces risk and reliance on navigation
- Ability to enter PSR's

Current Activity

- Leading two CSA contracts on development of rover technology
 - Lunar Rover Platform and Drivetrain Prototype (LRPDP)
 - includes drivetrain to be qualified to TRL-6 in "dirty TVAC" test (simultaneous vacuum, temperature & regolith exposure) at NASA-GRC in Nov. 2015
 - Next-Generation Lunar Wheel Development
 - Small Planetary Rover Platform (SPRP)
- Key technologies for ISECG Roadmap



LRPDP (aka Lunar Rover Drivetrain – Vacuum And Dust Rated)

LRD-VADR

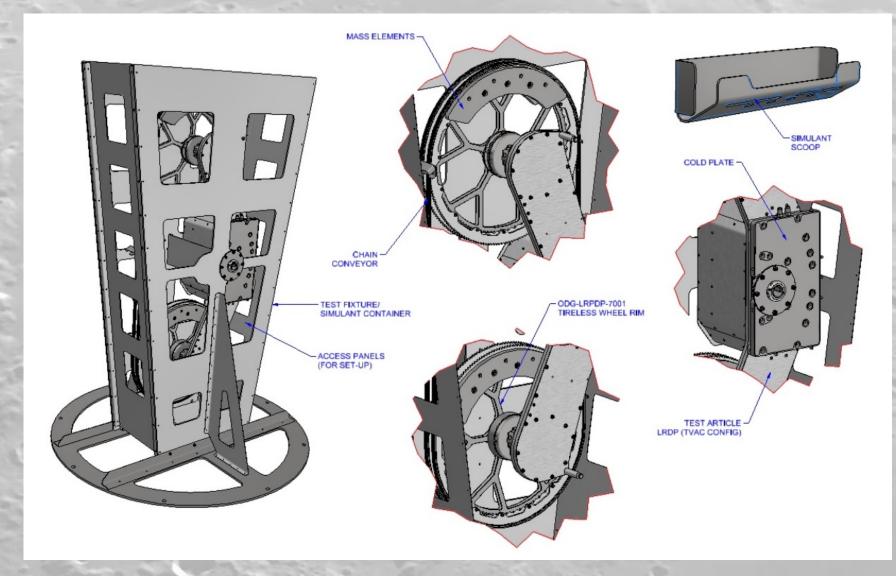
- **Dimensions**
 - 120 kg base mass
 - 1.6 X 1.6 meters
 - 55 cm wheels
- Modular payload interface
 - Large, central payload
 - Up to 160 kg
- High mobility
 - Enables operation in and around PSR's
 - 50 cm/s
 - Obstacles up to 450mm high
- Rejected acronymical name
 - Canadian Lunar Initiative for Volatile Extraction

Rover Drivetrain

- Central Motor
 - Thermal and contamination protection
- Multi-stage non-contact dust seal
 - Minimal drag
 - Minimal wear
 - Eliminates dust ingress into wheel bearing
- Minimal complexity/mass
 - Reduced number of failure points
- Optimized for terrainability
 - Slopes
 - Rocks
 - Soft/deep regolith

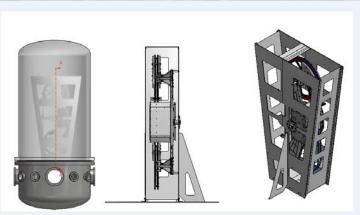
TRL-6 Drivetrain Environmental Design & Test

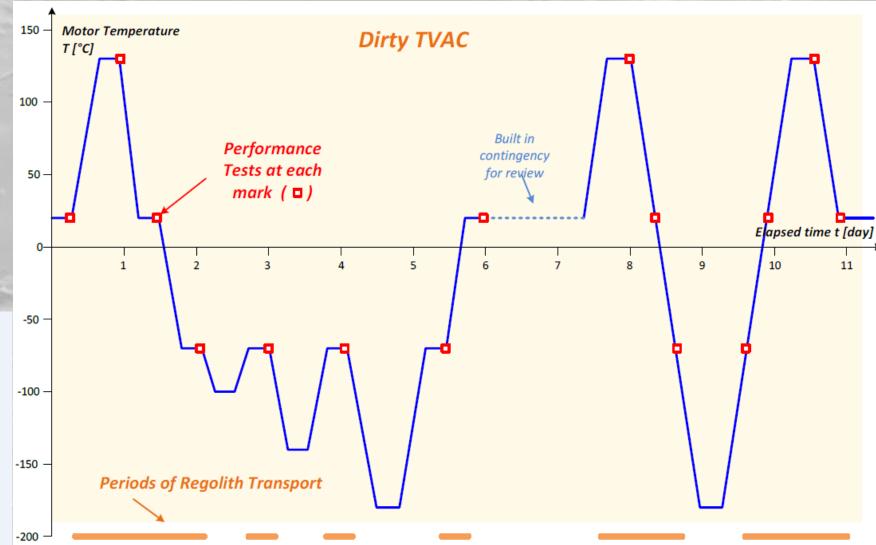
- TRL6 Design
 - Lunar Thermal
 - Lunar Dust
 - Radiation; Vacuum
- Drivetrain unit
 - 1 motor, 2 chains, sprockets, bearings, housing
 - Exposed to vacuum & Chenobi regolith simulant in NASA Glenn VF-13 "dirty TVAC" chamber
- Operated over temp range of -70°C to +130°C
- Exposed to cold survival temp of -180°C
- Total test time approximately 15 days



TRL-6 Drivetrain Environmental Testing

- Test rig for VF13
 "dirty TVAC" test
- Based filled with Chenobi regolith simulant
- Conveyor system
 (external sprockets,
 chains and scoops)
 used to distribute
 simulant over
 drivetrain unit

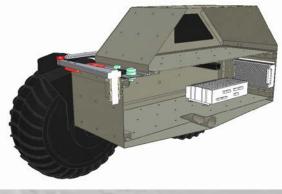




TRL-6 Drivetrain Environmental Testing

Test profile

- Reversing load
 - 25 degree slope equivalent
- Vehicle speed
 - 0-50 cm/s
 - Start/stop



Small Lunar Rover (SPRP - Small Planetary Rover Platform)

- 1.2 X 1.2 meter
- High mobility
- TRL-6 compatible drivetrain
- 90 kg base mass
- 50 cm compliant wheels
- Q1 2016 delivery
- Scaled technology from LRD-VADR

Future Work

- Lunar night survival up to 14 days in shadow (less in polar regions)
 - Long-duration survival of electronics in extreme cold temps (down to -233°C)
- Longer mission duration (> 14 days)
- Longer endurance
 - total distance travelled > 25 km
 - Longer-duration wear effects of lunar regolith
- High mobility
 - Take your rover, and put it where the sun don't shine.

Thank You

Questions?

This is a duplicate slide to ensure that if I click accidentally I don't go to my backup slide without meaning to.

Thank You

Development of terrestrial rover - ARGO J5

- Improved dust/thermal protection
- Multiple battery options
- Multiple traction options

Applications

- Agricultural
- Security

