Volatiles from the Lunar Reconnaissance Orbiter Paul Hayne¹ and the Lunar Reconnaissance Orbiter Science Team ¹Jet Propulsion Laboratory, Caltech Lunar Exploration Analysis Group - Annual Meeting - Oct 2015 #### **Lunar Volatiles** Science **Exploration Delivery of Water** Hydrogen and to Earth/Moon oxygen for fuel production system **Spatial** Contamination Isotopic abundances distribution Interaction with Oxygen for space Concentration astronauts to environment breathe Composition Volcanism and Vertical outgassing distribution Water to drink and layering and grow plants Mobility and **Spatial** redistribution of heterogeneity volatiles & accessibility Heat sink for thermal control Low temperature systems physics #### **Shadowed Moon Illuminated Moon Lost to Space** Sources: Sun, Moon, Earth Comets, Dust, Asteroids **Giant Molecular Clouds Lost to Space UV** ionization and sweeping Losses Sublimation UV ionization Sweeping Sputtering • Micrometeorite impact vaporizarion **Ballistic random walk Cold trapping** Sequester Sequester by alteration to by regolith refractory phase: overturn Adsorption (warm trapping) Organics Hydrated minerals Clathrates | Technique | Result | Sensitivity | Depth | Resolution | Reference | |--|---|---|-----------|-------------|---| | Earth-based
radar | Non-detection | >10-cm ice
blocks | ~1 m | 125 m | Stacy et al.
[1997] | | Orbital mono-
static radar | Disputed detection | >10-cm ice
blocks | ~1 m | 75 m | Spudis et al.
[2013] | | Orbital bi-
static radar | Disputed detection
(Clementine);
improved data pending
(LRO) | >10-cm ice
blocks | ~1 m | 75 m | Patterson et
al. [2014] | | Neutron
spectroscopy | Detection of [H] = 1700 \pm 900 ppm (~1% H ₂ O) average >70° latitude | H atoms at greater than ~100 ppm | ~1 m | ~50 km | Feldman et
al. [2000,
2001] | | Neutron
spectroscopy | Detection of [H];
specific PSRs with
\sim 200 – 4500 ppm
(0.1% - 4% H ₂ O) | H atoms greater than ~100 ppm | ~1 m | ~10-50 km | Mitrofanov
et al. [2012] | | Infrared
spectroscopy
of impact
plume | Detection of 5.6 ± 2.9%
H ₂ O, at single point
(84.7°S, 310.6°E) | H ₂ O ice and
vapor at
greater than
~1wt% | ~3 m | 30-m crater | Colaprete et
al. [2010] | | Ultraviolet
spectroscopy | Possible detection in
the PSRs; detection of
H ₂ O (and diurnal
variations) at low
latitudes | H_2O with abundance greater than ~ 0.5 wt% | ~1 µm | 240 m | Gladstone et
al. [2012],
Hendrix et
al. [2012] | | Infrared solar
reflectance
spectroscopy | Detection of 10 – 100
ppm OH and H ₂ O on
mineral surfaces under
direct solar
illumination | H ₂ O and OH with abundance greater than ~10 ppm | ~10
µm | 140 m | McCord et
al. [2011] | | Analysis of lunar samples | Detection of ~ 0 – 1wt% H_2O in igneous melt inclusions | Various | Surface | | Boyce et al.
[2010], Liu
et al. [2012] | # Distribution and concentration of ice is variable: #### Vertically - ♦ Vapor diffusion - ♦ Burial - ♦ Outgassing/sputt ering/photolysis #### Laterally - ♦ Molecular hops - ♦ Water-rich impactors - ♦ Thermal environments # LEND Hydrogen Map Diviner Ice Stability Map Count Rate (s-1) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 -180° ## **LROC** Mercury: well-defined ice boundary follows PSR (Chabot et al., 2014) Moon: no obvious albedo anomaly in PSR (Koeber et al., 2014) ## LAMP Ice Index and Diviner Temperatures #### H₂O ice: - ~1 10 wt% - Patchy, heterogeneo us distribution - Supply rates destruction/ burial rates Some evidence for CO₂ ice Hayne et al. (2015) ## Diviner-LOLA Comparison Diviner temperatures show well-defined cold traps, where LOLA often sees high-albedo deposits, consistent with surface frost (D. Paige, Diviner PI) #### Diviner, LAMP and LOLA Comparison Reflectance above local background ## **LEND** #### Diviner-LEND-LAMP Comparison #### Mini-RF - Mini-RF monostatic observations do not show consistent evidence of widespread H₂O ice in PSRs - New bi-static observations show phase behavior consistent with cm-scale ice layers (Patterson et al., in prep) #### **CRaTER** Latitude trend in proton albedo suggests a 1-10 cm layer of hydrated regolith that is more prevalent near the poles [Schwadron et al., submitted] ## Mobility of Volatiles on the Moon - Some evidence of diurnal variations in hydration: M³, LAMP, LEND - Mobility = source for cold traps - Must be checked for consistency across datasets, and exospheric measurements Impact gardening mixes ice and regolith # Preliminary LRO Volatiles Results and Future Measurements - What we think we understand: - UV, visible, and near-IR reflectance data consistent with small quantities (~1%) of H₂O ice intimately mixed and/or patchy at small scales in the PSRs - Near-IR and neutron data consistent with very small quantities (up to ~100 ppm) outside the PSRs and at lower latitudes - What we don't understand fully: - High concentrations of H in regions of thermal instability - Diurnal variations with magnitude large enough to fill cold traps with ice # Preliminary LRO Volatiles Results and Future Measurements - Exciting new measurements to watch out for in the next LRO Extended Mission: - Mini-RF bi-static observations could reveal locations of "blocky" subsurface ice - CRaTER albedo proton measurements could confirm presence of hydrated upper cm layer in polar regions > highly complementary to LEND and LPNS data - New mode of LAMP observations with up to ~10x signal-to-noise for measuring dayside and nightside hydration → tests diurnal variation hypothesis - Evidence for polar wander in the epithermal neutron data? (Siegler et al., submitted) Acknowledgement: This work was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. Copyright 2015, all rights reserved. # Backup slides #### What kind of ice? #### "The Three Amigos" #### "The Three Amigos" - Each crater actually has quite a different average and range of thermal environments - Haworth is by far the coldest on average - Faustini has the greatest diversity, with both < 80 K and even some > 100 K regions - Trend in LAMP in increasing apparent ice content: Haworth >> Faustini > Shoemaker #### How Much Ice? - Intimate mixture model: data consistent with ~1-2% water ice by volume - Area mixing model: up to ~10% water ice by area