About Us Science Meetings Education Resources Analysis Groups The Moon

LPI Seminar Series

Effective January 1, 2011, LPI seminars will be held on Fridays.

LPI seminars are held from 3:30–4:30 p.m. in the Lecture Hall at USRA, 3600 Bay Area Boulevard, Houston, Texas. Refreshments are served at 4:30 p.m. For more information, please contact Georgiana Kramer (phone: 281-486-2141; e-mail: kramer@lpi.usra.edu) or Francesca Scipioni (phone: 281-486-2108; e-mail: scipioni@lpi.usra.edu). A map of the Clear Lake area is available here. This schedule is subject to revision.

Join the LPI-Seminars mailing list to receive email notifications about upcoming LPI Seminars. To join the mailing list please send an email to:

See also the Rice University Department of Physics and Astronomy Colloquia and the Department of Earth Science Colloquia pages for other space science talks in the Houston area.

October 2015

Friday, October 16, 2015 - Lecture Hall, 2:30 PM

Roger Clark, Planetary Science Institute
Space Weathering on Icy Satellites in the Outer Solar System
Space weathering produces well-known optical effects in silicate minerals in the inner Solar System, for example, on the Moon. Space weathering from solar wind and UV is expected to be weaker in the outer Solar System simply because intensities are lower.However, cosmic rays from inner to outer solar system would be similar to first order. Similarly with micrometeoroid bombardment. That, combined with the much higher volatility of icy surfaces means there is the potential for space weathering on icy outer Solar System surfaces to show optical effects. The Cassini spacecraft orbiting Saturn is providing evidence for space weathering on icy bodies. The Cassini VIMS instrument has spatially mapped satellite surfaces and the rings from .35-5 microns and the UVIS instrument from 0.1 to 0.2 microns. These data have sampled a complex mixing space between H2O ice and non-ice components and they show some common spectral properties. Similarly, spectra of the icy Galilean satellites and satellites in the Uranian system have some commonality in spectral properties with those in the Saturn system.The UV absorber is spectrally similar on many surfaces. VIMS has identified CO2, H2 and trace organics in varying abundances on Saturn's satellites. We postulate that through the spatial relationships ofsome of these compounds that they are created and destroyed through space weathering effects. For example, the trapped H2 and CO2 observed by VIMS in regions with high concentrations of dark material may in part be space weathering products from the destruction of H2O and organic molecules. The dark material, particularly on Iapetus which has the highest concentration in the Saturn system, is well matched by space-weathered silicates in the .4-2.6 micron range, and the spectral shapes closely match those of the most mature lunar soils,another indicator of space weathered material.

November 2015

Friday, November 13, 2015 - Lecture Hall, 3:30 PM

Lujendra Ojha, : School of Earth and Atmospheric Sciences, Georgia Institute of Technology
Brine Flows on Mars
Determining whether liquid water exists on the Martian surface is central to understanding the hydrologic cycle and potential for extant life on Mars. Brine flows (or seeps) have been proposed to explain the formation of some narrow streaks (termed recurring slope lineae (RSL)) observed on Mars, yet direct spectroscopic evidence was missing. Analysis of spectral data from the Compact Reconnaissance Imaging Spectrometer for Mars instrument onboard the Mars Reconnaissance Orbiter provides the first spectral evidence that recurring slope lineae form as a result of contemporary water activity on Mars. In this talk, I will give a synopsis of RSL activity on Mars, and spectral detection of hydrated salts on the slopes where rsl form.

December 2015

Friday, December 11, 2015 - Lecture Hall, 3:30 PM

Andrew Rivkin, JHUAPL


Previous Seminars

2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003 | 2002 | 2001 | 2000 | 1999 | 1998