About Us Science Meetings Education Resources Analysis Groups The Moon

LPI Seminar Series

Effective January 1, 2011, LPI seminars will be held on Fridays.

LPI seminars are held from 3:30–4:30 p.m. in the Lecture Hall at USRA, 3600 Bay Area Boulevard, Houston, Texas. Refreshments are served at 4:30 p.m. For more information, please contact Nicolas LeCorvec (phone: 281-486-2118; e-mail: lecorvec@lpi.usra.edu) or Paul Byrne (phone: 281-486-2140; e-mail: byrne@lpi.usra.edu). A map of the Clear Lake area is available here. This schedule is subject to revision.

Join the LPI-Seminars mailing list to receive email notifications about upcoming LPI Seminars. To join the mailing list please send an email to:
lpi-seminars-join@lists.hou.usra.edu.

See also the Rice University Department of Physics and Astronomy Colloquia and the Department of Earth Science Colloquia pages for other space science talks in the Houston area.

September 2014

Friday, September 19, 2014 - Lecture Hall, 3:30 PM

Danielle Wyrick, Southwest Research Institute
The Role of Fault Growth and Connectivity on Fluid and Volatile Transport in the Crust
Crustal deformation such as faulting, fracturing, and folding has long been recognized as a major control on fluid and gas transport within earth’s crust, creating fast flow pathways for the migration of groundwater and potential contaminants in some cases, while becoming barriers and traps for oil and gas in others. Understanding how faults and fractures grow, link, and evolve is critical to understanding fault network connectivity pathways for fluid and volatile migration. However, the role of heterogeneity in the crust – which varies both laterally and within stratigraphic layers – in the growth and linkage of fracture networks is not well understood. Additionally, the role of pressurized fluids in creating and/or reactivating existing fractures, such as magmatic intrusion and hydraulic fracturing, is even less well characterized. This talk will focus on numerical models, laboratory experiments, and field investigations performed to characterized fault and fracture connectivity, with application to contaminant transport, magma intrusion, and hydraulic fracturing. These techniques, such as displacement versus length and fault connectivity analyses, have application to several solar system bodies, ranging from volcanic-tectonic interactions on Mars and Venus to geysering at Enceladus and Europa.

October 2014

Friday, October 3, 2014 - Lecture Hall, 3:30 PM

Kelsey Young Kelsey Young, University of Maryland/NASA Goddard Space Flight Center
The Use of In Situ Analytical Technology and Impactite Dating in Planetary Field Geology
Impact cratering has played a crucial role in the surface development of the inner planets. Constraining the timing of this bombardment history is important in understanding the origins of life and our planet’s evolution. Plate tectonics, active volcanism, and vegetation hinder the preservation and identification of existing impact craters on Earth. Providing age constraints on these elusive structures will provide a deeper understanding of our planet’s development. To do this, (U-Th)/He thermochronology and in situ 40Ar/39Ar laser microprobe geochronology are used to provide ages for the Haughton and Mistastin Lake impact structures, both located in northern Canada. Planetary surface missions, like one designed to explore and sample an impact crater, require the integration of engineering constraints with scientific goals and traverse planning. The inclusion of in situ geochemical technology, such as the handheld X-ray fluorescence spectrometer (hXRF), into these missions will provide human crews with the ability to gain a clearer contextual picture of the landing site and aid with sample high-grading. The introduction of hXRF technology could be of crucial importance in identifying high priority sampling targets. In addition to enhancing planetary field geology efforts, hXRF deployment could also have real implications for enriching terrestrial field geology. Ongoing efforts in hXRF development, including a case study using results from the 2010 NASA Desert RATS (Research and Technology Studies) field test, will be discussed, as well as an overview of continuing fieldwork at the December 1974 flow at Kilauea Volcano, HI.

 

Previous Seminars

2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003 | 2002 | 2001 | 2000 | 1999 | 1998