About Us Science Meetings Education Resources Analysis Groups The Moon Facebook

LPI Seminar Series

Effective January 1, 2011, LPI seminars will be held on Fridays.

LPI seminars are held from 3:30–4:30 p.m. in the Lecture Hall at USRA, 3600 Bay Area Boulevard, Houston, Texas. Refreshments are served at 4:30 p.m. For more information, please contact Yann Sonzogni (phone: 281-486-2199; e-mail:sonzogni@lpi.usra.edu) or Debra Hurwitz (phone: 281-486-2116; e-mail: hurwitz@lpi.usra.edu). A map of the Clear Lake area (PDF format) is available here. The Acrobat Reader 8.0 is available from Adobe. This schedule is subject to revision.

See also the Rice University Department of Physics and Astronomy Colloquia and the Department of Earth Science Colloquia pages for other space science talks in the Houston area.

April 2014

Friday, April 25, 2014 - Lecture Hall, 3:30 PM

Claire McLeod, University of Houston
Constraints on the Formation Age and Evolution of the Moon from 142Nd-143Nd Systematics of Apollo 12 Basalts
The Moon likely formed as a result of a giant impact between proto-Earth and another large body. The timing of this event and the subsequent lunar differentiation timescales are actively debated. New high-precision Nd isotope data for Apollo mare basalts are used to evaluate the Low-Ti, High-Ti and KREEP mantle source reservoirs within the context of lunar formation and evolution. The resulting models are assessed using both reported 146Sm half-lives (68 and 103 Myr). The linear relationship defined by 142Nd-143Nd systematics does not represent multi-component mixing and is interpreted as an isochron recording a mantle closure age for the Sm-Nd system in the Moon. Using a chondritic source model with present day μ142Nd of -7.3, the mare basalt mantle source reservoirs closed at 4.45+10-09 Ga (t½ 146Sm = 68 Myr) or 4.39+16-14 Ga (t½ 146Sm = 103 Myr). In a superchondritic, 2-stage evolution model with present day μ142Nd of 0, mantle source closure ages are constrained to 4.41+10-08 (t½ 146Sm = 68 Myr) or 4.34+15-14 Ga (t½ 146Sm = 103 Myr). The lunar mantle source reservoir closure ages <4.5 Ga may be reconciled in 3 potential scenarios. First, the Moon formed ca. 4.55 to 4.47 Ga and small amounts of residual melts were sustained within a crystallizing lunar magma ocean (LMO) for up to c. 200 Myr from tidal heating or asymmetric LMO evolution. Second, the LMO crystallized rapidly after early Moon formation. The later Sm-Nd mantle closure age represents resetting of isotope systematics. This may have resulted from a global wide remelting event. Third, the Moon formed later than currently favored models indicate, such that the lunar mantle closure age is near or at the time of lunar formation. While current Earth-Moon formation constraints cannot exclusively advocate or dismiss any of these models, the fact that U-Pb ages and Hf isotopes for Jack Hills zircons from Australia are best explained by an Earth that re-equilibrated at 4.4 Ga or earlier following the Moon-forming impact, does not favor a later forming Moon. If magma oceans crystallize in a few million years as currently advocated, then a global resetting, possibly by a large impact at 4.40 to 4.34 Ga, such as that which formed the South Pole Aitken Basin, best explains the late mantle closure age for the coupled Sm-Nd isotope systematics presented here.

May 2014

Friday, May 30, 2014 - Lecture Hall, 3:30 PM

Eric Grosfils, Pomona College
Elastic Models of Magma Reservoir Mechanics: A Key Tool for Investigating Planetary Volcanism
Understanding how shallow reservoirs store and redirect magma is critical for deciphering the relationship between surface and subsurface volcanic activity on the terrestrial planets. In this talk I will demonstrate how elastic models provide useful insight into the mechanics of magma reservoir inflation and rupture, and hence into related and commonly observed volcanic phenomena such as edifice growth, circumferential intrusion, radial dyke swarm emplacement and caldera formation. Based on finite element model results, the interplay between volcanic elements – including magma reservoir geometry, host rock environment, mechanical layering, and edifice loading – dictates the overpressure required for rupture, the location and orientation of initial fracturing and intrusion, and the associated surface uplift. Model results are either insensitive to, or can readily incorporate, material and parameter variations characterizing different planetary environments, and they also compare favorably with predictions derived from rheologically complex, time-dependent formulations for a surprisingly diverse array of volcanic scenarios. These characteristics indicate that elastic models are a powerful and useful tool for exploring many fundamental questions in planetary volcanology.


Previous Seminars

2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003 | 2002 | 2001 | 2000 | 1999 | 1998