ALSEP
Array E, Power Distribution Unit
Failure Mode, Effects and
PAGE

This ATM documents the Final Reliability Prediction and Failure Modes and Effects Analysis of the Bendix designed PDU (Power Distribution Unit). The analysis reflects the Array E design as of 9/23/71.

This document is prepared in accordance with the requirements of Section 5.2 of the Reliability Program Plan for Array E, ALSEPRA -08, Bendix document number BSR 3024, dated 11/30/70.

Reliability prediction data and single point failure summary are also documented herein in accordance with Sections 5.5 and 5.3, respectively, of the Array E Reliability Program Plan.

Rev A incorporates changes resulting from the redesign of the Power Dump PDU. The Power Dump PDU was redesigned to eliminate single point failures, specifically, redundant circuitry provides a means of turning the power dump off in the event of a relay or relay driver failure.

S.J. Ellison, Manager

ALSEP Reliability
Department

NO.		REV. NO.
ATM 951	A	
PAGE 2	OF 26	
DATE $9-23-71$		

1.0 Introduction

The results of the reliability prediction and failure modes and effects analysis for the ALSEP Array E PDU are documented in this report. This PDU represents the Bendix designed unit which uses proven components. The design provides redundant units in all six PDU functional modules.

The reliability prediction for the PDU (including six experiment modules) is calculated to be 0.999574 for two years of lunar operation. This compares favorably for the goal of 0.992 for the PDU as stated in ATM 889, Section 4.2.

The calculation for the telemetry net and temperature measurement is calculated to be 0.99738 . These circuits are external to the PDU, and their failure would have little or no effect on the total PDU probability of mission success since this type of failure would not affect operation of the PDU.

2.0 Circuit Description

All of the power control function requirements for the PDU are shown in Figure 1. Figure 2 gives the functional block layout for experiment power control. Relay drivers provide signal voltages. The relays are activated by 29 VDC, controlled by the drivers. Circuit breakers and fuses are provided for sensing, switching and isolating when overloads are encountered.

The uplink and ADP power control have identical configurations. Three relays are used for switching the three voltages between loads A to B. A fourth relay prevents a single point failure condition by independent switching control in case of a failure in one of the other uplink power control relays.

The transmitter power control also supplies a power line to the diplexer. The diplexer is used in conjunction with transmitter B and is turned on with transmitter B.

The DDP power control illustrates the basic circuitry for redundant control of power. One double pole relay in each redundant unit selects load A or B. Two circuit breakers in each redundant unit provide circuit protection.

The experiment power control can be switched to anyone of three modes, "On", "Off", or "Standby". A single line, including a diode provides a single action off function without the need of stepping through the standby condition.

The Power Dump Control provides control for each Load, \#l and \#2.
Telemetry information is differentiated through various resistors. Diodes are provided for isolation. A voltage limiting circuit is also provided to interfacing voltage protection.

Temperature measurements are made by redundant thermistors. These are included in the transmitter PAA and are mounted on one transmitter circuit board.

Unswitched EMF's use diodes, resistors and capacitors. The diodes and resistors are mounted on the Power Dump Control Circuit board. The capacitors, providing relay potential reserve, are mounted on the PDU Mother Board.

3.0 Single Point Failure Summary

There are no single point failures in the PDU. Single point failure modes are eliminated through additional switching and command control as applicable.

4.0 Reliability Prediction

The reliability prediction for the PDU, in the combined operating/ standby redundant configuration is calculated to be 0.999574 for two years of lunar operation. This predicted value is a compatible apportionment of the overall power subsystem reliability goal of .992 as stated in ATM 889, Section 4. 2.

Figure 3 defines the reliability block diagram and mathematical model for the PDU. Energy sources determine whether sections are independently redundant. The uplink and ADP sections are completely redundant. The transmitter, DDP and experiments power control do not have independent redundancy. The modified aspect of redundancy for the transmitter and experiments is due to the source of voltage coming directly from a PCU redundant section without cross-strapping.

ALSEP
Array E, Power Distribution Unit Failure Mode, Effects and Criticality Analysis

Values used in calculating PDU reliability are shown in Figure 3. The failure probabilities for the six experiments are summed to provide the total failure probability of these similar modules.

5.0 Failure Mode, Effect and Criticality Analysis

The failure modes were first identified with respect to PDU functions. The parts required to perform a function were then analyzed with respect to their applicable failure modes, including all failure modes listed in ATM 605A, Section 4. After identifying a failure mode, its -effect on the immediate assembly and end item (PDU module) was analyzed.

Alpha (\propto) values give failure rate apportionments for the failure modes of the function being analyzed. The numerical value of α is a decimal number to three places, representing the fractional amount of the total failure rate for the function obtained for the parts from the PAA.

The failure probability is based on 2 years (17520 hours) of operation on the moon. The total function failure probability was determined first. Second, the failure probability for each failure mode was determined by multiplying times the total function failure probability.

Table 1 provides criticality ranking codes. Because of redundancy, the PDU contains the lowest three criticality codes.

Analysis of the effects of various failures indicates that a circuit breaker contact set welded or fixed close in a position for resetting the circuit breaker in the uplink or ADP power control will energize six relays, consuming 2.5 watts continuously. This probability is comparatively low, being 17×10^{-5} for a single circuit breaker. Contacts are rated at 500 ma and the total current requirement for six relays is only 87 ma or less than 18% of rated current of the relay. A total of six tripping circuits are in operation at any one time with respect to this failure mode, raising the failure probability for the combination to 102×10^{-5}.

Drift in relay driver transistors have the highest probability of failure. $-\frac{1 n}{5}$ the uplink and ADP power control the failure probability is 164×10^{-5}. In the experiments power control, the failure p obability due to transistor drift is 166×10^{-5}.

6.0 Reliability Calculations

6.1 R_{A} is the reliability of the unswitched EMF's, Experiments 1-5, Digital Data Processor, Isolation Diodes, Transmitter and their Redundant Path.

6.2 R_{B} is the reliability of the uplink

$$
\begin{aligned}
R_{B}=1-Q_{B}^{2} & =0.999967 \\
Q_{B} & =5.81 \times 10^{-3}
\end{aligned}
$$

$6.3 \quad R_{C}$ is the reliability of the ADP

$$
\begin{aligned}
R_{C}=1-Q_{C} & =0.999971 \\
Q_{C} & =5.42 \times 10^{-3}
\end{aligned}
$$

6.4 R_{D} is the reliability of the Power Dump

$$
\begin{aligned}
R_{D}=1-Q_{D}^{2} & =0.999986 \\
Q_{D} & =3.7 \times 10^{-3}
\end{aligned}
$$

6.5 The total Reliability R_{T}

$$
=R_{A} R_{B} R_{C} R_{D}=0.999574
$$

viverpere Strumas Biveicon

A SEP
Array E, Power Distribution Unit Failure Mode, Effects and

Page 6 OF 26 Criticality Analysis

TABLE 1

Criticality coding in the detail FMECA is in accordance with the following table:
I. Loss of system
II. Loss of system control
III. Loss of one experiment
IV. Loss of housekeeping channel(s)
V. Loss of redundant element
VI. Degradation of a redundant element

7.0 RELIABILITTY ASSESSMENT

The purpose of performing a reliability prediction and failure mode analysis is to identify inherent design weaknesses. From the results of these analyses, it has been concluded the reliability and design objectives have been fully satisfied.

FIGURE 1 ARRAY E PDU FUNCTIONAL BLOCK DLAGRAM

FIGURE 2
ARRAY E EXPERIMENT POWER CONTROL

ALSEP

Array E, Power Distribution Unit Failure Mode, Effects and

Figure 3 Reliability Block Diagram
Re: Section 6.0 for math model and calculations

FAILURE MODE, EFFECT \& CRITICALITY ANALYSIS

FAILURE MODE, EFFECT \& CRITICALITY ANALYSIS

Tirst value is for Tplink; second value is for ADP.

FAILURE MODE，EFFECT \＆CRITICALITY ANALYSIS

STSTEM ALSEP	PrCPAPED EY AWR	NTM951 PEV．A
EOTEM PDU	DWG NO．	PAGE 12 of 26
ASS＇	DWE NO．	DATE

FAILURE MODE, EFFECT \& CRITICALITY ANALYSIS

EP	Preparem ${ }^{\text {BY AW }}$	AtM 951 REV.
ENOTTEM PDU	OWG NO.	
ASSTY	OWS NO. ${ }_{2349146}$	9-23-71

FAILURE MODE, EFFECT \& CRITICALITY ANALYSIS

PART/COMPORENT STMBOL	FAILure mode	ASSEMBLY EFFECT OF	failure	$\begin{aligned} & \text { FAILURE } \\ & \text { PROBABILITY } \\ & Q \times 10^{5} \end{aligned}$	CRITICALITY
			END ITEM		
1. 0 Overload $\# \in n-$ sing and s*it. ching components CBI and CB 2 and CB 3$\mathrm{CR} 3,6,11$	1.1 Open tripping coil in CB1 and CB2 circuit breakers. . 092	1.1 Circuit functions through diode, bypassing open coil.	1.: Circuit does not provide overload protection.	10	v
	1. 2 Shorted tripping coil in CBl or CB2, or CB3. 0.184	1.2 Overload protection for particular line segment is lost,	1.2 Same as above.	21	v
	1. 3 Contacts remain open after tripping current is applied. 0.461	1.3 Relay coil and circuit breaker reset coil will not be activated.	1. ; Switching to alternate loads will not be accomplished. Continued high circuit current will flow.	53	vi
	1.4 Welded or mechanically closed contacts.	1.4 Maintains holding voltage on magnetic latching relay coil and circuit breaker reset coil consumption 841 mw.	1.: Loss of capability to command transfer of power to alternate load. Loss of further protection utilization.	21	v
	1.5 Shorted or open diodes (used to limit magnetic saturation at tripping coil.) . 047	1. 5 Shorted condition causes bypassing of tripping coil. Open will permit tripping coil to reach saturation, ...depending on nature of overload.	1. E Short condition by-passes protection function. Open condition may allow coil saturation, negating tripping action.	5	v
$\begin{gathered} \text { 2. } 0 \text { Alternating } \\ \text { Load Relay K1 } \end{gathered}$ and K2	2.1 Open coil in Kl or K2 relay. 0.070	2.1 Unable to switch or cycle contacts.	2.: Loads A and B will be provided with power simultaneously when commanddd to switch circuits.	20	v
	2. 2 Shorted coil in K1 and K2 relay. 0.130	2. 2 Possible intermittent operating; possible continuous "on" condition; possible non-operation.	2. : Unpredictable switching or sensing responce; lock-up of contacts to one load plus added load to continously passing coil prevents load selection and adds undue drain on power supply.	37	v
	2.3 Open Contacts 0.330	2. 3 Incomplete circuit for overload sensing/supplying power or resetting circuit breaker.	2. ${ }^{\text {F Required functions provided by }}$ redundant circuit.	93	vi
	2. 4 Welded or mechanically fixed closed contacts. 0.130	2.4 Contacts cannot switch.	2. $\frac{4}{-}$ If contacts are in load circuit, both loads will be supplied simultaneously. If contacts are in $C B$ reset circuit, one circuit breaker will not have reset capability.	37	v

FAILURE MODE, EFFECT \& CRITICALITY ANALYSIS

SYSTEM ALSEP		No. $i^{\text {REV, }}$ A
PO Titem	OWG NO.	PAGE 15 of 26
${ }^{4 S S}$		DATE 9-23-71

FAILURE MODE, EFFECT \& CRITICALITY ANALYSIS

FAILURE MODE, EFFECT \& CRITICALITY ANALYSIS

PART/COMPONTET SYMBOL	FAILURE MODE (α)	ASSEMBLY EFFECT OF	FARURE	$\begin{gathered} \text { FAILURE } \\ \text { PROBABILITY } \\ 0 \times 10^{-5} \\ \hline \end{gathered}$	CRITICALITY
			END ITEM		
1.0 Overloac smeing and switchug componentur CBl and CAD.	1.1 Opentripping coil in CBl or CB2 circuit breakers . 095	1.1 Circuit functions through diode, by passing open coil.	1.1 Circuit does not provide overload protection.	7	v
	1.2 Shorted tripping coil in $C B 1$ and $C B$? 0.189	1.2 Overload protection for particular line segment is lost.	1.2 Same as above.	14	V
	1. 3 Contacts remain open after tripping current is applied. 0.473	1. 3 Relay coil and circuit breaker reset coil will not be activated.	1. 3 Switching to alternate loads will not be accomplished. Continued high circuit current will flow.	35	V
	1.4 Welded or mechanically closed contacts. 0.189	1. 4 Maintains holding voltage on magnetic latching relay coil and circuit breaker reset coil. Comsumption: 841 mw	1.4 Loss of capability to command transfer of power to alternate load. Loss of further protection utilization.	14	v
	1. 5 Shorted or open diodes (used to limit magnetic saturation at tripping coil) $.054$	1. 5 Shorted condition causes bypassing of tripping coil. Open will permit tripping coil to reach saturation, depending on nature of overload.	1. 5 Short condition bypasses protection function. Open condition may allow coil saturation, negating tripping action.	4	V
2.0 Alternatita Load Reicar K1	2. 1 Open coil in Kl relay. . 061 2. 2 Shorted coil in Kl relay 0.122	2. 1 Unable to switch or cycle contacts. 2. 2 Possible intermittent operating; possible continuous "on" condition; possible non-operation.	2. 1 Loads A and B will be provided with power simultaneously when commande :o switch circuits.	5	V
			2.2 Unpredictable switching or sensing response; lock-up of contacts to one load plus added load to continously powered coil; shorted condition, bypassing coil prevents load selection and adds undue drain on power supply.	10	V
	2. 3 Open Contacts 0.310	2. 3 Incomplete circuit for overload sensing/supplying power or resetting circuit breaker. 2. 4 Contacts cannot switch.	2. 3 Required functions provided by redundant circuit.	27	VI
	2. 4 Welded or mechanically fixed closed contacts. 0.122	2.4 Contacts cannot switch.	2. 4 If contacts are in load circuit, both loads will be supplied simultaneously. If contacts are in $C B$ reset circuit, one circuit breaker will not have reset capability.	10	v

FAILURE MODE, EFFECT \& CRITICALITY ANALYSIS

FAILURE MODE, EFFECT \& CRITICALITY ANALYSIS

FAILURE MODE, EFFECT \& CRITICALITY ANALYSIS

FHLLURE MODE, EFFECT \& CRITICALITY ANALYSIS

FAILURE MODE, EFFECT \& CRITICALITY ANALYSIS

$\begin{gathered} \text { SYSTEM } \\ \text { ALSEP } \\ \hline \end{gathered}$		$\begin{array}{r} \text { PFFPARED }{ }^{\text {BY }} \\ \text { AWR } \end{array}$	No.	PEV.	
END ITEM PDU		OWG NO.			
		PAGE 23 Of 26			
ASS'Y \quad Power Dump			CWG NO. 2349156	DATE 9-23-71	
CF FAllure			$\begin{aligned} & \text { FAILURE } \\ & \text { PROBABILITY } \\ & Q \times 1 C^{-5} \end{aligned}$	$\begin{aligned} & \text { CRITIC } \\ & \text { ALITY } \end{aligned}$	
END ITEM					
1.1 Loss of protective function.			7	VI	
	Isolation of source voltage from either PDM load \#1 or \#2.		27	VI	
	Either load \#1 or \#2 will remain in either the energized or off condition.		2		
	Unpredictable switching or sensing response; lock-up of contacts to one position plus added load to continuously powered coil; shorted condition, by-passing coil prevents command control and adds undue drain on power supply.		5		
2.3	NONE. Redundancy provided.		120	---	
2.4	"	"	5	---	
	Shorted diode prevents cycling relay to alternate position.		26	VI	
	Relay driver becomes inoperative when coil is cycled.		13	VI	
3.1 3.2	Relay remains in prior commanded position Relay Driver Inoperative None		0.48		
3.3			4.08		

FAILURE MODE, EFFECT \& CRITICALITY ANALYSIS

SYSTEM END ITEM		NO.	REV.
		PAGE 24 of 26	
Pou	wer Dump 2349156	DATE 9-23-71	
F failure		$\begin{aligned} & \text { FAILURE } \\ & \text { PROBABHLTIY } \\ & Q \times 1 C^{-5} \end{aligned}$	CRITIC Ality
END ITEM			
3.4	None	0.48	VI
3.5	Relay Driver Inoperative	0	VI
3.6	None	4.08	VI
3.7	Relay Driver Inoperative	0	VI
3.8	Shortened Life	4.08	VI
3.9	None	4.08	VI
3.10	None	0.48	VI
3.11	Relay Driver Inoperative	0	
3.12	None	4.08	VI
3.13	Relay Driver Inoperative	170.00	VI
3.14	Relay Driver Inoperative	12.00	VI
3.15	Relay Driver Inoperative	12.00	VI
3.16	Relay Driver Inoperative	50.00	VI
$\text { 4. } 1$	Loss of supply power redundancy.	7	VI
4.2	Loss of protection against secondary failures in PCU/ PDU supply line, +29VDC, 1 or 2.	16	VI

FAILURE MODE, EFFECT \& CRITICALITY ANALYSIS

STSTEM ALSEP	Prezaked Br AWR	No. PRE.
EVOITEM PDU	DWG NO.	Page 25 of 26
ASSTY Trasmiter ${ }^{\text {a }}$ (Temp. ${ }^{\text {a }}$	WWG ${ }_{2349126}$	DAE 9-23-71

PART/COMPONENT SYMBO	FAILURE MODE (α)		EFFECT OF	failure		Critic-
			ASSEMBLY	END ITEM	$\xrightarrow{\text { a } \times 10^{-5}}$	
$\begin{aligned} & 1.0 \text { Thermistor }_{\mathrm{RT1}} \end{aligned}$	1.1 Open. 1.2 Shorted.	$\begin{aligned} & 0.667 \\ & 0.333 \end{aligned}$	1.1 Open circuit. 1.2 Thermistor inoperative.	1.1 No temperature data output. 1.2 No temperature output.	4 2	IV IV
2.0 Potential Dividing Resistor RI, K2	2.1 Open. 2.2 Shorted.	. 010	2.1 Rl causes open cifcuit. R2 causes incfeased voltage output. 2.2 R1 causes increased voltage applied to thermistor. R2 diverts power.	2. 1 No temperature data with R1 open. Unreadably high voltage caused by open R2. 2. 2 Rl causes efroneous temperature reading outputs. R2 causes temperature voltages to approach zero.	61	IV IV
		0.0			0	

FAILURE MODE, EFFECT \& CRITICALITY ANALYSIS

