ALSEP Array E - Command Decoder Failure Modes, Effects \&
Criticality Analysis

Arospace

stems Division

Page 1 of 27
Date 6-1-71

This ATM documents the Failure Modes, Effects and Criticality Analysis' on the Bendix designed Command Decoder for the Array E ALSEP System. The analysis reflects analysis on those parts which are presently planned to be used in final flight configuration.

This document is prepared in accordance with the requirements of Section 5.2 of the Reliability Program Plan for Array E, ALSEP-RA-08, Bendix document number BSR 3024 dated 11-30-70.

Reliability prediction data are also documented herein in accordance with Section 5.5 of the Array E Reliability Program Plan.

S.J. Ellison, Manager

ALSEP Reliability

ALSEP E Command Decoder Failure Modes, Effects and Criticality Analysis

1.0 Introduction

The results of the Reliability Prediction and the Failure Mode, Effects, and Criticality Analysis for ALSEP E Command Decoder are documented in this report. This Command Decoder represents the Bendix Designed unit which makes extensive use of low power TTL integrated circuits.

The reliability prediction for the Command Decoder is . 99928 which exceeds the specified goal of .99000 .

2.0 Circuit Description

Figure 1 shows the block diagram of one side of the redundant portion of the Command Decoder, and also of the non-redundant (back-up) functions on the Command Sequencer board. This diagram is included to clarify the terms and descriptions given in the Failure Mode, Effects, and Criticality Analysis portion of this ATM (Table II).

The logical flow of a ground command is from the receiver to the Data Demodulator, where it is converted into digital form and passed to the Control Logic and then to the Decode Gate board. The form of this data is three seven bit words, the first being the ALSEP address, the second the command complement for parity checking purposes, and the third word is the command. The Command Sequencer board provides the back-up functions of generating the repeated commands, the uplink switch-over circuit, and the ripple-off circuit.

2.1 Data Demodulator

The Data Demodulator circuit converts biphase baseband data from the Command Receiver into "Non Return to Zero" (NRZ) digital data and also provides uplink clock and threshold signals for the control logic portion of the Command Decoder. The unit is designed to accept a composite waveform which is the sum of a 1 KHz clock and a 2 KHz data subcarrier. The 2 KHz subcarrier is phase modulated by a 1000 bit/second data stream. The Phase Lock Loop (PLL) section provides the signals both to detect the data and clock it out to the Command Register in the Control Logic Section by locking to the 1 KHz uplink clock generated at the ground station. The phase lock loop contains circuitry which generates 4 phases of a 1 KHz square wave. One

ALSEP E Command Decoder Failure Modes, Effects and Criticality Analysis

ATM 949
PAGE 3
OATE OF $6-1-71$

phase is used to drive the VCO to the phase lock condition while the other phases of the 1 KHz clock are gated together to produce the control logic clocks and provide 2 KHz signals for the data detector. The data detector consists of two detection chains, one to detect "l" bits and the other to detect " 0 " bits. The outputs of the two detection chains are connected to give a logic "l" output when a valid bit one is detected in the "l" chain and when a good bit zero is detected in the " 0 " chain. The outputs are clocked into the data flip flop by a short pulse generated near the end of each bit. Thus, NRZ data is obtained from the data flip flop, delayed by one bit from the baseband data. The threshold circuits are in two sections. Firstly, the analog threshold, described above, which ensures that output of the integrate and dump circuit is large enough before the comparators can produce data. Secondly, the digital threshold circuit which ensures that at least four valid data bits must be produced before the NRZ data is allowed into the Command Register in the Control Logic. The gate output of this circuitry is the digital threshold signal, and it is used to inhibit the data flip flop and also to reset the control logic, should a data dropout occur.

2.2 Control Logic

The Control Logic consists of an eight bit shift register, two counters, and reset circuitry. The shift register (Command Register) has the NRZ data passing through it at the rate of 1 KHz . A gate constantly samples the first seven bits of the shift register for the address of the particular ALSEP. Once an address is recognized, a timing sequence is initiated. After address recognition, the next seven pulses shift the command complement into the last seven bits of the shift register. The binary counter, ensures that the next seven bits of data (the command) clocked in are checked for parity. An exclusive $O R$ gate sensing the first and last bits of the shift register performs a parity check on each bit of the command complement and the corresponding bit of the command. The command sequence pulse is gated with the parity flip flop to produce a command execute pulse. After command has been executed, a logical signal VWEZP is sent to the Data Processor and causes a data demand signal DDIZP to be sent back to the command decoder.

2.3 Decode Gates

The decode gate matrix decodes a seven bit binary command into individual command lines. A command execute pulse, CEXAN, is used

ALSEP E Command Decoder
Failure Modes, Effects and Criticality Analysis

1 NO.
to create the correct command pulse length. The decoding takes place in two levels. The first level creates outputs from all combinations of the first four bits (16) and from all combinations of the remaining three bits (8). This is accomplished with four-input gates, with the fourth input of the group of eight used for the command execute pulse. The output decoding is carried out with two input gates, all having inputs associated with each of the two groups of first level gates. One hundred and four commands of a possible 128 are decoded, with resistors provided in 53 outputs for rise time control. The capacitors for this control are provided on the Control Logic board.

2.4 Command Sequencer

The Command Sequencer consists of a free running binary counter with decoding logic wired to Experiment Calibrate command lines. The sequencer also functions as an uplink switch-over timer to ensure a switch from one uplink chain to the other in case of an uplink failure. The clock for the counter is the 90 th frame mark, NFIZP, a 118 us pulse appearing every 54 seconds, generated within the Data Processor. Once the commands are generated, they are "OR'd" with the experiment calibrate command lines in the redundant section of the command sequencer. Also, within this redundant section is an "enable/inhibit repeated commands" flip flop which, by means of two commands, lets the ground user of ALSEP decide whether the repeated calibrate commands should be provided to the experiments or not. This inhibit feature also permits the repeated command sequencer to be disabled in case of a failure in any of the non-redundant circuitry. The Ripple-off circuit consists of an 8 -bit binary counter and decoding gates producing the commands. The counter is clocked by the CWE clock, a 1060 Hz clock generated within the Data Processor. The loss of a "Reserve Power" signal from the PCU causes seven power loads to be switched sequentially to standby after a predetermined length of time.

3.0 Reliability Prediction

The reliability prediction for the Command Decoder operating in standby redundant configuration is calculated to be. $999: 28$ for launch, deployment and two years of lunar operation. The predicted reliability exceeds the specified goal of .99000 as stated in A TM 889, Section 4.2.

ALSEP E Command Decoder Criticality Analysis

Page 5 of 27
date 6-1-71

Figure 2 defines the Reliability Block Diagram and Mathematical Model for the Command Decoder. Two identical channels are represented by " A " in operation, and " B " in standby redundancy. The components associated with switching and located on the only non-redundant module represent the third reliability function. The fourth block represents the single point failures in the Control Logic and Decode Gate Modules.

The probability failures for each functional component identified in Figure 2 are tabulated in Table I. The probability failures shown represent composite totals derived from the parts application stress ratios of each electronic piece part modified by the failure mode apportionment.

ATM 949
Array E Command Deco Failure Modes, Effects \& Criticality Ana, is

Page	7
DATE	6-1-71

*

Figure 2 Command Decoder Reliability Block Diagram

| No. | | REV. NO. |
| :--- | :--- | :--- | :--- |
| ATM 949 | | |
| PAGE | 8 | OF $\quad 27$ |
| OATE | $6-1-71$ | |

TABLE I

PROBABILITY FAILURE SUMMARY

Assembly,	Operating	Standby
Data Demodulator A*	.01270	.00013
Control Logic A	.00730	.00007
Control Logic SPFS	.00001	.00015
Decode Gates A	.01450	
Decode Gates SPFS	.00001	$\mathbf{Q}_{\mathbf{2}}=.00035$
Totals	.03450	
Sequencer (Switching)	$\mathbf{Q}_{\mathbf{8}}=.00271$	

*B Boards have same failure rates as A Boards.

$$
\begin{array}{r}
x \\
\vdots \\
y
\end{array}
$$

ALSEP E Command Decoder
3.1 Reliability Calculations

Figure 2 RELIABILITY MODEL
3.1. 1

$$
\begin{aligned}
& Q_{1}=\text { Probability Failure in Operation } \\
& Q_{2}=\text { Probability Failure in Standby } \\
& Q_{S}=\text { Probability Failure in Switching } \\
& Q_{F}=\text { Probability Failure in Single Point Failures } \\
& Q_{T}=\frac{Q_{1} \cdot Q_{1}}{2}+\frac{Q_{1}}{2} Q_{2}+Q_{1} R_{2} Q_{S}+Q_{F} \\
& Q_{T}=\frac{Q_{1}^{2}}{2}+\frac{Q_{1} \cdot Q_{2}}{2}+Q_{1} R_{2} Q_{S}+Q_{F} \\
& 3.1 .2 \quad
\end{aligned}
$$

$!$

$3.1 .3 \quad Q_{2}=1-R_{2}$

$$
R_{2}=1-\Omega_{2}
$$

$$
R_{2}=1-.00035
$$

$$
\mathbf{R}_{2}=.99965
$$

$$
Q_{1}=.03450
$$

$$
Q_{2}=.00035
$$

$$
Q_{S}=.00271
$$

$$
Q_{F}=.00002
$$

$$
Q_{T}=\frac{Q_{1)}}{2}+\frac{Q_{1} \cdot Q_{2}}{2}+Q_{1} \cdot R_{2} \cdot Q_{S}+Q_{F}
$$

$$
\Omega_{T}=\frac{(.03450)^{2}}{2}+\frac{(: 03450)(.00035)}{2}+(.03450)(.99965)(.00271)+.00002
$$

$$
Q_{T}=.00060+.00001+.00009+.00002
$$

$$
\Omega_{T}=.00072
$$

$$
\begin{aligned}
& 3.1 .4 R_{T} \\
&=1-Q_{T} \\
& R_{T}=1-.00072 \\
& R_{T}=.99928
\end{aligned}
$$

4.0 FAILURE MODES, EFFECTS AND CRITICALITY ANALYSIS

The failure mode and effects analysis for the Command Decoder are documented in Table II. The failure probabilities reflect the identified line item. The criticality column lists in descending order the criticality as applied to the ALSEP system failure modes. This column will provide criticality rankings in accordance with BSR 3024, Séction 5.2.2. The criteria for criticality rankings is listed in 4.1 .

The format of Table II is designed to provide the reader with a narrative description of the varying types of failures that could occur, combined with the resultant performance characteristics. This information is useful to system support in performing fault isolation should any anomally occur.

There are two ALSEP-E single point failures within the Command Decoder itself. They are the two single lines between the Data Processor and Command Decoder. The CL0011ZN signal is a single point failure which will result in loss of all data except for LSPE, while the EXFZN signal will cause the system to go into the ASE Data Mode and remain there. The circuitry required to eliminate the two single point failures is extremely complex and reliability trade-off studies have shown that the increased complexity makes the circuitry less reliable.

The failure probability figures were derived using the data contained in ATM-954, the Command Decoder Parts Application Analysis, ATM 605 A was used to derive the component $\alpha^{\prime} s$ (open, short, drift, etc. apportionments). Some failure modes, such as drift of a resistor in a digital circuit, do not affect the operation. The failure modes which do not affect the operation are not included in the FMECA. For this reason, the sum of α^{\prime} s for some circuit/function items do not always equal one. However, all Command Decoder piece-part failure modes which do not affect the operation of the Command Decoder or any other unit in ALSEP are included in the FMECA (Table II).
4.1 The criticality code to be used in the criticality column of Table II is listed below according to the following criteria:

I Loss of system
II Loss of system control
III Loss of one experiment
IV Loss of housekeeping channel(s)
V Loss of redundant element
VI Degradation of a redundant element

5.0 Reliability Assessment

The purpose of performing a reliability prediction and failure modes analysis is to identify inherent design weaknesses. From the results of these analyses it has been concluded the reliability and design objectives have been fully satisfied.

FAILURE MODE, EFFECT \& CRITICALITY ANALYSIS

STHEMLSEP		949 1-1
SOTHEM	JWG NO.	OASE 13 of 27
ASS'Y Decode Gates	OXiS NO 2367626	= 6-1-7

FARURE MODE, EFFECT \& CRITICALITY ANALYSIS

FARLURE MODE, EFFECTं \& CRITICALITY ANALYSIS

FARURE MODE, EFFECT \& CRITICALITY ANALYSIS

FARURE MODE, EFFECT \& CRITICALITY ANALYSIS

FARURE MODE, EFFECT \& CRITICALITY ANALYSIS

FARURE MODE, EFFECT \& CRITICALITY ANALYSIS

FARURE MODE, EFFECT \& CRITICALITY ANALYSIS

FARURE MODE, EFFECT \& CRITICALITY ANALYSIS

FARURE MODE, EFFECT \& CRITICALITY ANALYSIS

FAILURE MODE, EFFECT \& CRITICALITY ANALYSIS

FARURE MODE, EFFECT \& CRITICALITY ANALYSIS

FARURE MODE, EFFECT \& CRITICALITY ANALYSIS

PART/COMPONENTSMMBOL	FAlLU	MODE, EFFECT		cal	-ITY ANALYSIS	Fommand Seque	6-1-71				
	FAILURE MODE (a)			EFFECT OF. FARURE			$\begin{gathered} \text { FAILURE } \\ \text { PROBABILITY } \\ 8 \times 10^{-5} \\ \hline \end{gathered}$	CRITICAlity			
					ASSEMBLY	END ITEM					
$\left\lvert\, \begin{array}{llll} 1.0 & \text { U1B, } & \text { U1D, } & \text { U2A, } \\ & \text { U6B, U6C, } & \text { U6D } \\ & \text { U8A } & & \end{array}\right.$	11.1	$\begin{aligned} & \text { LOW - U2A } \\ & \text { HIGH - U2A } \end{aligned}$	$.273$	1.1 Loss of Clock Pulse to Counters.		1.1 Cannot ripple off Experiments.	: 15.78	${ }^{\text {vi. }}$.			
	! 1.2	$\begin{aligned} & \text { LOW - U1B, U6C } \\ & \text { HIGH - U1B, U6D } \end{aligned}$		1.2	Clock-disabled	1.2 Cannot ripple off experiments.	13.47	vi			
	1.3	HIGH - U8A :	. 045	1.3 Reseta all counters to original state.		1.3 Cannot ripple off experiments.	. 2.60	vi			
	1.4	HIGH - U6B	. 0.045	1.4 Resets last five counters to zero.		1.4 Cannot ripple off experiments.	2.60	vi			
	1.	LOW - U10	. 064	1.5 Resets first three counters to one and clock disabled.		1.5 Cannot ripple off experiment.	3.70	vi			
		LOW - U6B	. 094	1.6 L	Lose of reset ability, clock.	1.6 Loss of reset ability, clock.	5.44	vı			
$\text { 2.0 } \begin{array}{ll} \text { UIC, UID, U6C } \\ \text { U6D, U8A } \end{array}$	2.1	$\begin{aligned} & \text { LOW - U6D } \\ & \text { HIGH - U6C } \end{aligned}$	$.238$	2.1 Clock continues to count.		2.1 All experiments ripple off once.	8.13	v I			
	2.2	```LOW - UlC HIGH - UIC UID . 200```		2.2 C	Clock enabled	2.2 All experiments ripple off once.	6.83	vi			
	2.3 LOW - U8A . . 162			2.3 C	Counters cannot be reset.	2.3 All experiments ripple off once.	5.53	vi			
3.0 U2B	3.1	LOW - U2B . 1.00		3.1 Resets last five counters to zero and enables clock.		3.1 Count sequence repeats.	15.77	vı			
4.0 U1A, U5E	4.14.24.34.4	$\begin{aligned} & \text { HIGH - U1A } \\ & \text { HIOH - USE } \end{aligned}$	$\begin{aligned} & .188 \\ & .113 \end{aligned}$	4.1 Cannot clear 4th binary counter. 4.2 Cannot clear last 5 counters. to zero.		4. 1 Ripple off count retained.	1.58				
						4. 2 Ripple off count retained.	0.95	vi			
		LOW - UlA	. 437	4.3 Clears 4th binary bit. 4.4 Clears last 5 counters once.		4.3 Interupts one count cycle only. 4.4 Counters cannot be cleared again.	3.68	vi			
		LOW - USE	. 262			2.20					
5.0 U12A, U17A, U20A, U17B, U12B, U23A, U20B.	$5.1 \text { HIGH - U12A, U17A, U20A, , } 409$			5. i Cannot thut off experiment output.			5.1 Experiment is commanded but has no effect.	82.76	vi		
U13A, U18A, U138.											
U19B, U13C, U18C,											

FARURE MODE, EFFECT \& CRITICALITY ANALYSIS

