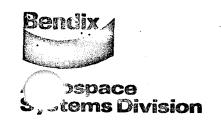
Bendix	Gross Hazard Analysis Report, LMS	ATM 1018		
rospace tems Division	GIUSS Hazard Analysis Report, Divid	PAGE OF		
		DATE 6/12/71		

This ATM documents the Gross Hazard Analysis of the LMS experiment.


È

\$

Prepared by W. J. Lavin W. J. Lavin System Support Engineer

Approved by Johes

J. Jones // ALSEP Support System Supervisor

Gross Hazard Analysis Report, LMS

АТМ	1018			
PAGE .	2	_ OF _	6	
DATE	6/12	2/71		

1.0 INTRODUCTION

This is a report of the Gross Hazard Analysis of the Lunar Mass Spectrometer (LMS) experiment. This analysis has been conducted to identify the nature and extent of all potential hazards which might be apparent during assembly, testing, storage, transportation and operation of the experiment and to provide an approach or solution to reduce the level of any hazard to a "safety negligible" condition.

- 2.0 ANALYSIS
- 2.1 Hazard Analysis Sheet (Figure 1)

The Hazard Analysis sheet was used as a checklist to ascertain whether any of the listed hazards exist and at what point in the life cycle these hazards are apparent.

2.2 LMS Functional Schematic (Figure 2)

A functional schematic of the LMS electronics was drawn to determine if there existed any hazardous voltages or the possibility of performing electrical function which could cause hazardeous events.

2.3 System Safety Record Sheet (Figure 3)

Hazards identified on the Hazard Analysis sheet and the LMS functional schematic were listed on the System Safety Record sheet. The Hazard Potential was determined and a technical approach to eliminate the hazard or a solution of the problem was given.

3.0 RESULTS

ñ

The drawing of the functional schematic revealed that there are high voltages in the LMS experiment (up to 3500v). It was determined that this voltage was a hazard only during manufacutre and test of the experiment. When the experiment is fully assembled there are no exposed high voltages. The hazard was listed on the System Safety Record sheet and an analysis was conducted on the three power supplies involved. It was determined that all three power supplies were current limited to less than one milliamp and, therefore, constitutes a negligible safety hazard.

Bendix 4	Asi rugawi	NO. ATM 1018	
	Gross Hazard Analysis Report,	LMS	PAGE OF
rospace Systems Division			DATE 6/12/71

4.0 CONCLUSIONS

The LMS experiment exhibits no significant safety hazards.

Page 4 of 6

HAZARD ANALYSIS SHEET ALSEP ARRAY E						
SUBS	VSTEM	LN	ЛS			BY Sys. Supt.
					Δ	
DETAIL/ASSEMBLY/OPERATION N/A DATE 6-						
PHASE	MANUF &	FIELD TEST	кsс	LAUNCH &	LUNAR SURFACE	REMARKS
IIAZAND	TEST			LANDING		
ACCELERATION	No	No	No	No	No	
CHEMICAL						
CONTAMINATION						
CORROSION						
DEBRIS						-
ELECTRICAL-INADVERTENT ACTIVATION						
ELECTRICAL-POWER SOURCE FAILURE	No					
ELECTRICAL SHOCK	Yes					Internal High
ENDURANCE LIMIT EXCEEDED	No					Voltage 1450; 3000; 3500vdc
ENVIRONMENTAL STRESS						BxA & UTD
EQUIPMENT FAILURE		·				
EXPLOSION						
FIRE						
FRAGMENTATION					•.	
HEAT & TEMPERATURE						· · · ·
ІМРАСТ						
LEAKAGE						
MOISTURE						
OXIDATION						
PERSONNEL ERROR						
PERSONNEL ILLNESS						
PRESSURE						
RADIATION						
SHOCK						
EXPLOSIVE DEVICES						
STRESS CONCENTRATIONS	-					
STRUCTURAL FAILURE						
TOXICITY						
VIBRATION AND NOISE						
WEATHER	No	No	No	No	No	

figure 1 $^{\prime}$

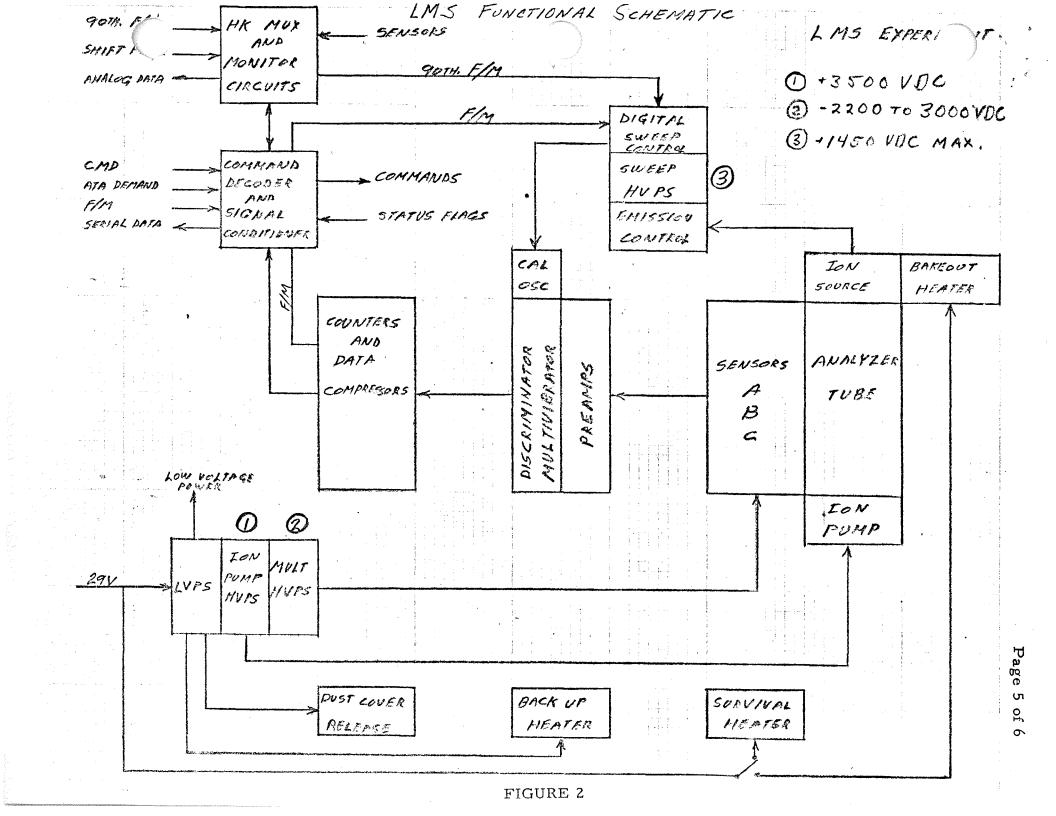
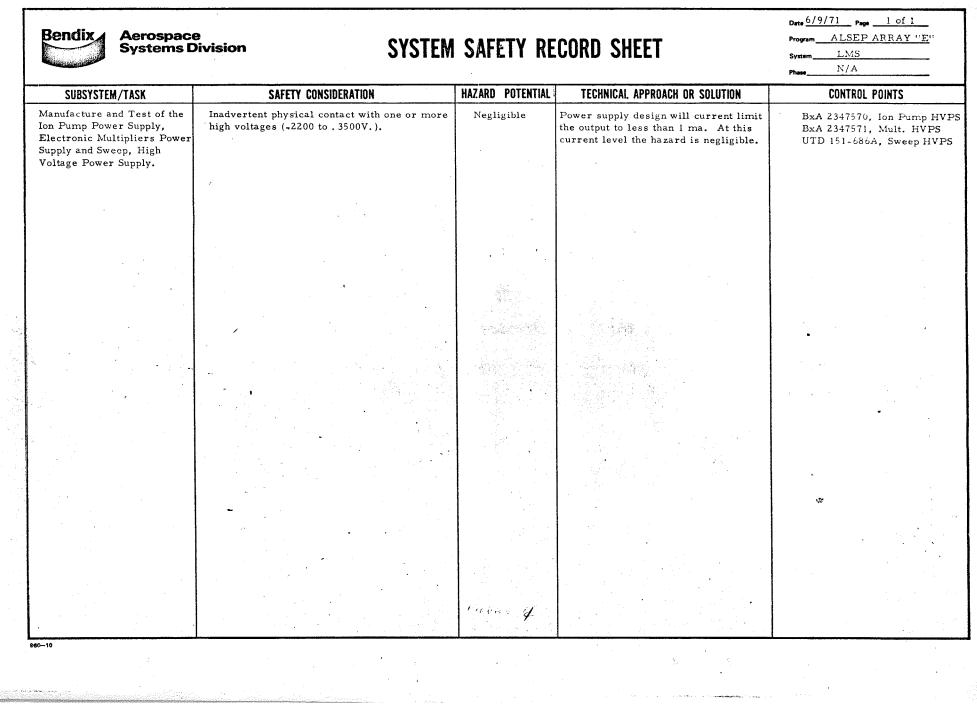



FIGURE 3

Page 6 of 6

