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This grant funded feasibility studies and development work on the 

lunar heat flow experiment (HFE). The first task was performed under a 

previous grant (NSG-400), and it consisted, among other things, of the 

investigation of a novel method of measuring heat flow which has the 

advantage of not requiring a drilled hole. The method was found not to 

be feasible, however, and the requirement that a drill be developed for 

lunar use was established. These early results are incorporated in 

Appendix I for convenience. 

Once the necessity of drilling a hole in the moon became clear, it 

became desirable to develop an in situ method of measuring lunar thermal 

conductivity. The alternative, to measure conductivity on a returned 

core, suffers from the disadvantages that the volume available for inves­

tigation is much smaller than thJt sampled by the in situ method and the 

physical properties of the lunar material may be permanently altered by 

the coring operation. The temperature field surrounding a heater with 

the geometry of a cylinder of finite length was therefore investigated. 

The results were presented in an interim report dated January, 1967 

(Appendix II). The calculations reported there formed the basis of the 

design of the downhole part of the HFE, which was developed and fabricated 

by A. D. Little, Inc. 

During the final six years of the grant's duration the main activity 

was travel and consultation with colleagues associated with planning and 

fabricating the HFE. Places most frequently visited were Lamont-Doherty 

Geological Observatory and A. D. Little, Inc. 

Probably the best measure of the success of a research program is its 
. . 

results= Four HFE's have bzen flown and t\<to of these are in phce on the 



moon and returning data of high quality. They have achieved and even sur­

passed their design objectives, and they have proven themselves to be 

rugged, reliable instruments. They are described in the Apollo 15 and 

Apollo 17 Preliminary Science Reports, attached as Appendix III. The t\'10 

instruments that failed to return data were victimized by circumstances 

that were unrelated to the HFE itself. One \'las lost as a consequence of 

the abort of the Apollo 13 landing. On the Apollo 16 mission, the HFE 

was successfully emplaced, but it was silenced when an astronaut inad­

vertently tripped and broke the cable connecting it to ALSEP . 

. / 
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ABSTRACT 

A number of problems related to the feasibility of measuring lunar 

heat flow at the lunar surface or in a shallow hole have been investigated 

with the following results. Study of the steady periodic temperatures 

in the lunar material will give unambiguous information about its 

properties only if the surface material alone has an appreciable effect 

on the amplitude and phase of the thermal wave. Layering tends to reduce 

the amplitude of the fluctuation at a given depth. High-amplitude 

fluctuations near a ~lace where the ~oorly conducting surface layer is 

missing do not penetrate far and pose no difficulty. Large Ferturbations 

of heat flow may be caused by irregularities in thickness of the surface 

layer, and a number of closely spaced measurements at a given landing 

site will be required to minimize this source of error. The "blanket11 

method of measuring lunar heat flow is not considered feasible because 

of the necessity of very closely matching the local albedo with the 

blanket, and because a blanket with properties such that an easily 

measured gradient free from periodic fluctuations can be set up by the 

lunar flux requires a prohibitively long time to come to. thermal 

equilibrium. Conversely a blanket with a suitable time constant will 

yield only a small, seriously disturbed gradient that will be difficult 

to measure. 



1. INTRODUCTION 

A measurement of lunar heat flow will be interesting for a number of 

scientific reasons. Heat flow gives more direct evidence about the 

internal thermal regime of a planet than any other measurement that can 

be made at tha surface. Limits to the total amount of radioactive 

elements in the planet's interior can be set, as well as limits to its 

initial temperature. In the case of the moon. a determination of heat 

flow will help to decide just how ''dead" it is, since the source of 

volcanism and mountain building must ultimately be thermal energy, most 

of which is leaked to the surface to appear as heat flow. The small size 

of the moon makes it especially interesting from the thermal point of 

view. Cooling from the surface has affected some 70% of the volume of 

the moon compared with about 20% of the earth, assuming the two bodies 

are of the same age. As a consequence the relative importance of initial 

heat and radiogenic heat may be very different on the moon as compared 

with the earth, a possibility which makes a comparison of heat flow from 

the two bodies all the more interesting. 

But granting the desirability of a measurement of lunar heat flow, 

a number of obstacles remain in the way. On the terrestrial land surface 

beat flow is measured in boreholes, mines or tunnels reaching depths up 

to several thousand feet. Considerable depths are necessary in order to 

avoid disturbances which occur near the surface. There is no prospect of 

drilling a deep hole in the moon in the foreseeable future, and any 

measurement of heat flow must be made at the surface or in a shallow hole. 

The temperatures near the lunar surface are in the first place affected 

by the large mont~yvariation in surface temperature, and secondly by 
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thermal refraction due to variability in the thickness of the lunar 

. surface material, which is known to be of very low thermal conductivity 

compared to solid rock. The goal of the present study is to assess the 

seriousness of these difficulties. 

In the calculations which follows the assumption that the lunar 

situation can be adequately represented by a linear model, i.e. a model 

in which the thermal properties of the lunar material are treated as 

independent of temperature, is made. This assumption is probably very 

wrong for materials near the lunar surface under ambient lunar conditions. 

Temperatures are below the Debye temperatures of common rock-forming 

minerals, implying a temperature-dependent specific heat. Radiative 

transfer is presumably an important contributor to the thermal conductivity 

of the porous surface material, and it is strongly dependent on temperature. 

Both factors argue for treatment of nonlinear models, but the additional 

complication is hardly warranted in view of the remaining uncertainties 

in the details of the properties of the lunar surface material. Thus the 

present study represents a first approach to the problem, aimed more at 

recognizing difficulties than at removing them. 

Four problems are considered in detail in the following sections. 

The first is the case of one-dimensional steady periodic heat flow in a 

stratified medium consisting of two layers of differing thermal properties, 

resting on a substratum of infinite thickness which has a third set of 

thermal constants. An exact solution is obtained for the case of 

semisoidally varying surface temperature. 

A second problem again concerns steady periodic temperatures, this 

time in a two-layered medium with the upper layer absent within a circular 
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region. Numerical results are obtained for this model of a hole in the 

moon's poorly conducting surface layer. Perturbations of heat flow due 

to variable thickness of the surface layer are investigated under steady­

state conditions, and finally results are extended to calculations of the 

disturbances associated with the emplacement of a blanket-type thermal 

fluxmeter on the lunar surface. 

. ( 
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2. STEADY PERIODIC TEMPERATURES IN A 3-LAYERED MEDIUM 

. A. Theory 

Mathematically the problem can be expressed in the following way. 

The region 0 ~ ~ ~ !l contains material with properties ! 1, fl' £1, etc. 

(see table 1 for notation), the region !t ~ ~ ~ ! 3 contains material with 

properties ! 2 , etc., and the region~~ ! 3 contains material with 

properties ! 3 , etc. At the boundaries !l and ! 3 both temperature and 

'T thermal flux (= K ;x) are continuous, 1 -~ 0 as x ~ oo, and 1 == f:.
0 

sin wt 

when x = 0, where A is the constant surface amplitude. Within each 
- 0 /r 1 or region T must satisfy the equation of heat conduction, ~2 =a Ot 

This problem is most conveniently solved by the Laplace transform 

method described by Carslaw and Jaeger (1959). Further details about 

this particular problem are given by Lachenbruch (1959), who obtained the 

solution for the special case~ = ! 3 • If we write 1 for the Laplace 

transform of 1• and use subscripts to identify the three regions, we have 

(Lachenbruch, 1959): 

Tl = Fexp(q1x) + Gexp(-q1x), 

T2 : Hexp(q2x) + Jexp(-q2x), 

) 
T3 == Rexp (-q3x), 

(1) 

(2) 

(3) 

where F, G, H, J, and R are constants, independent of !• The two boundary 

conditions at each interface, ~ ~ !l and ~ = ! 3, plus the condition at 

~ = 0, provide 5 equations which determine the 5 unknown quantities 

F, G, H, J, and R. 



T 

t 

X 

Temperature 

Time 

Depth variable 

Table 1. Definitions of Symbols 

Depth to base of upper layer 

Depth beneath base of upper layer 

Depth to top of substratum, =X1 + X~ 
Angular frequency, = ?..66 x 10-6 sec-1 for 1 lunar day 

Thermal conductivity of the ith layer 

Density of the ith layer 

Heat capacity of the ith layer 

Thermal diffusivity of the ith layer, = K1/p1c1 
Thermal inertia of the ith layer, = (Kipici)\ 

Parameter of the Laplace Transform, T = J:exp(-pt)T dt 

(p/0:. )~ 
~ 

Heat flow 

Thickness of blanket 

subscript denoting properties of blanket 
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Ve find 

(4) 

(5) 

(6) 

(7) 

(8) 

where 

2 
6 = (-~2~3 ·t31:33+p2 +f'2131 )exp (-2 q2X2 -2 qlXl )+ 

2 
+( -t32133+f3lf'3 -f2 +(32131 )exp ( - 2 ql xl )+ 

2 
+(~2~3-~lp3-p2 ~213l)exp(-2 q2X2)+ 

2 
+(t32~3~i\~3+t32 +f2pl) (9) 
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The transforms of equations (1)-(3) can be inverted by the contour integration 

method. Lachenbruch (1959) has already shown that the line integrals involved in 

the inversion contribute only to the initial transient state and have nothing to do 

with steady periodic temperatures. Hence for present purposes we need consider 

only the residues at the poles of the transforms. Poles are located at 

+ p = -iw; following Lachenbruch, we assume that the quantity 6 (equation 9) has no 

zeros in the com~lex plane. It can be shown that the solution given below does 

indeed satisfy all of the conditions of the problem, which constitutes proof that 

either 6 has no zeros or that the residues at the resulting poles contribute 

nothing to the steady ;eriodic part of the solution. 

+ The residues at p = -iw lead to the following expressions for the temperatures. 

A 
T1 • 0 °{exfc(-Jw/2a1x)sin(wt-Jw/2a1x)+ 

+ P2 [exp(-2Jw/2a1x1 -zJw/2a2x2+v
1w/2a1x)sin(wt-~x1-2Jw/2a2x2+Jw/2a1 x)+ 

+ ext: ( -2Jw/2a1 x1 -2Jw/2a2x2 -Jw/2a1 t) sin (wt+2Jw/2a1 x1 +2Jw/2a2x2 -JW/2a1 x) ]+ 

+ P3 [ex~(-2~w/2a1x1~x)sin(wt-2Jw)2~1~x)+ 

+ exp(-2Jw/2a2x2 -Jw/2a1x)sin(wt+2~wj2a2x2 -~w/2a1x)}+ 

+ P2P3[exp(-~x1 -2Jwj2a2x2~x)sin(wt+2Jw/2a2x2~x)+ 

+ exp(-~x1-2Jw/2a2x2+~w/2a1x)sin(wt-2Jw;za2x2+Jw/2a1x)]+ 

+ P2P4[ex~(-2Jw;2a1x1 -4Jw/2a2x2+Jw;za1x)sin(wt-2Jw;za1x1~x)+ 

+ P3P4[exp(-2Jw/2a1x1-zJw/2a2x2+Jw;za1x)sin(wt-2Jw;za1x1+2Jw/2a2x2+Jw/2a1x)+ 

+ exp(-2Jw/2a1x1-zJw/2a2x2-Jw/2a1x)sin(wt+2Jw/2a1x1-2Jw/2a2x2-Jw/2a1x)]+ 
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+ P2 
2 [ext.(-~x1-~x2~x)sin(wt+../w/2a1x)}+ 

+ P3
2

[ext(-4Jw/2a1x1+ Jw/2a~x)sin(wt~x)}+ 

+ ~42 [exp(-4/uV2a2x2 -Jw;za1x)sin(wt-~~/2a1x)]J (10) 

A 
T2= D0 (P2+P4)exp[-Jw/2a1x1 -~w/2a2 cx2+x3 -x)][sin[wt-Jw;za1x1 -Jw/2a2 cx2+x3 -x)}+ 

+ P2 exp[-~x1-~x2]sin[wt+Jw/2a1x1-../w/2a2 cx1 -x)]+ 

+ P3 ex~[-2~1x1]sin[wt~x1-Jw/2~(X2+x3 -x)]+ 

+ P4 exp[-2Jw;za2x2 ]sin[wt-Jw/2a1x1~(x1-x)]]+ 
A 

+ D 
0 (l+P3 )exp[-JV;za1x1-../w/2a2 (x1-x)][sin[wt-./w/2a1x1~ (X1-x]+ 

+ P2 exr[-2Jw;za1x1-2Jw/2a2x2 ]sin(wt+Jw/2a1x1~(X2+x3 -x)]+ 

+ p3 exp[-2Jw/2a1x1 ]sin[wt~X1+iw/2a2 (x1-x)]+ 

+ P4 exp(-2Jw/2~X2 ]sin[wt-Jw/2a1x1~w/202(X2+x3-x)]} (11) 

AoPl 
T3= -n-- exp(-Jw/2a1x1-Jw;za2x2~(x3-x)]{sin(wt-Jw/2a1x1-Jw/2~X2+Jw/2a3 

(x
3
-x)]+ 

+ P2 exp[-2Jw/2a1x1-2Jw/2a2x2 ]sin[wt~x1~x2+Jw/2a3 (x3 -x)]+ 

+ P3 exp[-~x1 ]sin[wt~X1-Jw/2a2x2-+,·./w/2a3 (x3-x)]+ 

+ P 4 exp [ ·2Jw;za2x2] sin[ wt -Jw/2a1 x1 ~x2 ~lwj2a3 (x3 
-x)] J 

where 

D -= 1+2P 2 exF ( -2~x1 -2../w/2a2x2) cos (2Jw/2a1 x1 +zJW72a2x2) + 
+ 2P 

3 
exp ( -Ww/2a

1 
x

1
) cos (2Jw/2cx

1 
x1 )+2P 4 ex1: ( -~w/2a2x2 ) cos (2.)wj2a2x2) 

+ 2P2P3 exp(-~x1-2Jw/2a2x2 )cos (2Jw/2a2x2)+ 

+ 2P2P4 exp(-~x1-~x2)cos(~X1)+ 

+'2P3P4 ex~(-2../w/2a1x1 -2../w/2a2x2 )cos{2../w/2a1x1 -2../w/2a2x2 ) 

(12) 

+ P2
2 exp(·4Jw/2a1x1-~x2)+P32 exf(-4,Jw;'2a1x1 )+P42exp(-~X2 ) (13) 
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and 
~.)1~ .. 2 p :::: 

B2?3+r1r2+f2
2
+f1r3 

1 

p2 • 
•f2~3~1~2~22-~1~3 

2 
t32t3 3 -11) lt32 ~2 -fi31~ 3 

2 

p3 ... 
-(3213 3+f31f32 -132 ff3lt3 3 

2 
t:2133ff3lf32+p2 +r1~3 

2 

p4 -
13 2f 3 -+e 1~ i'"f3 2 -(3lf3 3 

(14) 
2 

t3 213 3 +131!3 2 +!3 2 -+t3lf3 3 

The tem~erature is a sinusoidal function of time at all depths. It is useful to 

have the solutions in the form T =A sin (wt+ ), i.e. in terms of the amplitude 

and I'hase of the fluctuations. We write A = : 0 Js
1

2+ci2 and 

and find that the B. and C. are given by the following expressions. 
l. ]. 

B 1 .., ex{: ( -,JW72a1 x)sin (Jw/2o:1 x)+P 2 [exJ: ( -2Jw/2o:1x1-2Jw/2o:2x2+.v'w/2o:1 x)­

-exp ( -2Jw;2o:1x1-2~x2 -,JW/2o:1 x) ]sin (2,Jw/2o:1 Xlt-2Jw;zo:2x2 -Jw/2o:1 x)+ 

+P 3 [ exp ( -2Jw;2o:
1 
x

1 
-rv·w;2o:

1 
x)- exr ( -2~a1 x;-Jw;2o:

1 
x)] sin (2Jw/?.o:1 x1 -,Jw/20:1 x)+ 

, 
+2P 4 exp (-2Jw;2o:2 x2 -.. /w;2o:1 x) cos (2Jw/2a2x'l) s i ~ :x . 

·2P2P3exp(-~x1-~x2+Jw/2o:1x)cos(~X2)si~x 

+P2P4[ex~(-2Jw/2a1x1-~x2+Jw/2o:1x)-exr (-~x1-~x2-Jw/2o:1x)]x 

xsin(2Jw/2o:1x 1-Jw;zo:1 x)+P 3P 4[exr (-2Jw/2o:1x1-~x2~ x)-

-exp ( -2Jw/2o:
1
x

1
-2Jw/2o:

2 
-Jw/2a

1 
x) ]sin (2.Jw/2o:

1 
x

1
-2.Jw/2a2x2 -.Jw/2o:1 x) 

- P 2 
2 

exp ( -~ x1 -4Jw/2o:2x2 +Jw/2o:1 x) siTh/w/2a~ x 

-P3
2exp{-~X1~x)sinJw/2o:1x+P42exp(-~X2 -Jw/2o:1x)si~x (15) 
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c1 • exp ( -Jw;za1 x) coe . ./w;za~ x+P 2 [ exp (-2-/uf2a 1x1-2JW/2.:-t2Xi·::.,/wiza1 x)+ 

+exp ( -2./w/2a;:-x1-~x2 -.Jw;za1 x) J cos (2-/wj2a1 x1
+2Jw;za2x2 -Jw;za1 x)+ 

+P3 [exp(-2.}Wlia~x1~x)+exf(-2~/2a1x1-Jw;za1x)]cos(~X1-Jw;za1x)+ 
+2P4exp(-2./wj2a2x2 -J~;za1x)cos(2JW/2a2x2 )coaJW;za1x 
+2P2P3exp(-4J'uV2~x1-~/w;za2x2+JUf20ix)cos(2J;;2a2x2 )co&/uy2a1x 
+P2P4[exp(-2Jw/2a1x1-4~w/2a2x2+Jw/2a1x)+exp(·~X1-4Jwj2a2x2 -Jw/2a1x)]x 
xcos (zJW/~x1-~w/2a1x)+P3P 4 [exp (-2Jw;za1x1 -2v'w/2a2x2~x)+ 
+exp ( -2Ju(za

1
x

1
-2,./W/2o.

2
x

2 
-Jw;za

1 
x) ]cos (2 . .;wj2a1x1-~x2 -Jw;zo:1 x) 

+P2 2exp(-4/w/2a1x1-~x2+Jw;za1x)cosJW;za1x 
+P32 exF(-4./wj2a1x1~x)co~x+P4

2 exp(-4Jw/2a2x2 -Jw;za1x)cosJw/2a1x 

B2 = (P2+P4 )ex~[-Jw/2a1x1 -JW;2a;c~2+x3 -x)][sin[Jw;za1x1+Jw;za2 (x2+x3 -x)] 
-P2exp(-~x1-2Jw;za;x2 )sin[Jw/2a1x1 -Jwj2a2 cx1 -x)] 
-P 

3
exf (-2.yw;za1x

1 
)s in[..;W,7~x1 -Ji.o/2a2.(X2+x3 -x)] 

+P 
4 

exp ( -2./w;'2a2x
2

) s in[./w/2a1 x1-:,JW72a2 (X 
1 
-z) J} 

+(l+P3 )ex~[-Jw/2a:x1~(x1-x)](sin[Jw;za1x1 -Jw/2a2 (x1 -x)]­
-P2ex~(-2Jw;za1x1-~)~ul.vw;za1x1~<x2+x3-x)] 

-P3exp(-2Jwj2a1x1)sin[Jw/2a1x1+Jw;za2 (x1-x)] 

+P4exp(-2./w;za2x2 )sin[Jw;za1x1 -~w;za2 (x2+x3 -x)]J 

c2 = (P2+P4 )exp[-Jwj2a1x1 -Jw/2a2 (x2+x3 -x)](cos[Jw/2a1x1~<x2+x3 -x)] 
+P2ex~(-2Jwj2a1x1 -2~w;za2x2 )cos[Jw/2o:1x1-Jw/2a2 Cx1-x)] 

+P3exp(-2v'w/2a1x1 )cos[.yw;za1x1 -~wj2a2 (x2+x3-x)] 
+P 

4 
exp ( -2Jw/2a2x

2
) ~os [.Jw/2a1 X1 +, 1"" /2o:

2 
(X

1 
-x)]} 

~(l+P3 )exp[-Jw;za1x1+Jw;za2 (x1 -x)](cos[Jw/2a1x1 -Jw;za2 (x 1 -x)] 
+P2exp(-~x1-~x2)cos[Jw/2a1x1~(x2+x3 -x)] 
+P3~xp(-~1!coa[Jw/2a1z1~(X1-x)] 
+P 4exp{-~X1)cos[Jw;z~x1··~w/2a2 o2x3-x)]] •' . '• . 

; .. ~ 

(16) 

(17) 

(18) 

(18) 
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B3 = P1exp[-~Za1x1 -Jw/2a2x2 -Jw;za3 cx3 -x)]fsin[Jw/2a1x1+J~2a2x2 -Jw;za3 (x3-x)] 

.. p2 exp(-2./c.iii~x1-~x2 )sin[JW/iaix1+Jw;za2x2~(X3-x)] 

-P3exp(-2Jw/2a1x1 )sin[Jw/2a1x1 -Jw/2a2Xz~Cx3-x)] 

(19) 

c3 ... P 1 exp [ -Jw/2a1x1-Jw;za2x2 -Jw/2~ (x3 -x)] [cos [,jwj2a1 x1 ~x2 -Jw/2~ (X3 -x)] 

+P2 exp(-2Jw/2a1x1 -2,jwj2a2x2 )cos[,jwj2a1x1~x2~(X3-x)] 

+P3exp(-~x1)cos[,jwj2a1x 1 -Jw/2a2x2+Jw/2a3 (x3 -x)] 

An alternative way of expressing the solutions in the middle layer and in 

the substratum leads to results which are sim~ler in a~~earance. In the first 

case, one may use Lachenbruch's (1S59) solution for the two-layer problem, with 

amflitude and ~hase at the surface calculated from equations (17) and (18) at 

x = x1• In the substratum one may use the sim~le solution for a uniform half 

space (Carslaw and Jaeger, 1959, p. 65), with surface amrlitude and phase 

calculated from (lS) and (20) at x = x3 • The ap~arent simplification achieved 

in this way proves to be of little value for practical calculation, however. 

A number of terms which are independent of ~, such as those on the right side 

of (13), must be evaluated in order to obtain numerical results in the upper 

layer and at the interfaces. Once this is done it seems simpler to continue 

to use the three-layer theory rather than evaluating new exrressions which 

apfear in the two-layer theory, and which differ from those already evaluated. 

(20) 

The extreme simplicity of the ex}ression for temperature in a homogeneous medium, 

however, makes the alternative procedure more attractive than the use of 

equation (12) in the substratum. 
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The three-layer theory leads to ex~ressions which are far too cumbersome 

for hand calculation. Numerical results are easily and rafidly obtained by 

a ·digital comruter, however. Use of the exact theory insures that no unwanted 

initial transients affect the results. If finite difference methods are used, 

assurance of freedom from transients is secured only by repeatedly cycling the 

calculation, a procedure which is far more costly in machine time than is 

evaluating the exact theory. 

F 
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B. Applications 

In order to apply the theory developed &bove to the lunar surface, 

the parameters of the problem must either be fixed, or their ranges must 

be restricted ty estimate or by lunar observations. There are eight 

independent parameters (two thermal constants for each layer plus the 

thickness of th~ upper two layers), since density and heat capacity always 

occur in the equations as the product ~ £ and can be considered a single 

parameter. Nevertheless a very large number of permutations of values 

remains, and it is important to fix as many parameters as possible. 

We shall tak~ ~equal to 0.2 caljgm °C in all models; this value is 

appropriate to all common silicate materials under lunar surface conditions. 

Fixing £ does not of course reduce the number of parameters unless £ is 

also fixed. Perhaps the best-known lunar parameter is the thermal inertia, 

~. of the surface layer, which is known from infrared temperature measure­

ments during a lunation to be about 0.0023 caljcm2 °C sec\ (see for 

example, ~inton, 1~61, p. 411). From this result we take the product 

-6 2 4 2 
!£~for the lunar surface to be, nearly enough, 5 x 10 cal jcm °C sec. 

The very low value of the thermal inertia is the principal evidence that 

the lunar surface is composed of granular material. 

Analysis of radar echoes from the moon leads eventually to a determination 

of the product of density and dielectic constant. Since the latter quantity 

varies little among common silicates, the density may be inferred from 

these results. According to Evans' (1961) summary, material with the 

properties of loose sand would fit the radar data, i.e. a density between 

3 1 and 2 groVcm would be expected. On the other hand, the radar reflections 

may originate from a level beneath the optically defined surface. Lower 
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surface densities would then be possible and would be the automatic 

consequences of several postulated models of lunar surface structure 

(Hibbs, 1963; Warren, 1963; Hapke, 1964). We shall consider models 

with£ ranging from 0.1 to 2.0 g~cm3 • Since c and~ are regarded as 

fixed by other considerations, a choice of £ alko fixes K for the particular 

model of the surface layer. 

We have no direct information about the properties of the subsurface 

layers. We shall assume that the substratum consists of unfractured 

basic rock; appropriate properties are shown in table 2. The intermediate 

layer is presumably made up of rubble, with properties between those of 

the surface layer and the substratum. Three possibilities have been 

considered in order to indicate the effects to be expected from such a 

layer. They do not exhaust the possible range of properties; models 

with the surface layer resting directly on a solid substratum or with an 

infinite thickness of surface material may be considered limiting cases. 

The thermal properties that have been considered in the following numerical 

calculations are collected in table 2. 

It is useful at the outset to recognize two limiting types of 

amplitude - depth relations. In a homogeneous medium the amplitude of 

the temperature oscillation decreases with depth according to the relation 

A= Ao exp(•Jw/2a x). The exponential damping law is obeyed far from 

the lower contact of a thick surface layer of low thermal diffusivity. A 

different extreme is encountered if the density of the material becomes 

very 8mall. The term in the equation of heat conduction containing the 

time derivative then becomes negligible, and the amplitude is found to 

decrease linearly with depth. The numerical results which follow contain 

examples of both types of behavior. 



Table 2. Properties of layers. 

K p c 0: (3 
sec~ cal/cm sec°C gmjcm3 caljgm°C cm2jsec ca1jcm2°C 

I. Surface layer. 

1. 2.5xl0 -4 0.1 0.2 l.25xl0 -2 2.24xl0 -3 

2. 5xl0 -5 0.5 0.2 5.0xl0 -4 2.24x10 -3 

3. 2.5x10 -5 1.0 0.2 1.25x10 -4 2.24xl0 -3 

4. 1.25xl0 -5 2.0 0.2 3.12xl0 -5 2.24xl0 -3 

II. Intermediate layer. 

A lxl0-3 1.0 0.2 5.0xl0-3 1.4lxl0 -2 

B lxl0-3 2.0 0.2 2.5xl0 -3 2.00xl0-2 

c 2xl0-3 2.5 0.2 4.0xl0-3 3.16xl0 -2 

III. Substratum. 

5xl0-3 3.0 0.2 8.33xl0 -3 5.48xl0 -2 

rv. Blanket materials. 

SI-10 2.69xl0 -7 0.032 0.2 4.20xl0-5 4.15xl0 -5 

SI-91 4.14xl0 -8 0.120 0.2 1. 72xl0 -6 3.15xl0 -5 

Plastic 1. OxlO -4 
1.3 0.2 3.85xl0 -4 5.10xlo-3 

jl 
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In the calculations Ao was given the value 314°C. This is not 

the amplitude of the temperature fluctuation at the lunar surface, but 

rather is twice the amplitude of the fundamental mode in the Fourier 

analysis of lunar surface temperature given by Sinton (1961). This term 

is more interesting than the higher harmonics because it is about 5 times 

as large and because it penetrates the most deeply. Doubling the amplitude 

gives the total range of temperature directly. 

Some typical results are shown in figs. 1 through 6. The curves of 

amplitude and phase vs. depth have characteristic shapes; the sharp 

drops m the curves as interfaces are approached are particularly note­

worthy. Study of both amplitude and phase seems to give little more 

infoDmation than study of amplitude alone, although any program of 

temperature measurement would automatically yield both quantities. 

The amplitudes decrease exponentially near the tops of layers about 

a meter or more in thickness. The law of decrease is the same as in a 

send-infinite region, and the thermal diffusivity of the layer can be 

obtained from the damping observed. Where the exponential law is not 

obeyed, the properties of more than one layer are involved and it is 

doubtful whether they can ever be uniquely untangled. In the situations 

where a linear law applies (cf. figs. 1 and 2), the properties of the 

lower layers assume special importance relative to the upper layer in 

which the linear damping occurs. 

In a case in which mcasureme~of temperature cannot be made throughout 

the thickness of a layer, the proximity of an interface could be detected, 

if indeed one were near. No more than this qualitative result can be 

obtained unless the depth of the interface is also knmvn (c.f. figs. 4, 5, 
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and 6). Temperatures mus~ be measured at the interface in order to determine 

the properties of the underlying layer reliably, and little more than its 

thermal inertia can be deduced unless some penetration of the underlying 

layer is possible. 

It is worthwhile remarking again that the above conclusions are 

correct only if ·tt~arization of the conduction equation is valid. This 

will certainly not be true close to the surface, and will only become 

valid at depths where the oscillations in temperature are severely damped. 

This depth is critically dependent on the surface material. In a homogeneous 

region of material 4 of table 2(I), the amplitude reaches 1 degree at a 

depth of 30 em. In a homogeneous region of solid rock (substratum of 

Table ~) an amplitude of 1 degree occurs at a depth of 450 em. In both 

cases the surface amplitude was taken to be 314 degrees, as before. The 

presence of layering would reduce those depths. In practice, the linear 

theory will probably be valid if the amplitudes are less than 10 degrees, 

but should be regarded with suspicion in cases of higher amplitudes. 

f 
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3. STEADY PERIODIC TEMPERATURES NEAR A HOLE IN 

THE SURFACE LAYER 

The poorly conducting lunar surface layer may locally be absent, 

and the substratum of higher conductivity may be exposed to high­

amplitude fluctuations in temperature at the surface. Damping near such 

outcrops will be comparatively inefficient, and large amplitudes of the 

thermal wave many penetrate the substratum both laterally and vertically. 

We require an estimate of the extent of serious disturbance. 

A simple geometrical model of an outcrop is obtained as follows. 

Imagine first a two-layer structure of the sort described in the last 

section, i.e. a uniform layer with one set of properties separated by a 

plane boundary from a substratum of different properties. We then remove 

a piece of the upper layer having the shape of a right circular cylinder, 

and fill the resulting hole with material of the substratum. The result 

is a cylindrical protuberance on the substratum extending to the original 

plane surface. 

Analytical solutions to heat flow problems in heterogeneous regions 

of this degree of complexity are unknown, and recourse to numerical 

methods must be had. The following calculations were made from the 

simplest form of finite-difference approximation to the equation of heat 

conduction in cylindrical coordinates (see for example Carslaw and 

Jaeger, 1957, p. 468,470). The program written for the computer took 

account of different conductivities in the two layers, but did not allow 

for different densities and heat capacities. This simplification does 

not affect the qualitative conclusions drawn from the calculations. A 

second simplification was to assume that the surface temperature was 
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independent of position and varied with time in the manner shown by 

.Sinton (19tl, fig. 3). Actually the amplitude of the variation would 

be smaller in the hole, because of the better connection between the 

surface and the lunar interior there, and the extent of the perturbation 

of amplitudes is therefore slightly overestimated because of neglect 

of this effect. 

Results of the calculations are shown in fig. 7 as contours of equal 

amplitudes. The conductivity of the surface layer is taken to be 1/lOth 

that of the substratum. It is evident from the figure that the effect of 

the hole is negligible at a distance from the edge equal to its diameter, 

and that serious perturbations do not extend further than about half this 

distance. The amplitudes decrease monotonically with depth everywhere, 

as is shown by the fact that no contour can be intersected more than once 

by any vertical line. Thus there is no tendency for high-amplitude 

fluctuations originating in the hole to "run under11 the surface layer. 

It may be concluded from these results that the influence of an outcrop 

on amplitudes does not persist for a distance greater than its diameter. 

f 
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4. STEADY-STATE PERTURBATIONS OF FLUX DUE TO 

IRREGULARITIES IN THE THICKNESS OF THE 

SURFACE LAYER 

If the thickness of the poorly conducting surface layer is variable, 

heat tends to be funneled towards thin spots in the layer and away from 

thick spots, a phenomenon sometimes termed thermal refraction. Refraction 

causes the flux Observed at the surface to be high where the insulating 

layer is thin and low where it is thick. Some studies of terrestrial heat 

flow have revealed irregularities which may be attributable to thermal 

refraction. Errors arising from this effect may be large in cases where 

the conductivity contrasts are large; a good terrestrial example would 

be near a salt dnme in poorly consolidated, fine-grained sediments. 

The contrast in conductivity near the lunar surface may exceed a 

factor of 10 (table 2), a contrast that is considerably larger than one 

would expect to encounter on earth. The proportional change in flux 

scales according to the ratio of the conductivity of the substratum to the 

conductivity of the surface layer, and hence large perturbations may be 

expected near the lunar surface. The question was investigated 

quantitatively by studying the steady-state temperature distribution 

around cylindrical protuberances on the interface between an upper poorly 

conducting layer and a better conducting substratum. The problem is 

analogous to the investigation of amplitudes near an outcrop discussed in 

the last section, but with constant surface temperature. The same machine 

program was used, steady-state conditions being achieved by allowing the 

calculation to iterate until the temperatures stopped changing. 

In the application of a steady-state theory to the lunar surface, 

it must be·assumed that the periodic transients either have been avoided 
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by measuring heat flow in a sufficiently deep hole or have been removed 

·by observing temperatures over at least one cycle and calculating 

undisturbed steady-state means. The results of this section show that 

even if one of these ways of removing transient effects can be followed 

(neither will necessarily be easy to carry out), perturbations leading 

to erroneous measurements of lunar heat flow may still remain. 

A number of typical results are shown in fig. 8. Cases (d) and (e), 

in which the substratum crops out at the surface, lead to the largest 

perturbations, but such localities are obviously atypical and could easily 

be avoided. The perturbations are greatly reduced if the irregularities 

in the interface are completely buried as in the other cases shown, but 

nevertheless they are appreciable. Local variations up to about 50% may 

be found in all of the cases examined. The results shown in fig. 8 t11ere 

calculated for a ratio of conductivities of 10; reference to table 2 

shows that this value is, if anything, too low. A conductivity ratio of 

20 would lead to perturbations of a factor of 2 or more, depending on 

whether one considers enhancement or reduction of the undisturbed flux. 

In order to be useful, a measurement of lunar heat flow must lead to 

an estimate of mean flux in a region with dimensions measured in kilometers 

which is accurate to better than 20%. If the error is much greater than 

this the numbers will have little significance for geophysical or cosmological 

theory. The mean value of 10 fairly closely spaced measurements would have 

the required accuracy, assuming that the individual values are disturbed 

by no more than 50% and that the disturbances are normally distributed 

with zero mean value. This latter requirement implies that the probability 

of finding a given positive disturbance must be the same as finding a 
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negative disturbance of the same amount. It is not at all clear that a 

. system of randomly distributed, small, buried craters would have this 

property. Furthermore systematic error would invalidate this statistical 

method of achieving accuracy if, for example, all of the measurements 

were made within a large buried crater so that all were affected by a 

negative disturbance. 

An alternative approach is to escape the near-surface perturbations 

by drilling deeply enough to make the measurement beneath them. It 

should be possible to do this, because porosity will be eliminated or 

greatly reduced by the weight of overburden, and very large contrasts in 

conductivity will no longer be possible. Considerable depths of penetration 

may be required, however, since disturbed temperatures extend to a distance 

beneath the bottom of the anomalous region roughly equal to its diameter. 
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S. THE BLANKET METHOD OF MEASURING LUNAR HEAT FLOW 

A. Introduction. 

If a sheet of material of known thermal conductivity is placed on 

the lunar surface and allowed to come into thermal equilibrium, the heat 

flow through the surface can be determined from measurements of the 

thermal gradient in the sheet. A device consisting of a suitable insulating 

material and temperature sensors for the determination of the gradient 

is known as a fluxmeter, or blanket. Such devices have found meteorological 

application in the study of heat exchange between the ground and the 

atmosphere, but they have never been successfully used in the measurement 

of terrestrial heat flow except in thermal regions where the heat flow is 

orders of magnitude higher than normal. 

The extreme simplicity of the blanket method makes it appear attractive 

as a tool for determination of lunar heat flow. Associated difficulties 

seem to outweigh this advantage, however, as is discussed below. 

B. Simple steady-state blanket theory. 

Since one has complete control over the geometry of the blanket, it 

is possible to select a shape that is amenable to simple theoretical 

treatment. A circular disc with diameter greatly exceeding thickness 

proves to be a convenient choice. An approximate method of treating this 

problem has been suggested privately by A. H. Lachenbruch, and much of 

the following discussion is due to him. 

Consider a half space with zero initial temperature. If, starting 

at !=0, the temperature of the surface is maintained at a constant value 

6! within a circle of radius R and zero outside the circle, then beneath 
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t~e center of the circle (Lachenbruch, 1957) 

(21) 

.where~ is de~th. Beneath the center, as the depth a~~roaches zero, the 

vertical gradient an:roaches 

VT = -6T[l/R erfc R/~ + 1/Jnat] (22) 

and the heat flow afproaches 

6Q c 6T[K/R erfc R/J4at + ~/~] (23) 

(See table 1 for definitions of symbols.) In the steady state (23)reduces tQ 

~Q = K 6T/R (24) 

As an illustration of the ap~lication of these results, consider 

the case of a blanket placed on the plane lunar surface. The upper 

surface of the blanket is surposed to be at zero, as is the lunar 

surface outside the blanketed area. The assum~tion that the steady 

periodic transient has somehow been removed is implicit. If the lunar 

flux is everywhere Q, then 61 in (24) becomes equal to ~~Kb, where 

!~ is the thickness of the blanket and the subscript E denotes blanket 

properties. From (24) we find a perturbation of flux 

6Q/Q = 1-Q /Q = lbK 
'h R ~ 

due to the blanket. This result is afrroximate first because the 

undisturbed flux .Q was used to calculate 6_!, and secondly because 

lli.is assumed constant when in fact it varies with radius in an 

unknown way. The first objection can be overcome by substituting 

2b for £ in the expression for 61, calculating the new disturbance, 

and iterating the ;:.recess until it converges. For examt-le, if 

!Y'!t, = 10 and !!/~£ =50, we find 69f2_ = 0.2 and .2.!?/.2 = 0.8. 

Substituting 61b = 0.3 ~ for 61 leads to ~~3 = 0.84, and a second 

iteration gives S~g = 0.842. The frocess evidently converges 

ra~idly. The second objection mentioned above is inherent in the 

method, since edge effects are neglected. The error is small if 

(25) 
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B/!b is large enough. 

In order to get a quantitative idea of the meaning of ';large enough" 

·consider a second illustration of the method. A blanket is now supposed 

to be buried so that its upfer surface coincides with the initial plane 

surface. The geometry is identical to that shown in figure S(e). Again 

we assume uniform flux as a first a~proximation. The thermal gradient 

in the blanket is thin B/!b' and elsewhere it is 51!; the corresfonding 

temperatures at the level of the base of the blanket are ~~1St, and 

~~! respectively. Equation (24) then gives 

~,_. 
6Q/Q '"' 1-Qb/Q = R[K/Kb -1] 

in this case. Iteration again may be used to imfrove the result. This 

problem can also be solved by the finite-difference method used above in 

section 3, and a comfarison of the results gives some idea of the range 

(26) 

of ap~licability of the approximate method (figure 9). The finite-difference 

calculations agree well with equation (26) for .!V!b greater than about 20, 

but iteration does not improve the agreement. The iteration process becomes 

unstable for !/!b equal to 10 or less. It at-· pears that some com1-ensation 

between the errors arising from neglected edge effects and those due to 

other ap~roximations in the derivation of (26) takes flace, and the use 

of (26) without iteration appears to give the more reliable results. 

Since the finite-difference calculations are probably not accurate to 

better than 5 per cent, the results given by the simfle approach outlined 

here are satisfactory. 

There is a second type of disturbance arising from the presence of 

a blanket on the lunar surface which may be treated exactly by the present 

method. If the albedo of the blanket does not match that of the lunar 

surface, the mean temperature of the tOf of the blanket will differ from 

the mean surface temJerature. The disturbance of flux can be estimated 

directly from (23) and (24). For exam~le, if a blanket 100 em in radius 
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rests on material of ccnductivity 5 x 10-5 (material I(2) of table 2), 

then a difference in tem1-·erature of only 0.2°C produces a steady-state 

-6 2 . 
-disturbance in flux of 0.1 x 10 cal/cm sec. Such a disturbance may 

already be intolerably large; it becomes worse if the surface material 

is a better conductor or if the radius of the blanket is reduced to a 

more manageable figure. It will be difficult to measure the mean 

0 temrerature of the lunar surface to better than 1 C, so that a serious 

disturbance due to mismatching albedo may go com~letely undetected. 

C. Time-deFendent ~-:roblems associated with the blanket method. 

It is convenient to consider se~arately two causes of time-de~endent 

tem~eratures. One is the steady ~eriodic regime ~revailing near the 

lunar surface, and the other is the transient disturbance arising from 

the emplacement of the blanket. The latter has two sources. The 

blanket may not be at the same initial tem~erature as the lunar surface, 

and after em~lacement the establishment of the lunar thermal gradient 

within the blanket changes both its temferature and that of the lunar 

material. The first source of disturbance can be avoided by careful 

flanning, but the second cannot. 

Steady r-eriodic temperatures in the blanket were investigated by the 

methods of section 2. The blanket, taken to be 5 em thick, was assumed 

to rest on a thick layer having the froperties of layer 2 of table 2(!), 

on 50 em of such material which rested in turn on the substratum of 

table 2(III), or directly on the substratum. Three kinds of blanket 

materials were considered (table 2(IV). Two of them, SI-10 and 

SI-91, are •·sut-erinsulators'' developed by Linde for the storage of 

cryogenic fluids. The thermal conductivity of these materials is 

extraordinarily low, as is shown in the table. A third blanket material 

was assumed to have properties corres~onding roughly to those of ordinary 

plastics (e.g. bakelite or plcxiglass). 
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Ami-litudes and 1-hases of the tem1-erature variations at the bottom 

o£ the blanket are shown in table 3 for the various combinations of 

.blanket mate·:ials and assumed lunar configurations. The am:t-litude-

def-th curve in the bla·1ket has the same shape as the curves for the 

upper layer shown in figure la; that is, the amj,-litude at the center 

of the blank~t exceeds the geometric mean of the surface amplitude 

(314°C) and the amplitude shown in the table. Clearly only the 

superinsulat,rs are capable of reducing the fluctuation to manageable 

proportions (order of tens of degrees or less) in the lower half of the 

blanket. It is do<.~bt:O:ul whether the mean tem;.erature can be determined 

in the "plastl.c" ':>lar..ket to sufficient accuracy. The situation is made 

worse by the f4ct that the exfected gradient is inversely ~roportional 

to the conducti~ity of the blanket. In the SUferinsulators the ex~ected 

gradient is 

gradient of 

o:t the c.rder of l-l0°C/cm, whereas in the "~lastic" a 

-2 -3 :o -10 °C/cm seems likely. 

Hence we find t.hat the use of su~erinsulators is indicated in 

order to e:iminate the steady t-eriodic fluctuations most effectively 

and to rai.s~ the mean thermal gradient to an easily measured value. 

But now we ~ust consi1er the transient associated with blanket emplace-

ment. We assum~ that the lateral dimensions of the blanket are great 

compared with L:s thickness, so that the t:-roblem can be treated as one 

of !-dimensional heat flow. < < The blanket, occupying the region -1 - ~ o, 

is assumed to ha•1e initial temperature _!o, and thermal properties 

indicated ~y tha subscri~t ~· The lunar material (assumed uniform) has 

initial te•nk-erature !!!!• where x ~ o equals depth, and unsubscripted 

J,~roperties. 

Writing T for tha La~lace transform of T, as before, we find 

and 

T c mx/p + C exf (-ql) 

(27) 

(28) 



Table 3. Amplitude and pha~es at 

base of blanket 5 em thick. 

Blanket material Substratum Amplitude Phase 
(table 2) oc 

SI-10 I-2, III 4.5 -60 

SI-10 I-2 4.5 -60 

SI-10 III 0.2 -60 

SI-91 I-2, III 0.1 -253 

SI-91 !·2 0.1 -252 

SI-91 III 0.004 -252 

Plastic I-2, III 274 -11 

Plastic I-2 274 -11 

Plastic III 60 -39 

/ 
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where A, B, C are constants independent of ~· Application of initial 

conditions !b = T and T = mx, and the conditions of continuity of -o 

,temperature and flux at~ = o lead to 

where 

A • (KqT
0

(cosh qbL-1) - Km cosh qbL]/pD 

B = [KqT
0 

sinh qbL + ~qbTo - Km sinh qbL]/pD 

C = [-~qbT0 (cosh qbL-1) - Km sinh qbL]/pD 

Conversion of the hyperbolic functions in (29) through (32) to 

exponentials, and expansion of ~ by the binomial theorem then leads to 

the following expressions for the temperatures 
co 

[ e [E n 2nL-x _ erfc (2~~+xJ Tb = To 1 t3+t3b 
6 

(M) (erfc J~ t 

co co 
+ M E (M)n erfc (2n+l)L-x _ E 

0 ../~t 0 

(M)n f (2n+l)L+xJ 
er c J4a t 

b 

+ 2~ [~ (M) n (ierfc 31!:\~ - ierfc 
2~-lx J 

t3 co 
T .,. To A~b E

0 

(M)n[2 erfc((2n+l)L + -k> ..., ·..., J~ + ..;4at 

- erfc<J~~ + J;dt:.) - erfc(~L + :foctt>J 

co 

+ 2Km/i L: (M)n[ierfc<..fiab-:: + ~) 
f3-Jf b o t "'4at 

i f ( {2n+2)L + x )] + - er c ~ JZ mx 
..;4~t 4lt 

Here~ = (f3-f3b)/(f3+f3b) and the other symbols are defined in table 1. 

(29) 

(30) 

(31) 

(32) 

(33) 

(34) 

Equations (33) and (34) are most convenient to use for small values of 

time, but they converge for all times. Numerical values of the flux in the 

blanket divided by the undisturbed lunar flux are shown in figure 10 for 
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blankets of material SI-10 and SI-91 on dust (table 2{1)2) and substratum 

(table 2 (III)). In the most favorable case the flux in the blanket is 

less than 15% of the equilibrium flux after 1 year. This result is 

virtually indefendent of the ]o term; it arises mainly from the ~ term. 

Hence no matter how carefully the initial temperature of the blanket is 

matched to the mean temperature of the lunar surface, a major disturbance 

is caused by em~lacement of the blanket, and it persists for years if 

the blanket is made of su~erinsulating material. The higher the 

conductivity of the substratum, the longer is the time required to reach 

equilibrium. The "plastic" blanket, on the other hand, achieves equilibrium 

within a year. 

Thus we see that the two classes of time-de~endent temperatures pose 

difficulties that appear to require mutually incom~atible sets of blanket 

properties for their solution. In the exam~les given one must face 

either a large periodic fluctuation throughout the blanket, or a 

J.·rohibitively long time for equilibrium to be established. It does not 

appear that the use of a blanket material with intermediate properties 

would solve the problem. One would then be confronted with both a large 

periodic fluctuation and a long time constant. The thickness of the 

blanket affects its thermal behavior in much the same way as its thermal 

diffusivity, so that no esca~e can be found by changing this parameter. 

A final consideration about the blanket tyre of flux meter 

concerns its contact with the lunar surface. In all of the foregoing 

calculations it has been assumed that there is no contact resistance 

between the blanket and the lunar surface, a situation that is difficult 

to achieve in practice. The effect of uniform contact resistance is to 

reduce the effectiveness with which the ~eriodic fluctuation is damped 

out in the blanket and to increase the time required to equilibrate with 

the lunar surface. Nonuniform contact resistance, which is likely to be 

encountered due to irregularities on the lunar surface, will in addition 
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cause thermal refraction within the dimensions of the blanket. This 

will cause the flux in the blanket to differ from point to point, 

.necessitating a large number of temperature senso4s to give a Froper 

mean gradie~t. Readout is not necessarily complicated by such a 

requirement. since a single readout of many resistance elements in 

series and/or ~arallel to give an Sfpropriate mean value would in all 

~robability be feasible. 

} 
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5. COI!CLUSIONS 

. A. Or:e-di1!1ensional steady periodic temperatures, 

A lim::ted a:nount of information about the thermal properties of a 

layer can be obtained f-::·om a ctudy of amplitude or phase of t:he thermal 

wave as a function of depth, if the effect of other layers is small. The 

latter con~ition can be recognized by the exponential decrease in amplitude 

with depth. Study of both amplitude and phase gives little or no 

information in addition to that provided by study of amplitude alone. 

When the properties of more than one layer influence the temperatures to 

an important degree, it may be possible to determine the properties of 

those layers penetrated completely by a hole. Extrapolation beyond the 

deepest observation of temperature is not reliable unless the depth to 

the next interface is accurately known independently. 

B. Propagation of the thermal wave near a hole in the surface layer. 

A hole or thin spot in the surface layer will let high-amplitude 

fluctuations leak into the substratum, where they may propagate laterally 

to some distance. This effect does not appear to be serious, however. 

The amplitudes are essentially unaffected by the presence of the hole a 

few meters away. 

C. Thermal refraction due to irregular thickness of the surface layer. 

This steady-state phenomenon is far more serious than the periodic 

disturbance discussed under B. Conditions very probably exist near the 

lunar surface which cause differences in flux of 50% or more because of 

thermal refraction. Such anomalies can be avoided by measuring heat flow 

at depths below regions causing refraction. Errors due to this effect can 
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largely be removed by taking the me~ns of a~veral closely spaced observations • 

. It seems bt:3 t to try tv ta.ke advantage of bvth te~hniques, and to measure 

tempe.c11tu;es in the deepest boles practicc>ble at several pof.n·::n at a given 

lunar :lite. 

D. The bla~ket method of measuring lunar heat flow. 

The following difficulties are recognized as standing in the way of a 

measurement of lunar heat flow by a blanket-type fluxmeter. 

1. The flux is disturbed by thermal refraction due to the presence of the 

blanket. This effect can be kept small by choice of proper geometry 

for the blanket, and the correction is calculable. 

2. The flux is disturbed if tl-_2 alb ed~· of the blanket does not match that 

of the lunar surface and a difference in mean temperature between the 

blanket and the surface is thereby created. This disturbance is serious 

if the mismatch in temperature exceeds a few tenths of degrees. 

3. The blanket must be made of poorly conducting material in order to 

damp out the steady periodic temperature fluctuation in a reasonable 

thickness, and also to have a readily measurable-thermal gradient set 

up by the lunar flux. But a blanket satisfying these requirements 

takes years to come into equilibrium with the lunar flux. A blanket 

having a manageable time constant associated with its emplacement 

does not satisfy the requirements imposed by the steady periodic 

fluctuations and the small value of flux to be measured. 

4. The flux through the blanket may vary from point to point because of 

variable contact resistance with the lunar surface. A large number of 

temperature sensors would be necessary to measure a meaningful average flux. 
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Difficulties (2) and (3) in particular seem insuperable and make the 

· blank~-.: met.:·l';)d unattractive for the measurer:1ent of lunar heat flow. 
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Introduction 

The measurement of heat flow at a lunar site requires knowledge of both 

the vertical thermal gradient and the local thermal conductivity. The former 

quantity can be measured more or less straight forwardly by a suitably 

instrumented probe emplaced in a drilled hole; but the latter presents 

special complications. In normal determinations of terrestrial heat flow, 

the conductivities of samples cored from the hole are measured in the 

laboratory. It is undesirable, and may even be impo~ible, to rely solely on 

this technique for lunar heat flow, since the sample may either be destroyed 

or may have its thermal properties seriously altered by the operations of 

collection and return to earth. Hence the determination of thermal con-

ductivity ~ situ on the moon is clearly desirable and perhaps essential. 

This report deals with a preliminary study of a method of making this measure-

ment which utilizes a cylindrical ring source. The results presented here 

form some of the fundamental criteria used in the design of a subsurface 

thermal probe for ALSEP by Arthur D. Little, Inc. 

Theory 

Consider a cylindrical hole of radius £, infinite in length, containing 

a cylindrical probe, also of radius R. Between -z and Z the probe consists 

of a heater of thermal conductivity ~l' density p1, and hzat capacity Et• 

For \iJ > A the probe has thermal properties ~2 , p2 , and £2 , and there is 

no thermal resistance at z = + z. The lunar material surrounding the hole 

has thermal properties ~3 , p3, and EJ 

! =! such that a temperature drop 61 

and there is contact resistance at 
k ar n­

occurs, given by 6! = H or (the 

so-called radiation boundary condition). k would be k1 at the outer -n 

surface of the heater, ~2 at the outer surface of the probe, and ! 3 at the 
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inner surface of the hole. The temperature is initially zero everywhere, 

anrl heat is supplied uniformly over the surface of the heater at rate 

g for time o ~! ~ t
0

• We must find the temperature as a function of £1 

~- and t. 

The conditions set forth in the preceding paragraph completely specify 

a boundary value problem in heat conduction, but since they involve both 

radial and axial flow in a heterogeneous medium, they are intractable 

analytically. The problem was solved by finite differences in the following 

way. Consider intervals in space and time 6E, 6~, 6!, and intergers ~' j, 

and k such that z = j6~, ! = ~6!, and ! = ~6£ for i S I 1 and ! = (! • l)or 

for i? 12 = 11 + 1. The temperature may be regarded as a function of 

!' j, and k. ! 1 6E = ! 26! = !• the radius of the hole. However 

1(!1, j, k) i !(I2, j, ~) because of the contact resistance, although 

the two points are only infinitesimally separated in space. On the other 

hand at~.=~ = 1o~, the temperature is continuous. Since the temperatures 

are symmetric about the axis of the cylinder and also about the plane 

z = o, we need consider only positive values of r and z. 

The equations used in the finite-difference calculation depend on 

the points at which the temperature is to be obtained. Referr~~g to the 

schematic space g~id shown in Figure 1, let a 1 = ~1;p 1c 1 be the the~al 

diffusivity in region 1, the heate~a2 be the diffusivity in region 2, etc. 

Also, let Mf =a 6!f6r2 and Mz =a 6!f6z2, where n = 1, 2, 3. Then we have 
-n n - n n -

on the axis 

T(o, j, k + 1) a T(o, j, k) (1 - 4Mr • 2~) + T(l, j, k) • 4Mr n n n 

+ [T(o, j + 1, k) + T(o, j - 1, k)]Mz n j F J, n = 1, 2, (1) 
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~ ~ k1 + k2 
!(o, J, k + 1) = T(o, J, k) (1 - (4212 + 2~2 ) (p c + p c )] + T(1, J, k) • 

6r 6z" 1 1 2 2 

(2) 

In the interiors of regions 1 and 2 

T(i, j, k + 1) = T(i, j, k) (1 - 2Mr - 2Mz) + (T(i, j + 1, k) + T(i, j - 1, k)]Mz 
n n n 

1 1 r + ((1 - 21) T(i - 1, j, k) + (1 + 21) T(i + 1, j, k)]Mn (3) 

n = 1, 2, o < 1 < 11, j F J. 

and in region 3 

T(i, j, k + 1) = T(i, j, k) (1 - 2~ - 2~) + (T(i, j + 1, k) + T(i, j - 1, k)]~ 

+ ((1 - 2 f_ 2)T(i - 1, j, k) + (1 + 2f_2)T(i + 1, j, k)]M~, 

(4) 

.r 2!r - 1 r 
Along the outer skin of the heater and probe, we have, setting fn c I

1 
_ 114 11n 

2I
1
H6t 

T(I1, j, k + 1) = T(I1, j, k) (1 - 2M: - fn - gn) 

+ (T(I1, j - l, k)+ T(I1, j + 1, k)JM: 

+ T(I1 - 1, j, k)fn + T(Il + 1, j, k)gn' n = 1, 2, j f J (5) 
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and 

211 - 1 Kl + K..2 ot 
11 - l/4 plcl + p2c2 6r2 

(6) 

At times when the heater is on, terms accounting for its effect must be added 

to the right sides of (5) in region 1 and (6). We write 

n6t 
q a: 2 ' 

26.289or 6zJ(I1 - 1/4) 
(7) 

where the numerical factor includes the conversion from total power input, 

g, in watts to the units of c.g.s. and calories in which the thermal properties 

were expressed. Then a term 3(P1£1 must be added in (5) and a term 

s/(P 1~1 + P2£2 ) must be added in (6) to account for the heat input. 

Along the wall of the hole in the lunar material we have, setting 

I 

£ 
2!1 + 1 r 

.. Il + 1/4 Mj and g 
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T(I2, j, k + 1) = T(!2, j, k)(l - 2~ - f'- g') + (T(I2, j + 1, k) + 

+ T(I2, j - 1, k)]~ + T(I2 + 1, j, k)£. + T(I1, j, k)g (8) 

Finally, along the junction between the heater and the rest of the probe 

+ (T(i - 1, J, k)(l - tt> + T(i + 1, J, k)(l + ft)] 

(9) 

Numerical stability proved to be a serious problem. In the interiors 

of the three regions, the stability criterion is 

1 - 2~ - 2Mr > o, n = 1, 2, 3. n n (10) 

Depending on the relative thermal properties of probe, heater, and moon, 

a more stringent requirement may occur along the axia ! = o, since he~e the 

criterion is 

z r 1 - 2M - 4M > o, n = 1, 2 n n (11) 

But even with (10) and (11) satisfied, instability, which always originated 

at! = 11 and 12 , was sometimes encountered, particularly for relatively 

large values of H. Imposing the additional constraints that 

1 - 2~ - f - g > o n = 1, 2 n n n ' 
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and 
.. 

1 - 2~ - f'" - g'· > o, 

did not remove the difficulty. This instability may result from the fact 

that the space step 5! is effectively halved at! = 11 and 1
2

, but the 

matter remains unresolved. The time step, &!, was simply reduced until the 

calculation became stable. 

A second form of numerical difficulty, which may be termed semistability, 

was also encountered occasionally. Immediately after the heater was turned 

on or off, thus disturbing the system, the calculations oscillated, sometimes 

rather violently. The oscillations were damped, however, and the results 

gradually returned to a smooth trend with further cycles of iteration. This 

semistability could also be eliminated by reducing 6t, thus approximating 

more closely a smooth input of heat. 

Models 

A number of models of probes and of the lunar material have been 

subjected to numerical analysis. The results are extensive and only the 

more relevant ones have been selected for inclusion here. Thermal properties 

of 3 of the probes are shown in Table 1. The thermal conductivity of 

Probe 1 is too low to be practical from an engineering standpoint, but the 

lunar probe is expected to have properties in the range of Probes 5 and 6. 

Further calculations will be necessary when the final configuration of the 

lunar probe is established and its properties are measured. 
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Table 1. Thermal characteristics of probes. 

No. 

Heater 

k, cal/cm sec°C 

3 
p, gm/cm 

Probe body 

k, cal/cm sec°C 

3 
p, gm/cm 

c 1 

0 

0.2 

0 

0.2 

5 6 

o.s 0.5 

0.2 0.2 

0.5 0.5 

0.2 0.2 

Moon models are shown in Table 2. Three different thermal conductivities 

differing by factors of 10 were used, and for the lower conductivities, densities, 

and hence diffusivities, differing by a factor of 4 were considered. These 

models cover the range of values considered likely for material close to the 

lunar surface. The ability of a probe to discriminate between them is then 

a measure of its suitability. 

Table 2. Thermal models of moon. 

No. k, cal/cm sec°C 3 cal/gm°C p, gm/cm c, 

1 10-5 0.5 0.2 

2 10-s 2.0 0.2 

6 10-3 
1.6 0.2 

7 10-4 
0.5 0.2 

8 10-4 2.C 0.2 
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Another parameter entering the calculations is the contact resistance, 

-12 3 measured by the quantity~· For purely radiative contact H = 5.5 x 10 !I , 

where E is the emissivity. -5 With blackbody conditions .!! = 4.4 x 10 at 

200°K which is close to the mean lunar temperature. This is about the lowest 

value that ~ can attain, and it is an interesting case to consider because 

the probe may be designed to assure purely radiative coupling. H can then 

be calculated with confidence, whereas it otherwise remains an unknown 

parameter the value of which must somehow be extracted from the temperature-

time curve. The effect of varying B was examined by making some runs with 

it set at 10 times the radiative value. 

The lunar probes are to be about 1.9 em in diameter. The quantity 5~ 

was taken to be 0.475 em, which places the probe skin at! = 2, and 6z was 

taken equal to or. This is a rather coarse grid, but no refinement of it 

was made in these preliminary studies. The simulation of a 14-hour lunar 

experiment ·required over 3C minutes on a 7094 in unfavorable cases, and it 

is not worthwhile to choose smaller space steps (which requires reduction 

of the time step as well to maintain stability) until more than hypothetical 

values of the probe parameters are available. 

The length of the heater was taken equal to its diameter, 1.9 em. In 

rough design calculations it may be desirable to approximate the probe 

configuration using the exact solution for radial flow from a spherical 

heat source, and the 11 SCI_uare" shape chosen for the heater gives the closest 

possible approximation to a sphere. Thus the results of this work may be 

compared directly with those obtained from the spherical approximation. It 

should be noted that in the latter approximation no account of different 

thermal properties between the body of the probe and the lunar material 

can be taken. 
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Numerical results 

It is helpful at the outset to consider the solution for an infinite 

cylindrical source of heat in an infinite medium. In this case the 

temperatures depend on the thermal conductivity and thermal diffusivity 

of the medium, and on the contact resistance. One could hope that the 

dependence on diffusivity could be removed by heating until the temperatures 

became steady, but with this geometry there is no steady state. The 

temperature of the source continues to rise indefinitely. With a heater of 

finite length a steady state is reached; this was an initial reason to 

prefer the geometry adopted here to the "line source" geometry, because 

the possibility exists of eliminating the diffusivity as a factor upon which 

the temperature depends. Another attractive feature of the present 

configuration is its relatively low power requirement. A line source 

demands a certain amount of power per unit length to produce a given 

temperature rise. Hence a long source requires high power. In the present 

case, it was found that 2 milliwatts input pmger gave adequate temperature 

rises at the heater, and this value for the heat input was used in all the 

calculations. 

The first calculations were aimed at investigating the possibility of 

achieving a steady state. Results are shown in Figure 2. In this figure 

and those following, the temperatures are those of the outer surface of 

the probe. In actual lunar probes the temperature sensors will be located 

on the axis, but the temperature difference between these 2 points is 

insignificant for present purposes. It is clear from the figure that for 

the lower values of ~ the steady state is not achieved after 14 hours, 

and several days of heating may be required to attain it if ~ is less 

-4 -3 
than 10 • If K = 10 a few hours suffice. The probe is evidently 
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capable of discriminating between various values of !' particularly if tte 

heater is operated at low power levels for a long time. The discrimination 

is best at low ~' and heating should last for the order of a day or more 

for optimum results. 

Similar curves for the case of 1/10 as much contact resistance are 

shown in Figure 3. The discrimination is somewhat better than in Figure 2, 

and the curves have a different shape. The sharp initial rise in 

temperature is much reduced. In Figure 4 the results for a probe of 

higher conductivity are shown; the discrimination is not as good as in 

Figure 2. Clearly the thermal conductivity of the probe should be kept as 

low as possible. 

These results show that it is likely that the temperature rise recorded 

during the lunar experiment w~ll depend on the 3 quantities ~~ a, and H. 

Some process of curve fitting must be used to determine their values. This 

may be unsatisfactory since many combinations of parameters may give virtually 

identical results. It is therefore important to try to extract more information 

from the experiment, and an obvious way to do this is to record the temperatures 

at more than one point along the probe. The temperature rise at a point on 

the surface of the probe 8 em from the center of the heater is shown in 

Figures 5 and 6. Figure 5 is for a probe of unrealistically low ~' but it 

shows the large differences in rise time that result from the different moon 

models. Intuitively one would expect the curves to be highly sensitive to 

a and this is born out by the difference between curves 1 and 2 of Figure 6. 

The rise times are about the same for the cases shown there, in which the 

" 
conductivity of the probe is realistic. But if the moon is a better conductor 

than the probe discrimination still exists at short times, although it is 

not well-shown on a plot to the scale of Figure 6. Since this is just the 
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range of conductivity at which the temperatures at the center of the heater 

lose discrimination, complementary information can be obtained from the 

second sensor. 

So far we have confined the discussion to times when the heater was 

turned on. But a number of short-term numerical experiments have been done 

in which the heater was turned on for only half the time. The durations of 

the tests were about~ hour. The results were that the appearances of the 

cooling curves were virtually identical to the heating curves, but of course 

inverted and displaced in time. Thus there is no new information to be 

obtained from the cooling curves. On the other hand, following the cooling 

curve in effect constitutes repeating the heating experiment, but without 

the necessity of expending heater power. It is always desirable to repeat 

experiments if only to get better statistical control. 

Operations ~ the ~ 

All lunar experiments must wait until drilling disturbances have died 

out near the hole. The thermal gradient will be determined next and then the 

heater will be turned on at low power (- 2 milliwatts). The duration of the 

heating cycle will be determined by the conductivity encountered. The heater 

will then be turned off and the cooling curve followed until ambient conditions 

have essentially reestablished themselves. Then, especially if a high lunar 

thermal conductivity is indicated by this experiment, a second heating period 

will be initiated. The heater power will be higher (20 milliwatts or more) 

so that the second sensor, displaced along the probe from the heater, will 

record a readily measured temperature rise. By a process of curve fitting, 

which is not completely thought out as yet, the quantities !' a, and H will 

be determined. The first 2 of these automatically yield a value of p~, which 
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can be compared with the value measured on returned material to give a 

rough check on the internal consistency of the results. An alternative scheme 

would be to assure that~ is known independently e.g. by making certain of 

radiative coupling alone; then only; and a need be obtained from the 

temperature curves and the accuracy of the measurements will be increased. 

Conclusions 

1. It appears feasible to measure lunar thermal conductivity using a 

cylindrical ring source of heat. 

2. It is desirable to have 2 heating cycles, the first at a power level of 

a few milliwatts and the second at 10 or more times that power. 

3. The duration of each heating will range from a few hours to a few days, 

depending on the lunar conductivity. The use of 2 sensors and 2 power 

levels could materially reduce the amount of heating time required. 

4. There is something to be said for assuring radiative coupling to the moon 

so that the contact resistance can be calculated with confidence. Other­

wise it represents a third unknown parameter to be determined from the 

temperature curves. Some discrimination of lunar conductivity is lost 

by this procedure, but nevertheless more accurate results will probably 

be obtained. 

5. The best way of reducing the lunar data remains to be determined. 


