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This grant fundéd feasibility studies and deve]opment'work on the
lunar heat flow experiment (HFE). The first‘task was performed under a
previous grant (NSG-400), and it consisted, among other things, of the
1nvestigation of a novel method of measuring heat flow which has the
advantage of not requiring a drilled hole. The method was found not to
be feasible, however, and the requirement that a drill be developed for
~ lunar use was established. These early results are incorporated in
Appendix I for convenience.

Once the necessity of drilling a hole in the moon became clear, it
became desirable to develop an in situ method of measuring lunar thermal
conductivity. The alternative, to measure conductivity on a returned
core, suffers from the disadvantages that the volume available for inves-

tigation is much smaller than that sampled by the in situ methcd and the

physical prdperties of the lunar material may be permanently altered by
the corind operation. The temperature field surrounding a heater with

the geometry of a cylinder of finite length was therefore investigated.
The results were presented in an interim report dated January, 1967
(Appendix II). The calculations reported there formed the basis of the
design of the downhole part of the HFE, which was developed and fabricated
by A. D. Little, Inc.

During the final six years of the grant's duration the main activity
was travel and consultation with colleagues associated with planning and
fabricating the HFE. Places most frequently visited were Lamont-Doherty
Geological Obsérvatory and A. D. Little, Inc.

Probably the best measure of the success of a research program is its

results. Four HFE's have been flown and two of these are in nlace on the



moon and returning déta of high quality. They have achievéd and even sur-
passed their design objectives, and they have proven themselves to be
rugged, reliable instruments. They are described in the Apollo 15 and
Apollo 17 Pre]iminary Science Reports, attached as Appendix III. The two
instruments that failed to return data were victimized by circumstances
that were unrelated to the HFE itself. One was lost as a consequence of
the abort of the Apolio 13 landing. On the Apollo 16 mission, the HFE
was successfully emplaced, but it was silenced when an astronaut inad-

vertently tripped and broke the cable connecting it to ALSEP.
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ABSTRACT

A mumber of problems related to the feasibility of measuring lunar
heat flow at the lunar surface or in & shallow hole have been investigated
with the following results. Study of the steady periodic temperatures
in the lunar material will give unambiguous information about its
properties only if the surface material alone has an appreciable effect
on the awplitude and phase of the thermal wave. Layering tends to reduce
the amplitude of the fluctuation at a given depth. High-amplitude
fluctuations near a place where the poorly conducting surface layer is
missing do not penetrate far and pose no difficulty. Large perturbations
of heat flow may be caused by irregularities in thickness of the surface
layer, and a number of closely spaced measurements at a given landing
site will be required to minimize this source of error. The '"blanket™
method of measuring lunar heat flow is not considered feasible because
of the n;cessity of very closely matching the local albedo with the
blanket, and because a blanket with properties such that an easily
measured gradient free from periodic fluctuations can be set up by the
lunar flux requires a prohibitively long time to come to thermal
equilibrium, Conversely a blanket with a suitable time constant will
yield only a small, seriously disturbed gradient that will be difficult

to measure.



1. TINTRODUCTION

A measurement of lunar heat flow will be interesting for a number of
scientific reasons. Heat flow gives more direct evidence about the
internal thermal regime of a planet than any other measurement that can
be made at the surface, Limits to the total amount of radioactive
elements 1nvthe planet's interior can be set, as well as limits to its
initial temperature, In the case of the moon, a determination of heat
flow will help to decide just how "dead" it is, since the source of
volcanism and mountain building must ultimately be thermal energy, most
of which is leaked to the surface to appear as heat flow. The small size
of the moon makes it especially interesting from the thermal point of
view, Cooling from the surface has affected some 70% of the volume of
the moon compared with about 207 of the earth, assuming the two bodies
are of the same age. As a consequence the relative importance of initial
heat and radiogenic heat may be very different on the moon as compared
with the‘earth, a possibility which makes a comparison of heat flow from
the two bodies all the more interesting. |

But granting the desirability of a measurement of lunar heat flow,

a number of obstécles.remain in the way. On the terrestrial land surface
heat flow is measured in boreholes, mines or tunnels reaching depths up

to several thousand feet, Considerable depths are necessary in order to
avoid disturbances which occur near the surface. There is no prospect of
drilling a deep hole in the moon in the foreseeable future, and any
measurement of heat flow must be made at the surface or in a shallow hole.
The temperatures near the lunar surface are in the first place affected

by the large monthly variation in surface temperature, and secondly by

1.



2.
thermal refraction due to variability in the thickness of the lunar
. surface material, which is known to be of very low thermal conductivity
compared to solid rock. The goal of the presen£ study is to assess the
seriousness of these difficulties.
In the calculations which follow, the assumption that the lunar
situation can be adequately represented by a linear model, i.e. a model
in which the thermal properties of the lunar material are treated as
independent of temperature, is made. This assumption is probably very
wrong for materials near the lunar surface under ambient lunar conditions.
Temperatures are below the Debye temperatures of common rock-forming
minerals, implying a temperature-dependent specific heat, Radiative
transfer is presumably an important contributor to the thermal conductivity
of the porous surface material, and it is strongly dependent on temperature.
Both factors argue for treatment of nonlinear models, but the additional
complication is hardly warranted in view of the remaining uncertainties
in the details of the properties of the lunar surface material. Thus the -
present study represents a first approach to the problem, aimed more at
recognizing difficulties than at removing them,
Four problems are considered in detail in the following sections.
The first is the case of one-dimensional steady periodic heat flow in a
stratified medium consisting of two layers of differing thermal properties,
res;ing on a substratum of infinite thickness which has a third set of
thermal constants. An exact solution is obtained for the case of
semisoidally varying surface temperature,
A second problem again concerns steady periodic temperatures, this

time in a two-layered medium with the upper layer absent within a circular



3.
region. Numerical results are obtained for this model of a hole in the
- moon's poorly conducting surface layer. Pertu{bations of heat flow due
to variable thickness of the surface layer are investigated under steady-
state conditions, and finally results are extended to calculations of the
disturbances associated with the emplacement of a blanket-type thermal

fluxmeter on the lunar surface.



4,
2. STEADY PERIODIC TEMPERATURES 1IN A 3-LAYERED MEDIUM
- A, Theory
Mathematically the problem can be expressed in the following way.

The region 0 < x < X, contains material with properties 51’ 61' 31, etc.

1

(sece table 1 for notation), the region §1 < x < X, contains material with

SX>23,

properties K,, etc., and the region x 2»§3 contains material with

2

properties 53, etc. At the boundaries X, and X, both temperature and

1 3

thermal flux (=K %%) are continuous, T -» 0 as x -» «, and T ='éo sin wt

when x = 0, where Ao is the constant surface amplitude, Within each

2
region T must satisfy the equation of heat conduction, %—% =-é-g£
. X

This problem is most conveniently solved by the Laplace transform
method described by Carslaw and Jaeger (1959). Further details about
this particular problem are given by Lachenbruch (1959), who obtained the
solution for the special case x = X If we write E for the Laplace
transform of T, and use subscripts to identify the three regions, we have

(Lachenbruch, 195¢9):

?1 = Fexp(qlx) -+ Gexp(-qlx), ¢h)
EZ = Hexp(qzx) + Jexp(-qzx), 2)
~ Ty = Rexp(~q;%), 3)

7

where F, G, H, J, and R are constants, independent of X. The two boundary

conditions at each interface, x =X, and x = X3 plus the condition at

1

x = 0, provide 5 equations which determine the 5 unknown quantities



Table 1. Definitions of Symbols

Temperature

Time

Depth variable

Depth to base of upper layer

Depth beneath base of upper layer

1t %

Angular frequency, = 2.66 x 10-6 secl for 1 lunar day

Thermal conductivity of the ith layer

Depth to top of substratum, =X

Dengity of the ith layer

Heat capacity of the ith layer

Thermal diffusivity of the ith layer, = Ki/pici
Thermal inertia of the ith layer, = (Kipici)%
Parameter of the paplace Transform, T = !:Exp(-pt)T~dt
(p/ai)%

peat flow

Thickness of blanket

Subscript denoting properties of blanket
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6.
The transforms of equations (1)-(3) can be inverted by the contour integration
method. Lachenbruch (195%) has alrecady shown that the line integrals involved in
the inversion contribute only to the initial transient state and have nothing to do
with steady periodic temperatures. Hence for presen; purposes we need consider
only the residues at the poles of the transforms. Poles are located at
p = tiw; following Lachenbruch, we assume that the quantity A (equation 9) has no
zeros in the complex plane. It can be shown that the solution given below does
indeed satisfy all of the copditions of the problem, which constitutes proof that
either A has no zeros or that the residues at the resulting poles contribute
nothing to the steady periodic part of the solution.

The residues at p = tiw lead to the following expressions for the temperatures.

A
T, = sg{exp(wdm/Zalx)sin(wthm/Zalx)+

+ P2[exp(-ZJuVZGIXI-ZVQVZOkX2+wﬁy2alx)sin(wt-ZJuVZQIXI-2vhy20%xz+vﬁymalx)+

+ exg (-2A/w/2a1x1 -2Ju72a2x2 w’w/?.al )sin (wt+2ﬁ>/2a1xl+2Jw/2a2x2 /20, %) i

+ P3[exp (-sz/ZaIXIW&/zalx) sin (wt-gA/'“wjzafclﬁ/(ﬁil'x)+

+ exp (-2v/20, X, -v/20, x) sin (@t+2,/u/20. X, ~/k/20, %) T+

+P A[exp(-ZJw/éazxz 720 x) sin (ut -2/ T T K /T x )+

+ exp(-2th20§X2—vm/qux)sin(wt+2thZO§X2-vuyzalx)]+

+ P2P3[exp(—AJQ/Zalxl-2vhy20bx2+VhV2a1x)sin(wt+2thZO§X2+th2alx)+

+ exp (-4 r—""w/mlxl_2¢w/2a2x2+vw/zalx)sin(wc-sz/2a2x2+Aﬂz)/2alx>]+

+ P,P afexp (-2«%»/2alxl -4~/w/2a2x2+5/w/2a1x) sin(wt -2Jw/2alxl+@/2a1x)+

+ exp(-2Jw/2a1X1-4¢EVZO§X2-Vuy2a1x)sin(wt+2¢@72alxl-vﬁV2alx)]+

+ P,P 4[exp (-ZJw/Zalxl —2,V/w/2a2X2+,v/w/2a1x) sin(wt -2dw/2a1X1+2Jw/2a2 X2+»\/w/2a1x)+

+ exp(-2v@/2alxl-2vﬁy20éxz-thZalx)sin(wt+2vhy2alxl-2thZQéX2wvm/zalx)]+



7‘

+P, 2 [exp (-WZalxl -Mw/Zazxzh/w/zalx) sin (wt-h/w/Zalx) H

+ P32 [ex; (-Ww/2a1X1+ »/w/Zo:lk)sin (wt—b,/'w/2a1x) I

+ P42 [exp ("M/w/zazxz -«/w/ZOtlx) sin (OJt “V(D/Zalx) ] } . (10)

A
[o] 4 -
T, o (B,+2,) exp[ -vuy/ 2Q, X, v/ 20;, (X,+X4-x) Hsin[wt- (L/Zale-Jw/Zaz (X, +X4=x) J+

+ P, expl- w/Zalxl-Z,,/'w/ZazxzJsin[wtﬁ/w/Zalxl—«/w/Zaz (X,-x) +

+ P,y exp [ -zﬁ/w/Zalxljs 1n[wtﬁﬁs/£alx1-Jw/2a2 (X,+X5-x) =

+P, expl -2«/‘0)/20:2)(2 Is in[mt:--«/(,u/ZOtlxl—~/<17/2c:t2 (X, -x) 1+

A
+ 5-9(1+P3)exp[-J”/ZOtlxl-Jw/Zaz (Xl-x)]{ sin[wt-,Jw/zaleﬁ/w/Zaz (Xl-x]-i-

+ P, exp[-2«/w—/'2—a—1xl-2,\/(.0"720_2}(2]sin (wt-h/5720, X, a1x1+JT. w20, 2(X2+X3~x)]+

+ Py exp[-2Jw/2alxl]sin[wt-hﬂu/Zalxlw'w/Zaz (X, -x) jrs

+P, expl 'sz/ZCZZX2 ]Sin[wt-Jw/ZQIXIWw/Zaz (X2+X3-x) 13 (11)
AP

Ty= ; 1 expl -/ 20(1){1-«/&3/ 2a2x2-l->\/w/ 2a3 .9 3 -x) {sin (ot -JuVZalx ) &/ 20, X 2+Jw/2a3
(x3 “x) :H' :

+P, expl -zaiw/zalxl-zafw/mzx ) s in[wtﬁw/Zalxlﬁx/w/Zazxziv\/w/?&; (X4-%) i

+ P, exp[-2«/m/2.oz1x1 ]sin[wt-h\/uﬂoixl-.\/&)/ZQZXZ-!N-’LD/ZCXB (x3-x)3+

+ P, expl-2.//20,%, Jsinfwt-vio/20, X, /o/ 20, X, h/0/20 (X4-%) 1} (12)

where

D= 1{21’2 exy (~24/u/ 2a1x1-2«/w72a2x2 Ycos (ZA/w72a1X1+2,\/w72a2X2 Y+
+ 2P3 exp (-ZA/-w/2a1x1 Ycos (2/uw/ Zozlx1 )+2pP 4, OXE (—ZVw/Zazxz Ycos (2.\/w/2a2X2 )

+ 2P,P, exp(-Mw/zalxl-sz/Zazxz)cos (2«/w/2a2x2)+

+ ZPZPA exyp (-2«/(.0/2(11}(1 -l»\/w/ZOtZX2 )cos (&/w/2a1X1)+

+:2P,P, exy (-2«/(13/2@1:(1 -zA/<1>/.9.<312x2 Ycos <2Jw/za1x1-sz/2a2x2)

+ P22 exp (—4Jw/201x1 ~bnfuy/ 2&2)(2 )+P32 ext ( -lw’w/’2o:lxl )P 42 exp («4»\/.(.0/2012){2 Yy (13)



and
4 4f
Pl = = 2
Baf 3T 1F o7y 1l 3
L2
- '6253'}6152'@2 '6153
2 2
2
P = :6253""5152'52 +|3153
) 3 2
2
B R R B R, ~B4P
P, = 2-3 1252213 1)
BoB3¥818y 18, TP1P;3

The temperature is a sipnuscidal function of time at all depths., It is useful to

have the solutions in the form T = A sin (wt+ ), i,e. in terms of the amplitude

and phase of the fluctuations. We write A = 5_0_ JBiZ+c12 and = -tan'l(Bi/ci),
D

and find that the Bi and Ci are given by the following expressions.

B 1 = eXp (~/ 2041 x)sin («/w7§oz1x)+P2 [exg (-ZA/w/Zalxl-ZJw/ ZaZXZWw/Zalx) -

-exp ( -2~/'w/ 2<:t1X1 -2«/&;/2(12}(2 -v'<'»72alx) Jsin (2"/“)72&1}(1'*'2“/“’/ 2052}{2 -/ 2a1x)+

+P3 [exp (-2«/0)/2(11)( l-wﬁ)/ZOllx) -exp (-za/w/z&lxl'-vw/zalx) Jsin (2Jw/2a1X1 -'\/w/Zalx)+

+2P4exp (»2Jw/2a2X2 -«/(5/2alx) cos (2«/(1)/2(‘.!2}{2 )sim/u)/?,alx .

-2P,Pqexp (- w/ZOzlxl-Zﬁ)/Zazxz-!-/\/w/Zalx)cos (2/w/20,X, )sian/2a1x

+P,P 4[ex; (-2:\/03/2051){1-Ww/2a2X2+Jw/2alx)-exz (-2/w/2a, 2a1X1~4Jw/2a2x2 -Jw/2a1x)]x

xsin(2Jw/2alxl-Jw/2a1x)+P3P4[ex;.(—2 w/ZaIXI-ZJw/ZQZXZWw/Zalx)- _

~exp ( -2Jw/2a1x1 —2»\/0\)/2052 -Jw/Zalx) Jein 24w/ chlXl 220/ 20.:2){2 -/ 2a1x)

_P22 exp (-4vw/20, X, =40/ 20, Xy /W) 20 X) 8 im/'c.u—/—’é(—x;x

--1’32 exp ,(-Af\/w/Zale-h\/w/Zalx) s in«/'w/Zalri-Paz exp (-Ww/ZCthz -Jw/Zal x)8 imiw72alx (15)



9.

C1 = exp (-,,/'W Zalx) cosN;w/ 2C¥_:x+P2 [exp( =2, /uy 2a, X}. -24/?0/‘2&2}(2‘-?7\,@'/ 20, x 3+
+exp (~24/uy/ 2051}(1 =2/w/ 2C22X2 -A/w/Zalx) Jcos (2:/w/ 2a1x_, -+2,./w/2a2X2 -«/w/ 2a1x )
+24 [exp (-M/2a1x1Ww/2alx )-exgp (-2¢q/2a1:<1-J&/2a1x) Jcos (sz/Zalxl-Jw/Zalx )z

+2P, exp (-2// 20, X, -/4/201, %) c0s (2A/’a?/2a2xq )co&ﬁ)/zalx

+2P2P3exp (-4 2a1X1-Zﬂt>/ 2a21{2-h/w/ 2C¥1x') cos (2;\/:1)/ 2a2X2 Yeosalty 2a1x
+P,P, [exp (-2Jw/2a1x1 -ww/zcxzxzww/zalx Yexp (~2+/ w20, X, ~bl/ 20X, vy 20, %) I=

xc08 (2/w/20. X, ~vw/20, x)+P. P, [exp (~24/w/20 K, =2//20, X ,+/w/20, x )+

171 1 34 HE 272 1
+exp(-ZM%y2a1x1-zvm/202x2~vﬁV2a1x)]cos(ZVQ/Zalxl-zJ&/ZaZXZw¢m/2a1x)
+P22exp (=4 20{1}(1-4»\@)/ 20.'2XZ+/\/ZD/ ZOtlx)cos,\/(I)/ Zalx

+P32 exg (-4 2a1X1-h/w/ Z(xlx) cos\/wy/ 2a1x+P 42 exp (-an/w/ 20!2){2 =N/ Zalx)cos,‘/w7 20, x
(16)

B, = (P,+P 4)ex1.[ -Jw/Zalxl-vE/zaz (Z,+Xq -x) sin[Jw/2a1X1+Jcb/2a2 (X, X4 -x)]

- - - TN -/ -
P2 exp (-2\/u/ 2alX1 2w/ 2062)(2 Ysiniaoy 2051}(1 N4 2a2 (Xl x)]
-P.exp (-24&/20, X, )sin[ /20, X, -V /20, (R +X,-x) ]
3 1 1 l 1 L 2 )
+P, exp (-zA/w/zazxz )sin{Jw/zalxl-:JuT/zaz X 17%) 13

+(1+P 4 Jext [—@/Zal Xl-h/w/ZozZ (X, -x) s inww/zalxl /w720, (X, -x) 1-

-P, ext (-2«/u>/2<>¢1x1 -Nwﬁazxz ) aiz{A/w/ZalXI-h\/w/Zaz (x2+x3 -x)]

-Pext (-2,/u/20,X, )8 in[Jw/2a1X1+Jw/2a2 (X, -%) ]
+P, exp (-2«/w/20¢2x2 )s in[Jw/Zalxl /20, (Xy+X,=%) 13 (17)

= (P,+P,) expl -«/6/20:1){1 -./w/2a2 (X, +X5-%) I{cos [Jw/Zalxl-hJ&/zaz (X, +X5-x) ]

+P, exyp (-z@/Zalxl-sz/Zazxz)cos[Jw/zalxl-Jw/Zaz ®;-X)]

+P3exp (-Nw/Zalxl) cos [vw/Zolel-;\/w/Zaz (X2+X3-x) ]
+P4exp (--2,~/'t.u/2c12x2 Yros [«/w/2a1X1+/, /2(12 (Xl-x) 1}
+ (1P expl -viy/2a, X /20, (X, -x) Hcos[Vey2a X, -v/20, (X, -x) ]

+P,exp ( -2,/ Zalxl-M/ 2a,X,)cos [/ ZOzlxl-h/(I)/ 201, (X,+X, -x)]
+P3exp('W?CYIX1) cos[Jw/Zalxlww/2a2 (Xl-x) ]
+8 exp (-2/0/20,X,, ) cosL/u/20, X /20, (3,3 5-5) 1} Loy (18)

(18)



10.
By = Plexp[ -,Jw/éalxl -Ju/ 20,%, -A‘/w/ZQz3 (X4-x) s in[ﬁ/w72alxl-b\/u72a2x2 -@/20:3 (X3-x) ]

~P, exp (-ZMEE'I“XI -zA/w/zazxz )sinf//200 X W/ 20, X, b/ 20 (X -x) ]

~Pjexp (-2A/w/2a1x s 1n[Ju7/2alxl-Jw/2a2)Lz+Jw/2a3 (X4-%) ]

+P4exp(-ZJQVZOéxz)sinLJm/Zalxl-thZbez-vhy2a3(X3~x)]} (19)

Cy = Plexp[wdm/Zalxl-thZOQXz-thZa%(X3-x)]{cos[Vﬁyzalxl+why20bxz-VEVZG%(X3—x)]

+P, exp (-2/u/20, X, ~2//20,X,) ) cos (Vo720 X w720, % b/ 20 (X 5 - %) ]

+P3exp(-ZJQ/ZQIXI)COSEJQ/Zalxl-V@V205X2+VM/203(X3-x)]

+P , exp (-2/1/20, X, ) cos 5720 X /6720, %, -/ 205 (X -x) 1} (20)

An alternative way of expressing the solutions in the middle layer and in
the substratum leads to results which are simpler in aprearance, In the first
case, one may use Lachenbruch's (1¢59) solution for the two-layer problem, with
amplitude and phase at the surface calculated from equations (17) and (18) at
X = Xl. In the substratum one may Qse the simple solution for a uniform half
srace (Carslaw and Jaeger, 1959, p. 65), with surface amplitude and phase
calculated fro; (1¢) and (20) at x = X3. The apparent simplification achieved
in this way proves to be of little value for practical calculation, however,

A number of terms which are independent of x, such as those on the right side

of (13), must be evaluated in order to obtain numerical results in the upper
layer and at the interfaces. Once this is done it scems simpler to continue

to use the three-layer theory rather than evaluating new expressions which
appear in the two-layer theory, and which differ from those already evaluated.
The extreme simplicity of the expression for temperature in a homogeneous medium,

however, makes the alternative procedure more attractive than the use of

equation (12) in the substratum,



11.
The three-layer theory leads to expressions which are far tco cumbersome
for hand calculation, Numerical results are easily and rapidly obtained by
a digital computer, however. Use of the exact theory insures that no unwanted
initial transients affect the results. If finite difference methods are used,
assurance of freedom from transients is secured only by repeatedly cycling the
calculation, a procedure which is far more costly in machine time than is

evaluating the exact theory.
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B, Applications

In order to apply the theory developed above to the lunar surface,
the parameters of the problem must either be fixed, or their ranges must
be restricted by estimate or by lunar observations. There are eight
independent parameters (two thermal coﬁstants for each layer plus the
thickness of the upper two layers), since density and heat capacity always
occur in the equations as the product p ¢ and can be considered a single
parameter. Nevertheless a very large number of permutations of values
remains, and it is important to fix as many parameters as possible.

We shall take ¢ equal to 0.2 cal/gm °C in all models; this value is
appropriate to all common silicate materials under lunar surface conditions.
Fixing ¢ does not of course reduce the number of parameters unless p is
also fixed. Perhaps the best-known lunar parameter is the thermal inertia,
B, of the surface layer, which is known from infrared temperature measure-
ments during a lunation to be about 0.0023 cal/cm2 °C sec% (see for

example, Sinton, 1961, p. 411). From this result we take the product

6 2

K p ¢ for the lunar surface to be, nearly enough, 5 x 10” ca12/cm4 °C sec.
The very low value of the thermal inertia is the principal evidence thét
the lunar surface is composed of granular material.

Analysis of;radar echoes from the moon leads eventually to a determination
of the product of density and dielectic constant. Since the latter quantity
varies little among common silicates, the density may be inferred from
these results. According to Evans' (1961) summary, material with the
properties of loose sand would fit the radar data, i.e. a density between

1 and 2 gnycm3 would be expected. On the other hand, the radar reflections

may originate from a level beneath the optically defined surface, Lower
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surface densities would then be possible and would be the automatic
_consequences of several postulated models of lunar surface structure
(Hibbs, 1963; Warren, 1963; Hapke, 1964). We shall consider models
with p ranging from 0,1 to 2,0 gm/cma. Since ¢ and B are regarded as
fixed by other considerations, a choicé of p alko fixes K for the particular
model of the surface layer. |

We have no direct information about the properties of the subsurface
layers. We shall assume that the substratum consists of unfractured
basic rock; appropriate properties are shown in table 2., The intermediate
layer is presumably made up of rubble, with properties between those of
the surface layer and the substratum. Three possibilities have been
considered in order to indicate the effects to be expected from such a
layer. They do not exhaust the possible range of properties; models
with the surface layer resting directly on a solid substratum or with an
infinite thickness of surface material may be considered limiting cases.
The thermal properties that have been considered in the following numerical
calculations are collected in table 2.

It is useful at the outset to recognize two limiting types of
amplitude - depth relations. In a homogeneous medium the amplitude of
the temperature 6scillation decreases with depth according to the relation
A = Ao exp(-./w/2a x). The exponential damping law is obeyed far from
the lower contact of a thick surface layer of low thermal diffusivity. A
different extreme is encountered if the density of the material becomes
very small. The term in the equation of heat conduction containing the
time derivative then becomes negligible, and the amplitude is found to
decrease linearly with depth. The numerical results which follow contain

examples of both types of behavior,



K
cal/cm sec®

I. Surface layer.

1. 2.5x10"%

2. 5x107°
3, 2.5x10°
4, 1.25x10

5

C

5

Table 2, Properties of

[

B o
g/ cm cal/gm°C
0.1 0.2 1
0.5 0.2 5
1.0 0.2 1
2.0 0.2 3

II. Intermediate layer.

3
3
3

A 1x10°
B 1x10
C 2x10°

I1I., Substratum.

5x1072

1.0 0.2 5
2.0 0.2 2
2.5 0.2 4
3.0 0.2 8

IV. Blanket qaterials.

SI-10 2.69x10°
SI-91 4.14x10°
Plastic 1.0x10

7
8
4

0.032 0.2 4
0.120 0.2 1
1.3 0.2 3

layers.

(0
cm?/sec

.25x1072

.0x10™%
.25x10"
.12x10°

4
5

3
3
3

L0x10~
5x10°
.0x10”

.33x10

5
6
4

.20x10°
.72x10°
.85x10°

23
cal/cm*°C

2.24x10°
2.24x10
2.24x10
2.24x10

1.41x10°
2.00x10°
3.16x10°

5.48x10°

4.,15x10°
3.15x10
5.10x10°

%

sec

3
3
3
3
2

2
2

2

5
5
3
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In the calculations Ao was given the value 314°C. This is not
. the amplitude of the temperature fluctuation at the lunar surface, but
rather is twice the amplitude of the fundamentai mode in the Fourier
analysis of lunar surface temperature given by Sinton (1961). This term
is more interesting than the higher harmonics because it is about 5 times
as large and Because it pcnetrates the most deeply. Doubling the amplitude
givea the total range of temperature directly.

Some typical results are shown in figs. 1 through 6. The curves of
amplitude and phase vs., depth have characteristic shapes; the sharp
drops in the curves as interfaces are approached are particularly note-
worthy. Study of both amplitude and phase seems to give little more
information than study of amplitude alone, although any program of
temperature measurement would automatically yield both quantities,

The amplitudes decrease exponentially near the tops of layers about
a meter or more in thickness. The law of decrease is the same as in a
semi~-infinite region, and the thermal diffusivity of the layer can be
obtained from the damping observed., Where the exponential law is not
obéyed, the properties of more than one layer are involved and it is
doubtful whether they can ever be uniquely untangled. 1In the situations
where a linear law appiies (cf. figs. 1 and 2), the properties of the
lower layers aésume special importance relative to the upper layer in
which the linear damping occurs.,

In a case in which measurements of temperature cannot be made throughout
the thickness of a layer, the proximity of an interface could be detected,
if indeed one were near. No more than this qualitative result can be

obtained unless the depth of the interface is also known (c.f. figs. 4, 5,
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and 6), Temperatures must be measured at the interface in order to determine
'the properties of the underlying layer reliably, and little more than its
thermal inertia can be deduced unless some pene&ration of the underlying
layer is possible.

It is worthwhile remarking again that the above conclusions are
correct only if lumarization of the conduction equation is valid. This
will certainly not be true close to the surface, and will only become
valid at depths where the oscillations in temperature are severely damped.
This depth is critically dependent on the surface material. In a homogeneous
region of material 4 of table 2(I), the amplitude reaches 1 degree at a
depth of 30 cm. In a homogeneous region of solid rock (substratum of
Table 2) an amplitude of 1 degree occurs at a depth of 450 cm, In both
cases the surface amplitude was taken to be 314 degrees, as before. The
presence of layering would reduce those depths. In practice, the linear
theory will probably be valid if the amplitudes are less than 10 degrees,

but should be regarded with suspicion in cases of higher amplitudes.
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3. STEADY PERIODIC TEMPERATURES NEAR A HOLE IN
THE SURFACE LAYER

The poorly conducting lunar surface layer may locally be absent,
and the substratum of higher conductivity may be exposed to high-
amplitude fluctuations in temperature at the surface. Damping near such
outcrops will be comparatively inefficient, and large amplitudes of the
thermal wave many penetrate the substratum both iaterally and vertically.
We require an estimate of the extent of serious disturbance.

A simple geometrical model of an outcrop is obtained as follows.
Imagine first a two-layer structure of the sort described in the last
section, i.e., a uniform layer with one set of properties separated by a
plane boundary from a substratum of different properties. We then remove
a piece of the upper layer having the shape of a right circular cylinder,
and fill the resulting hole with material of the substratum. The result
is a cylindrical protuberance on the substratum extending to the original
plane surface,

Analytical solutions to heat flow problems in heterogeneous regions
of this degree of complexity are unknown, and recourse to numerical
methods must be had. The following calculations were made from the
simplest form of finite-difference approximation to the equation of heat
conduction in cylindrical coordinates (see for example Carslaw and
Jaeger, 1957, p. 468,470). The program written for the computer took
account of different conductivities in the two layers, but did not allow
for different densities and heat capacities. This simplification does
not affect the qualitative conclusions drawn from the calculations, A

second simplification was to assume that the surface temperature was
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independent of position and varied with time in the manner shown by
.Sinton (19€1, fig, 3). Actually the ampliﬁude of the variation would

be smaller in the hole, because of the better connection between the
surface and the lunar interior there, and the extent of the perturbation
of amplitudes is therefore slightly ovarestimated because of neglect
of this effect.

Results of the calculations are shown in fig, 7 as contours of equal
amplitudes, The conductivity of the surface layer is taken to be 1/10th
that of the substratum. It is evident from the figure that the effect of
the hole is negligible at a distance from the edge equal to its diameter,
and that serious perturbations do not extend further than about half this
distance. The amplitudes decrease monotonically with depth everywhere,
as‘is shown by the fact that no contour can be intersected more than once
by any vertical line. Thus there is no tendency for high-amplitude
fluctuations ériginating in the hole to "run under' the surface layer.

It may be concluded from these results that the influence of an outcrop

on amplitudes does not persist for a distance greater than its diameter.
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4, STEADY-STATE PERTURBATIONS OF FLUX DUE TO
IRREGULARITIES IN THE THICKNESS OF THE
SURFACE LAYER

If the thickness of the poorly conducting surface layer is variable,
heat tends to be funneled towards thin spots in the layer and away from
thick spots, a phenomenon sometimes termed thermal refraction. Refraction
causes the flux observed at the surface to be high where the insulating
layer is thin and low where it is thick. Some studies of terrestrial heat
flow have revealed irregularities which may be attributable to thermal
refraction, Errors arising from this effect may be large in cases where
the conductivity contrasts are large; a good terrestrial example would
be near a salt dome in poorly consolidated, fine-grained sediments.

The contrast in conductivity near the lunar surface may exceed a
factor of 10 (table 2), a contrast that is considerabiy larger than one
would expect to encounter on earth, The proportional change in flux
scales according to the ratio of the conductivity of the substratum to the
conductivity of the surface layer, and hence large perturbations may be
expected near the lunar surface. The question was investigated
quantitatively by studying the steady-state temperature distribution
around cylindrical protuberances on the interface between an upper poorly
conducting layer and a better conducting substratum, The problem is
analogous to the investigation of amplitudes near an outcrop discussed in
the last section, but with constant surface temperature. The same machine
program was used, steady-state conditions being achieved by allowing the
calculation to iterate until the temperatures stopped changing.

In the application of a steady-state theory to the lunar surface,

it must be-assumed that the periodic transients either have been avoided



by measuring heat flow in a sufficiently deep hole or have been removed
-by observing temperatures over at least one cycle and calculating
undisturbed steadf—state means. The results of this section show that
even if one of these ways of removing transient effects can be followed
(neither will necessarily be easy to carry out), perturbations leading
to erroncous measurements of lunar heat flow may still remain,

A number of typical results are shown in fig. 8. Cases (d) and (e),
in which the substratum crops out at the surface, lead to the largest
perturbations, but such localities are obviously atypical and could easily
be avoided. The perturbations are greatly reduced if the irregularities
in the interface are completely buried as in the other cases shown, but
nevertheless they are appreciable. Local variations up to about 50% may
be found in all of the cases examined. The results.shown in fig, 8 were
calculated for a ratio of conductivities of 10; reference to table 2
shows that this value is, if anything, too low. A conductivity ratio of
20 would l¢ad to perturbations of a factor of 2 or more, depending on
whether one considers enhancement or reduction of the undisturbed flux.

In order to be useful, a measurement of lunar heat flow must lead to
an estimate of mean flux in a region with dimensions measured in kilometers
which is accurate to better than 20%. 1If the error is much greater than
this the numbers will have little significance for geophysical or cosmological
theory. The mean value of 10 fairly closely spaced measurementé would have
the required accuracy, assuming that the individual values are disturbed
by no more than 507 and that the disturbances are normally distributed
with zero mean value. This latter requirement implies that the probability

of finding a given positive disturbance must be the same as finding a
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negative disturbance of the same amount. It is not at all clear that a
. system of randomly distributed, small, bufied craters would have this
property. Furtherﬁore systematic error would invalidate this statistical
method of achieving accuracy if, for example, all of the measurements
were made within a large buried crater so that all were affected by a
negative disturbance.

An alternative approach is to escape the near-surface perturbations
by drilling deeply enough to make the measurement beneath them. It
should be possible to do this, because porosity will be eliminated or
greatly reduced by the weight of overburden, and very large contrasts in
conductivity will no longer be possible. Considerable depths of penetration
may be required, however, since disturbed temperatures extend to a distance

benecath the bottom of the anomalous region roughly equal to its diameter.
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5. THE BLANKET METHOD OF MEASURING LUNAR HEAT FLOW

" A. Introduction.

If a sheet of material of known thermal conductivity is placed on
the lunar surface and allowed to come into thermal equilibrium, the heat
flow through the surface can be determined from measurements of the
thermal gradient in the sheet. A device consisting of a suitable insulating
material and temperature sensors for the determination of the gradient
is known as a fluxmeter, or blanket. Such devices have found meteorological
application in the study of heat exchange between the ground and the
atmosphere, but they have never been successfully used in the measurement
of terrestrial heat flow except in thermal regions where the heat flow is
orders of magnitude higher than normal.

The extreme simplicity of the blanket method makes it appear attractive
as a tool for determination of lunar heat flow. Associated difficulties

seem to outweigh this advantage, however, as is discussed below.

B. Simple steady-~state blanket theory,

| Since one has complete control over thc geometry of the blanket, it
is possible to select a shape that is amenable to simple theoretical
treatment. A circular disc with diameter greatly exceeding thickness
proves to be a convenient choice., An approximate method of treating this
problem has been suggested privately by A. H. Lachenbruch, and much of
the following discussion is due to him.

Consider a half space with zero initial temperature. If, starting

at t=0, the temperature of the surface is maintained at a constant value

LT within a circle of radius R and zero outside the circle, then beneath
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the center of the circle (Lachenbruch, 1$57)

T = ATferfe x/faat -{x/vx2+R2 }er foy/RZFR2/\/ATE ] L)
.Qherelg is deprth. Beneath the center, as the depth approaches zero, the
vertical gradient apgroaches

VT = -AT[1/R erfc R/Vhat + 1//m0t] (22)
and the heat flow approaches

AQ = AT[K/R erfc R/AVEGGE + g/t ] (23)
(See table 1 for definitions of symbols.) In the steady state (23)reduces tq

AQ = K AT/R 24)

As an illustration of the application of these results, consider
the case of a blanket placed on the plane lunar surface. The upper
surface of the blanket is surposed to be at zero, as is the lunar
surface outside the blanketed area. The assumption that the steady
periodic transient has somehow been removed is implicit. If the lunar
flux is everywhere Q, then AT in (24) becomes equal to gzb/gg, where
Xy, is the thickness of the blanket and the subscript b deﬁ;tes blanket

properties, From (24) we find a perturbation of flux

AY/Q = 1-Q,/¢ = K @5)

R K
due to the blanket. This result is ajiroximate first because the
undisturbed flux‘Q was used to calculate AT, and secondly because
AT is assumed constant when in fact it varies with radius in an
unknown way. The first objection can be overcome by substituting
Qb for g in the expression for AT, calculating the new disturbance,
a;A iterating the nrocess until it converges, For examile, if
K/K, =10 and R/X; = 50, we find AQ/Q = 0.2 and Ob/Q = 0.8.
Substituting Azb = 0.8 AT for AT leads to Sb(g = 0.84, and a second
iteration gives gb[g = 0,842, The process evidently converges

rapidly. The second objection mentioned above is inherent in the

method, since edge effects are neglected. The error is small if
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gng is large enough,

In order to get a quantitative idea of the meaning of 'large enough”
-consider a second illustration of the methéd. A blanket is now supposed
to be buried so that its upper surface colncides with the initial plane
surface. The geometry is identical to that shown in figure 8(e). Again
we assume uniform flux as a first ajproximation. The thermal gradient
in the blanket is thin .Q(Eb’ and elsewhere it is Q/K; the corresponding

temperatures at the level of the base of the blanket are ggb(gb and

ggb(g respectively., Equation (24) then gives

8¢/Q = 1-q,/Q = %EK/K,,-IJ (26)
in this case. Iteration again may be used to improve the result, This
problem can also be solved by the finite-difference method used above in
section 3, and a comparison of the results gives some idea of the range
of applicability of the approximate method (figure 9)., The finite-difference
calculations agree well with equation (26) for g/zb greater than about 20,
but iteration does not improve the agreement. The iteration process becomes
unstable for g/gb equal to 10 or less, It appears that some compensation
between the errors arising from neglected edge effects and those due to
other apiroximations in the derivation cf (26) takes place, and the use
of (26) without iteration appears to give the more reliable results.

Since the finite-difference calculations are probably not accurate to
better than 5 per cent, the results given by the simple approach outlined
here are sa;isfactory.

There is a second type of disturbance arising from the presence of
a blanket on the lunar surface which may be treated exactly by the present
method, If the albedo of the blanket does not match that of the lunar
surface, the mean temperature of the top of the blanket will differ from
the mean surface temperature. The disturbance of flux can be estimated

directly from (23) and (24). For exam;le, if a blanket 100 cm in radius
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rests on material of ccnductivity 5 x ).0.5 (material I(2) of teble 2),
then g difference in temperature of only 0.2% produces a steady-state
.disturbance in flux of 0.1 x 10.6 cal/cm2 éec. Such a disturbance may
already be intolerably large; it becomes worse if the surface material
is a better conductor or if the radius of the blanket is reduced to a
wore manageable figure. It will be difficult to measure the mean
temperature of the lunar surface to better than 1°C, so that a serious

disturbance due to mismatching albedo may go com;letely undetected.

C. Time-derendent problems associated with thé blanket method.

It is convenient to consider separately two causes of time-dependent
temperatures. One is the steady reriodic regime prevailing near the
lunar surface, and the other is the transient disturbance arising from
the emplacement of the blanket. The latter has two sources. The
blanket may not be at the same initial temperature as the lunar surface,
and after emplacement the establishment of the lunar thermal gradient.
within the blanket changes both its temperature and that of the lunar
material., The first source of disturbance can be avoided by careful
glanning, but the second cannot.

Steady yeriodic temperatures in the blanket were investigated by the
methods of section 2. The blanket, taken to be 5 cm thick, was assumed
to rest on a thick layer having the properties of layer 2 of table 2(I),
on 50 cm of such material which rested in turn on the substratum of
table 2 (III), or directly on the substratum. Three kinds of blanket
materials were considered (table 2(IV). Two of them, SI-10 and
S5I-91, are "superinsulators' developed by Linde for the storage of
cryogenic fluids. The thermal conductivity of these materials is
extraordinarily low, as is shown in the table. A third blanket material
was assumed to have properties corresponding roughly to those of ordinary

plastics (e.g. bakelite or plexiglass).
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Amplitudes and phases of the temperature variations at the bottom
of the blanket are shown in table 3 for the various combinations of
blanket mate:ials and assumed lunar configﬁrations. The amplitude-
depth curve in the blaaket has the same shape as the curves for the
upper layer shown in figure la; that is, the amplitude at the center
of the blank2t exceeds the geometric mean of the surface amplitude
(314°C) and the amplitude shown in the table. Clearly only the
superinsulatars are capable of reducing the fluctuation to manageable
proportions (order of tens of degrees or less) in the lower half of the
blanket. It is doubtiul whether the mean tem;erature can be determined
in the "plastic® blarket to sufficient accuracy. The situation is made
worse by the fact that the expected gradient is inversely proportional
to the conductivity of the blanket. 1In the superinsulators the expected
gradient is oz the crder of 1-10°C/cm, whereas in the "plastic" a

2-10"3 °C/cm seems likely.

gradient of .0~
Hence we find that the use of superinsulators is indicated in
order to eliminate the steady iperiodic fluctuations most effectively
and ;o raise the mean thermal gradient to an easily measured value,
But now we Just consider the transient associated with blanket emplace-
ment. We assumg that the lateral dimensions of the blanket are great
compared with i*s thickness, so that the ;roblem can be treated as one
of 1-dimensional heat flow. The blanket, occupying the region -L S.§ < 0,
is assumed to have initial temperature To, and thermal properties
indicated by the subscript b. The lunar material (assumed uniform) has
initial tewmperature mx, where x %o equals depth, and unsubscripted
properties.
Writing T for the Laglace transform of T, as before, we find

T

b * To/p =+ A sinh QX + B cosh Q¥ @7

and

T = mx/p + C exg(-qz) : (28)



Blanket material

SI-10
SI-10
SI-10
SI-91
SI-91
SI-91
Plastic
Plastic

Plastic

Table 3. Amplitude and phages at
base of blanket 5 cm thick.

Substratum Amplitude Phase
(table 2) °c
I-2, III 4.5 -60
I-2 4.5 -60
I11 0.2 -60
1-2, I1I 0.1 -253
I-2 0.1 -252
111 0.004 -252
I-2, III 274 -11
I-2 274 -11
I11 60 -39



26.
where A, B, C are constants independent of x. Application of initial
conditions Eb ==§O and T = mx, and the conditions of continuity of

-temperature and flux at x = o lead to

A= [KqTo(cosh g, L-1) - Km cosh qu]/pD (29)

B = [Kq'l‘o sinh q L + K q T - Km sinh q,L1/pD (30)

C = [-Kbquo(cosh qu-l) - Km sinh qu]/pD (31)
where |

D =-Kq sinh qu - Kbqb cosh qu (32)

Conversion of the hyperbolic functions in (29) through (32) to
exponentials, and expansion of D by the binomial theorem then leads to
the following expressions for the temperatures

Tb = TO{I-EEE;—[E (M)n(erfc 5%%§% - erfe 2n+2_%+x3

o [+
+MZ n £ (2n+1)L-x _ 5 n 2n+1)1+x
M " (M) erfe [_T 2 M) erfc : bt }

2KmfE o 2nL-x _ 2042 L+x
+ B [? 00" (erfe ZRTE - tertc 'ﬁxﬁ—] (33)

- b iy n (2nt+1)L x
T = To B+ﬁb§ M) [2 erfet @ntm)

- 2nL X - 2o+2)L
erfc@yzagg + —EE%) erfc(iﬁzaz%— + —%3?)]
z

2Km/t (M)n[i rf (_Z.BL_. + X
+5 N erre 5/2;@ Jie)
- (2nt+2)L X
ierfce( m + %—2—?—')] + mx (34)

Here M = (B-By)/ (g+p,) and the other symbols are defined in table 1.
Equations (33) and (34) are most convenient to use for small values of
time, but they converge for all times, Numerical values of the flux in the

blanket divided by the undisturbed lunar flux are shown in figure 10 for
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blankets of material SI~10 and SI-91 on dust (table 2(I)2) and substratum
(table 2 (II1)). 1In the most faverable case the flux in the blanket is
- less than 157 of the equilibrium flux aftér 1 year. This result is
virtually inderendent of the To term; it arises mainly from the m term.
Hence no matter how carefully the initial temperature of the blanket is
matched to the mean temperature of the lunar surface, a major disturbance
is caused by emplacement of the blanket, and it persists for years if
the blanket is made of superinsulating material. The higher the
conductivity of the substratum, the longer is the time required to reach
equilibrium. The "plastic" blanket, on the other hand, achieves equilibrium
within a year.

Thus we see that the two classes of time-dependent temperatures ypose
difficulties that appear to require mutually incompatible sets of blanket
properties for their solution., In the examples given one must face
either a large periodic fluctuation throughout the blanket, or a
prohibitively long time for equilibrium to be established. It does not
appear that the use of a blanket material with intermediate properties
would solve the problem. One would then be confronted with both a large
periodic fluctuation and a long time constant., The thickness of the
blanket affects its thermal behavior in much the same way as its thermal
diffusivity, so that no escape can be found by changing this parameter.

A final consideration about the blanket type of flux meter
concerns its contact with the lunar surface. 1In all of the foregoing
calculations it has been assumed that there is no contact resistance
between the blanket and the lunar surface, a situation that is difficult
to achieve in practice. The effect of uniform contact resistance is to
reduce the effectiveness with which the periodic fluctuation 1s damped
out in the blanket and to increase the time required to equilibrate with
the lunar surface. Nonuniform contact resistance, which is likely to be

encountered due to irregularities on the lunar surface, will in addition
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cause thermal refraction within the dimensions of the blanket. This
will cause the flux in the blanket to differ from point to point,
.necessitating a large number of temperaturé sensors to give a proper
mean gradieat. Readout is not necessarily complicated by such a
requirement, since a single readout of many resistance elements in
series and/or  arallel to give an appropriate mean value would in all

probability be feasible.
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§. CONCLUSIONS
. A, Ore-dimensional steady periodic tempefatures,

A limZted amount of information about the thermal properties of a
layer can bec obtained from a ctudy of amplitude or phase of the thermal
wave as a function of depth, if the effect of other layers is small. The
latter condition can be recognized by the exponential decrease in amplitude
with depth. Study of both amplitude and phase gives little or no
information in addition to that provided by study of amplitude alone.
When the properties of more than one layer influence the temperatures to
an important degree, it may be possible to determine the properties of
those layers penetrated completely by a hole. Extrapolation beyond the
deepest observation of temperature is not reliable unless the depth to

the next interface is accurately known independently.

B. Propagation of the thermal wave near a hole in the surface layer.

A hole or thin spot in the surface layer will let high-amplitude
fluctuations leak into the substratum, where they may propagate laterally
to some distance. This effect does not appear to be serious, however.

The amplitudes are essentially unaffected by the presence of the hole a

few meters away.

C. Thermal refraction due to irregular thickness of the surface layer.
This steady-state phenomenon is far more serious than the‘periodic
disturbance discussed under B. Conditions very probably exist near the
lunar surface which cause differences in flux of 507 or more because of
thermal refraction. Such anomalies can be avoided by measuring heat flow

at depths below regions causing refraction. Errors due to this effect can
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largely be removed by taking the mezns of s~veral closely spaced observationms.
. It seems best to try tc take advantage of both techniques, and to measure
tempecatures in the deepzst holes practiczble at several pointc at a given

lunar site.

D. The blanket method of measuring lunar heat flow,

The following difficulties are recognized as standing in the way of a
measurement of lunar heat flow by a blanket-type fluxmeter,

1. The flux is disturbed by thermal refraction due to the presence of the
blanket. This effect can be kept small by choice of proper geometry
for the blanket, and the correction is calculable.

2., The flux is disturbed if the albedr of the blanket does not match that
of the lunar surface and a difference in mean temperature between the
blanket and the surface is thereby created. This disturbance is serious
if the mismatch in temperature exceeds a few tenths of degrees.

3. The blanket must be made of poorly conducting material in order to
damp ;ut the steady periodic temperature fluctuation in a reasonable
thickness, and also to have a reéadily measurable "thermal gradient set
up by the lunar flux. But a blanket satisfying these requirements
takes years éo come into equilibrium with the lunar flux. A blanket
having a manageable time constant associated with its emplacement
does not satisfy the requirements imposed by the steady periodic

fluctuations and the small value of flux to be measured.

4. The flux through the blanket may vary from point to point because of
variable contact resistance with the lunar surface. A large number of

temperature sensors would be necessary tc measure a meaningful average flux.
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Difficulties (2) and (3) in particular seem insuperable and make the

- blarnket metihod unattractive for the measurement of lunar heat flow.
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Figure 7. Amplitudes near a circular hole in the poorly conducting surface layer.
Lines of constant amplitude are shown for a surface amplitude of 269° C, and a
conductivity ratio of 10.
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Introduction

The measurement of heat flow at a lunar site requires knowledge of both
the vertical thermal gradient and the local thermal conductivity. The former
quantity can be measured more or less straight forwardly by a suitably
instrumented probe emplaced in a drilled hole, but the latter presents
special complications. In normal determinations of terrestrial heat flow,
the conductivities of samples cored from the hole are measured in the
laboratory. It 1s undesirable, and may even be impossible, to rely sclely on
this technique for lunar heat flow, since the sample may either be destroyed
or may have its thermal properties seriously altered by the operations of
collection and return to earth. Hence the determination of thermal con-
ductivity in situ on the moon is clearly desirable and perhaps essential.
This report deals with a preliminary study of a method of making this measure-
ment which utilizes a cylindrical ring source. The results presented here
form some of the fundamental criteria used in the design of a subsurface

thermal probe for ALSEP by Arthur D. Little, Inc.

Theory

Consider a cylindrical hole of radius R, infinite in length, containing
a cylindrical probe, also of radius R. Between -Z and Z the probe consists
of a heater of thermal conductivity 31, density pl, and hzat capacity £y
For ‘Z, > Z the probe has thermal properties 52, 92, and £y and there is
no thermal resistance at z =+ Z. The lunar material surrounding the hole

has thermal properties 53, p3, and 53 and there is contact resistance at
k dT

n.—<
r = R such that a temperature drop AT occurs, given by AT —.ﬂ BE (the

so-called radiation boundary condition). gn would be k1 at the outer

surface of the heater, 32 at the outer surface of the probe, and 53 at the



inner surface of the hole. The temperature is initially zero everywhere,
and heat is supplied uniformly over the surface of the heater at rate
Q for time 0 < t < t,. We must find the temperature as a functiom of 1,
2, and t. |

The couditions set forth in the precedilng paragraph completely specify
a boundary value problem in heat conduction, but since they involve both
radial and axial flow in a heterogeneous medium, they are intractable
analytically. The problem was solved by finite differences in the following
way. Consider intervals in space and time dr, 6z, 8t, and intergers i, j,
and k such that z = j6z, t = kbt, and xr = i8r for 1 < I,and r =(1- 1)ér

for i > 1 + 1. The temperature may be regarded as a function of

2 1
i, 3, and k. 11 6r = I,6r =R, the radius of the hole. However

=1

'_r(;l, J, k) #T(X,, 1, k) because of the contact resistance, although
the two points are only infinitesimally separated in space. On the other
hand at z = Z = J8z, the temperature is continuous. Since the temperatures
are symmetric about the axis of the cylinder and also about the plane
2 = o, we need consider only positive values of r and z.

The equations used in the finite-difference calculation depend on
the points at which the temperature is to be obtained. Referring to the ‘
schematic space grid shown in Figure 1, let e = _lgl/plcl be the thermal
diffusivity in region 1, the heater, az be the diffusivity in region 2, etc.

Also, 1let grn = ané_t_/6£2 and Mz = anég/b_gz, where n = 1, 2, 3. Then we have

on the axis

TCo, 3§, k+ 1) = T(o, j, k) (1 - 4M: - znfl) + T(L, §, k) ° AM;

+[T0, 14 L 0+ TG, §-1, O 4L n=1,2, q



&t &t k1 + k2
T(o, J, k+ 1) = T(c, J, k) [1 - (b= + 2—) q;1;—1;7;1;—)3 + T(, J, k) *
or 6z~ 117 F2"2
k, + k 5t k,

. 28t 1 2

4— + T(o, J+ 1, k) * 2—, ——F— +
52 P161 T+ Ppcy

522 P11 1 P2

k, - .
5t 1
4+ T(o, J -1, k) * 2—, —F— 2)
822 P161 + 2%
In the ilnteriors of regions 1 and 2
T(L, j, k+ 1) =T(i, %, k) (1 - ZM: - ZM:) + [T(1, j + i, k) + T, j - 1, k)]Mz

1 ' 1 r
+[q - 5p) T -1, 3, )+ A+57) TA+ 1, 4, k)]Mn (3)

n=1,2 0<1<I, )AL

and in region 3
T(L, 3, k+ 1) = T(, 3, k) (1 -2 - 20) + [T, 3+ 1, &) + T(4, § - 1, k)]

# LA - 55T - L, 5, B+ A+ T + 1, 5, M,

i>1, (%)
Along the outer skin of the heater and probe, we have, setting £ =———7"5 M,
n Il - 1/4
211}151:
g = ~ ’
n (I[1 1/4)pncn6r

H4
T(I, 5, k+1) =T(1, 3, &) (-2 - £ - g)

z

+ T(Il -1, 1 k)fn + T(II +1, i, k)gns n=1,2, j#J (5)



and
2(g, + K,)6t ) 21, - 1 K, +&, 5t
Il - 1/4 plc1 + pzc2 6r2

T(Il’ Jy k+ 1) = T(Il’ J, kA - 2
(plc1 + pzcz)éz

411h5t Zﬁlat
- - )+ T(,, J -1, k)
(I1 1/4)(p1c1 + pzcz)ér 1

2
(plc1 + pzc2)6z

256t
+ T(1,, J+ 1, k)
1 2
(plc1 + pzcz)éz
211 -1 , F P st

+ T(I - 1, J, k) " =
1 I1 1/4 P11 +~p2c2 6r2
411H6t

M R A VT RN L ()

At times when the heater is on, terms accounting for its effect must be added

to the right sides of (5) in region 1 and (6). We write

nét
q = 2 ’ (7)
26.2896t GzJ(I1 - 1/4)

where the numerical factor includes the conversion from total power input,

Q, in watts to the units of c.g.s. and calories in which the thermal properties
were expressed. Then a term 3/p131 must be added in (5) and a term

5/(p151 + p2£2) must be added in (6) to account for the heat input.

Along the wall of the hole in the lunar material we have, setting

. 2L, +1 , 21,15t

f =-———— M and g =
I+ 174 (T, + 1/6) (pyez0r




T(Lp, 3 K+ 1) = T(L, 5, (1 - 24 - £~ g") + [T(T,, J+ 1, k) +

+T(Ly, § - L I+ T, + 1, 1, DE + T, 5 Kz (8)
Finally, along the junction between the heater and the rest of the probe

2(1(1 + KZ)& 2(1»:1 + K.Z)at

T, J, k+ 1) =1¢i, J, k) [1 - 3 2
(plcl + pzcz)ér (plcl + 9202)52

2g, 6t 2K, 5t
(plcl + pzcz)éz (plcl + pzcz)éz

+0T0 - 1, 3, A - 50 + TA+ 1, 3, B +37)]

®, + K,)6t '
17 % ,o<i<I ©)

2
(plcl + p2c2)6r
Numerical stability proved to be a serious problem. In the interiors

of the three regions, the stability criterion is
1-2° -2M >0, n=1,2, 3, (10)

Depending on the relative thermal properties of probe, heater, and moon,

a more stringent requirement may occur along the axia 1 = o, since here the

criterion is

1-2Mz-4Mz>o,n=1,2 (11)

But even with (10) and (11) satisfied, instability, which always originated
at 1 = _]_:1 and _132, was sometimes encountered, particularly for relatively

large values of H. Imposing the additional constraints that

1-2M§-fn-gn>o, n=1, 2



and
1 - 2M§ -f"-g"> o,
did not remove the difficulty. This instability may result from the fact

that the space step 6r 1s effectively halved at i = 1. and I,, but the

1
matter remains unresolved. The time step, 8t, was simply reduced until the
calculation became stable.

A second form of numerical difficulty, which may be termed semistability,
was also encountered occasionally. Immediately after the heater was turnad
on or off, thus disturbing the system, the calculations oscillated, sometimes
rather violently. The oscillations were damped, however, and the results
gradually returned to a smooth trend with further cycles of iteration. This

semistability could also be eliminated by reducing 8t, thus approximating

more closely a smooth input of heat.

Models

A number of models of probes and of the lunar material have been
subjected to numerical analysis. The results are extensive and only the
more relevant ones have been selected for inclusion here. Thermal properties
of 3 of the probes are shown in Table 1. The thermal conductivity of
Probe 1 is too low to be practical from an engineering standpoint, but the
lunar probe is expected to have properties in the range of Probes 5 and 6.
Further calculations will be necessary when the final configuration of the

lunar probe 1is established and its properties are measured.



Table 1. Thermal ch#racteristics of probes.

No. e 1 5 6
Heater
k, cal/cm sec°C 0 3x 10 1074 1073
P, gu/cm’ - 4 x 1072 0.5 0.5
c, cal/gm°C - 0.2 0.2 0.2
Probe body
k, cal/cm sec®C 0 3% 10 1074 1073
P, gm/cm3 - 4 x 10-2 0.5 0.5
¢, cal/gm°C - 0.2 0.2 0.2

Moon models are shown in Table 2. Three different thermal conductivities
differing by factors of 10 were used, and for the lower conductivities, densities,
and hence diffusivities, differing by a factor of 4 were considered. These
models cover the range of values considered likely for material close to the
lunar surface. The ability of a probe to discriminate between them is then

a measure of its suitability.

Table 2. Thermal models of moon.

No. k, cal/cm sec®C Ps gm/cm3 ¢, cal/gm°C
1 107 0.5 0.2
2 1070 2.0 c.2
6 1073 1.6 0.2
7 1074 0.5 C.2
-4

8 10 2.¢ 0.2



Another parametef entering the calculations is the contact resistance,
measured by the quantity H. For purely radiative contact H = 5.5 x 10-1232?,
where E is the emissivity. With blackbody conditions H = 4.4 x 10-5 at
200°K which is close to the mean lunar temperature. This is about the lowest
value that H can attain, and it is an interesting case to consider because
the probe may be designed to assure purely radiative coupling. H can then
be calculated with confidence, whereas it otherwise remains an unknown
parameter the value of which must somehow be extracted from the temperature-
time curve. The effect of varying H was examined by making some runs with
it set at 10 times the radiative value.

The lunar probes are to be about 1.9 cm in diameter. The quantity &r
was taken to be 0.475 cm, which places the probe skin at i =2, and 8z was
taken equal tolég. This is a rather coarse grid, but no refinement of it
was made Iin these preliminary studies. The simulation of a l4-hour 1lunar
experiment ‘required over 3C minutes on a 7094 in unfavorable cases, and it
is not worthwhile to choose smaller space steps (which requires reduction
of the time step as well to maintain stability) until more than hypothetical
values of the probe parameters are available.

The length of the heater was taken equal to its diameter, 1.9 cm. In
rough design calculations it may be desirable to approximate the probe
configuration using the exact solution for radial flow from a spherical
heat source, and the 'scuare'* shape chosen for the heater gives the clesest
possible approximation to a sphere. Thus the results of this work may be
compared directly with those obtained from the spherical approximation. It
should be noted that in the latter approximation no account of different
thermal properties between the body of the probe and the lunar material

can be taken.



Numerical results

It is helpful at the outset to consider the solution for an infinite
cylindrical source of heat in an infinite medium. 1In this case the
temperatures depend on the thermal conductivity and thermal diffusivity
of the medium, and on the contact resistance. One could hope that the
dependence on diffusivity could be removed by heating until the temperatures
became steady, but with this geometry there is no steady state. The
temperature of the source continues to rise indefinitely. With a heater of
finite length a steady state is reached; this was an initial reason to
prefer the geometry adopted here to the '"line source! geometry, because
the possibility exists of eliminating the diffusivity as a factor upon which
the temperature depends. Another attractive feature of the present
configuration is its relatively low power requirement. A line source
demands a certéin amount of power per unit length to produce a given
temperature rise. Hence a long source requires high power. In the present
case, it was found that 2 milliwatts input power gave adequate temperature
rises at the heater, and this value for the heat input was used in all the
calculations.

The first calculations were aimed at investigating the possibility of
achieving a steady state. Results are shown in Figure 2. In this figure
and those following, the temperatures are those of the outer surface of
the probe. In actual lunar probes the temperature sensors will be located
on the axis, but the temperature difference between these 2 points is
insignificant for present purposes, It is clear from the figure that for
the lower values of g the steady state is not achieved after 14 hours,
and several days of heating may be required to attain it if K 1s less

-4 -
than 10 . IfK =10 3 a few hours suffice. The probe is evidently
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capable of discriminating between various vélues of K, particularly if tie
heater 1s operated at low power levels for a long time. The discrimination
is best at low X, and heating should last for the order of a day or more
for optimum results.

Similar curves for the case of 1/10 as ﬁuch contact resistance are
shown in Figure 3. The discrimination is somewhat better than in Figure 2,
and the curves have a different shape. The sharp initial rise in
temperature is much reduced. In Figure 4 the results for a probe of
higher conductivity are shown; the discrimination is not as good as in
Figure 2. Clearly the thermal conductivity of the probe should be kept as
low as possible,

These results show that it is likely that the temperature rise recorded
during the lunar experiment wtll depend on the 3 quantities K, @, and H.
Some process of curve fitting must be used to determine their values. This
may be unsatisfactory since many combinations of parameters may give virtaally
identical results. It is therefore important to try to extract more information
from the experiment, and an obvious way to do this is to record the temperatures
at more than one point along the probe. The temperature rise at a point on
the surface of the probe 8 cm from the center of the heater is shown in
Figures 5 and 6. Figure 5 is for a probe of unrealistically low K, but it
shows the large differences in rise time that result from the different moon
models. Intuitively ome would expect the curves to be highly sensitive to
@ and this is born out by the difference between curves 1 and 2 of Figure 6.
The rise times are about the same for the cases shown there, in which the
conductivity of the probe is realistic. But if the moon is a better conductor
than the probe discrimination still exists at short times, although it is

not well-shown on a plot to the scale of Figure 6. Since this is just the



11

range of conductivity at which the temperatﬁres at the center of the heater
lose discrimination, complementary information can be obtained from the
second sensor.

So far we have confined the discussiom to times when the heater was
turned on. But a number of short-term numerical experiments have been done
in which the heater was turned on for only half the time. The durations of
the tests were about % hour. The results were that the appearances of the
cooling curves were virtually identical to the heating curves, but of course
4 inverted and displaced in time. Thus there is no new information to be
obtained from the cooling curves. On the other hand, following the cooling
curve Iin effect constitutes repeating the heating experiment, but without
the necessity of expending heater power. It is alwéys desirable to repeat

experiments if only to get better statistical control.

Operations on the moon

All lunar experiments must wait until drilling disturbances have died
out near the hole. The thermal gradient will be determined next and then the
heater will be turned on at low power (~ 2 milliwatts). The duration of the
heating cycle will be determined by the conductivity encountered. The heater
will then be turned off and the cooling curve followed until ambient conditions
have essentially reestablished themselves. Then, especially if a high lunar
thermal conductivity is indicated by this experiment, a second heating period
will be initiated. The heater power will be higher (20 milliwatts or more)
so that the second sensor, displaced along the probe from the heater, will
record a readily measured temperature rise. By a process of curve fitting,
which is not completely thought out as yet, the quantities K, @, and H will

be determined. The first 2 of these autcmatically yield a value of pc, which



12

can be compared with the value measured on feturned material to gilve a

rough check on the internal consistency of the results., An alternative scheme
would be to assure that H is known independently e.g. by making certain of
radiative coupling alone; then only X and O need be obtained from the

temperature curves and the accuracy of the measurements will be increased.

Conclusions

1. It appears feasible to measure lunar thermal conductivity using a
¢ylindrical ring source of heat.

2, It is desirable to have 2 heating cycles, the first at a power level of
a few milliwatts and the second at 10 gy more times that power.

3. The duration of each heating will range from a few hours to a few days,
depending on the lunar conductivity. The use of 2 sensors and 2 power
levels could materially reduce the amount of heating time required.

4, There 1s something to be said for assuring radiative coupling to the moon
so that the comtact resistance can be calculated with confidence. Other-
wise it represents a third unknown parameter to be determined from the
temperature curves. Some discrimination of lunar conductivity is lost
by this procedure, but nevertheless more accurate results will probably
be obtained.

5. The best way of reducing the lunar data remains to be determimned.



