
MSC-04105

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

SCIENTIFIC EXPERIMENTS CONTINGENCY Planning and procedures Mission J-1/Apollo 15

FINAL

MANNED SPACECRAFT CENTER HOUSTON, TEXAS

June 1, 1971 Revised July 12, 1971

MSC FORM 2026A (REV MAY 68)

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

SCIENTIFIC EXPERIMENTS CONTINGENCY PLANNING AND PROCEDURES MISSION J-1/APOLLO 15

FINAL

Manned Spacecraft Center

Houston, Texas

June 1, 1971 Revised July 12, 1971

a an 1948 a' bhaileach ann an 1949 an 1947 an 1947 an 1948 ann an 1948. Tha bhaile an 1979 an 1979 an

.

·

REPLY TO ATTN OF: TD5

JUL 1 5 1971

MEMORANDUM

TO: See Distribution

FROM: TA/Deputy Director of Science and Applications

SUBJECT: Scientific Experiments Contingency Planning and Procedures, Mission J-1/Apollo 15

This change notice is revision A and should be incorporated into the basic document dated June 1, 1971, according to the change instructions sheet enclosed. Incorporation of revision A will make this document current as of July 12, 1971.

Comments regarding the Scientific Experiments Contingency Planning and Procedures document for Mission J-1/Apollo 15 should be directed to the Science Requirements and Operations Branch (TD5), Manned Spacecraft Center, Houston, Texas 77058.

All James A. Lovell Enclosure

SCIENTIFIC EXPERIMENTS CONTINGENCY PLANNING AND PROCEDURES

MISSION J-1/APOLLO 15

CHANGE INSTRUCTION SHEET

Update the Scientific Experiments Contingency Planning and Procedures Document for Mission J-1/Apollo 15 with the following instructions.

Remove and replace the following changed pages:

Page 3

Page 4

Remove the following pages:

- Page 6
- Page 7
- Page 8
- Page 9
- Page 10
- Page 11
- Page 12

Add the following new pages:

Page 8.5	Page 9.5
Page 8.6	Page 9.6
Page 8.7	Page 9.7
Page 8.8	Page 9.8
Page 8.9	Page 10
Page 8.10	Page 11
Page 8.11	Page 12.1
Page 8.12	Page 12.2
Page 8.13	Page 12.3
Page 9	Page 12.4
Page 9.1	Page 12.5
Page 9.2	Page 12.6
Page 9.3	
Page 9.4	
	Page 8.6 Page 8.7 Page 8.8 Page 8.9 Page 8.10 Page 8.11 Page 8.12 Page 8.13 Page 9 Page 9.1 Page 9.2 Page 9.3

SCIENTIFIC EXPERIMENTS CONTINGENCY PLANNING AND PROCEDURES

MISSION J-1/APOLLO 15

Prepared for the

Science Requirements and Operations Branch Science Missions Support Division

Science and Applications Directorate Manned Spacecraft Center Houston, Texas

FINAL

Prepared by: Glenn P. Barnes

Space Experiments Engineering General Electric Company

Approved by J. R. Bates

Experiments Operations Section

Approved by: M. H. von Ehrenfried Science Requirements and Operations Branch Approved by: Anthony J. Calip, Director Science and Applications Directorate

Approved by John G. Zazicaro, Chief

Science Missions Support Division

Concurrence D. Slayton, Director

Flight Crew Operations Directorate

Any comments or questions on this document should be forwarded to J. R. Bates or G. P. Barnes, Science Requirements and Operations Branch, TD5, extension 5851 or 5028.

-

-

۰. ۲

TABLE OF CONTENTS

*

(

C

SECTION		PAGE	NO.
1.0	GENERAL	•	1
1.1	ASSUMPTIONS	•	1
1.2	TIME CONSTRAINT	•	1
1.3	HOLD POINTS	•	1
1.4	EXPERIMENT RESCHEDULING	•	3
1.5	EXPERIMENT PRIORITIES	•	.3

APPENDIX ABBREVIATIONS AND ACRONYMS..... A-1

TABLES

TABLE NO.		PAGE NUMBER
l	SCIENCE DATA RETURN MATRIX FOR ALTERNATE MISSIONS	5
2	EXTRA-VEHICULAR ACTIVITY (EVA) DECISIONS	6
3	MODULARIZED EQUIPMENT STORAGE ASSEMBLY (MESA) DEPLOYMENT	13
14	APOLLO LUNAR HAND TOOLS	17
5	CAMERAS	21
6	SOLAR WIND COMPOSITION EXPERIMENT	22
7	LASER RANGING RETRO-REFLECTOR EXPERIMENT	24
8	ALSEP OFFLOAD. 8.1 SEQ Bay Door. 8.2 Subpackage Removal by Boom. 8.3 Manual Subpackage Removal.	
9	RTG FUELING	36
10	ALSEP TRAVERSE	45
11.	SUBPALLET REMOVAL	50
12	RTG CABLE INTERCONNECT	58
13	PASSIVE SEISMIC EXPERIMENT	65
14	HEAT FLOW EXPERIMENT. 14.1 Deployment. 14.2 Drill Operations. 14.3 Probe Emplacement. 14.4 Core Operations.	70 81 90
15	LUNAR SURFACE MAGNETOMETER EXPERIMENT	98
16	SUPRATHERMAL ION DETECTOR EXPERIMENT/COLD CATHODE GAUGE EXPERIMENT	103
17	SOLAR WIND SPECTROMETER EXPERIMENT	114

.

J

.

4

Contraction of the second

TABLES (CONT'D)

 $(\square$

TABLE NO.		PAGE NUMBER
18	CENTRAL STATION	119
19	ALSEP ACTIVATION	128
20	S-BAND TRANSPONDER (CSM/LM)	134
21	DOWN-LINK BISTATIC RADAR OBSERVATIONS OF THE MOON	135
22	SUBSATELLITE	136
23	ALPHA PARTICLE SPECTROMETER	137
24	GAMMA RAY SPECTROMETER	138
25	X-RAY FLUORESCENCE	139
26	MASS SPECTROMETER	140
27	GEGENSCHEIN FROM LUNAR ORBIT	141

v

ILLUSTRATIONS

C

۰

	Figure Number	Page Number
Contingency Deployment Pattern for Heat Flow Experiment	l	80

vi

SCIENTIFIC EXPERIMENTS CONTINGENCY PLANNING AND PROCEDURES

MISSION J-1/APOLLO 15

1.0 GENERAL

1.1 ASSUMPTIONS

a. Launch delays of more than a few days may require replacement or adjustment of some experiment hardware.

b. For earth orbit mission case, the altitude and inclination will both be increased within operational limitations.

c. An experiment may be operated for engineering tests only, if orbit will not allow for science data collection.

d. A lunar flyby mission will not allow for proper attitude and operating time for SIM experiment operations.

e. If the mission is off-nominal so that it appears unlikely that there will be no more than one surface EVA, in order to increase the possibility of collecting Hadley Rille material in the geology samples, the ALSEP should be deployed in a direction toward the nearest available and recognizable Hadley Rille material.

1.2 TIME CONSTRAINT

For any malfunction on a scientific task: spend a maximum of 10 minutes on malfunction procedures, then abandon. Additional time may be allocated on certain malfunctions before resulting in total experiments abandonment. This additional time will be a real-time decision based on consumables and timeline constraints.

1.3 HOLD POINTS

The sequence of the experiment deployment or operation may be stopped after the completion of any one of the following hold points, to be continued at some time later by going to the next series of tasks. - a. Offload LRRR and emplace LRRR Array in and facing the sun.

b. Remove ALSEP sub-packages #1 and #2; close SEQ bay door; emplace ALSEP sub-packages on the lunar surface facing the sun.

- c. Tilt fuel cask; dome not removed. Remove drill from MESA and depress microswitch on battery to confirm operation.

d. Remove dome; fuel RTG sub-package No. 2; carry ALSEP and LRRR to deployment site; remove subpallets from sub-package No. 2; place SIDE or HFE in sun but do not deploy, carry sub-package No. 1 to emplacement site, interconnect SIDE, HFE, and RTG cables to Central Station, rotate sub-package No. 1 (do not actuate shorting switch), emplace LRRR facing the sun.

e. Deploy PSE.

f. Deploy SWS.

g. Partially deploy LSM (including legs), and rough sun align.

h. Remove HFE, deploy electronics package and first probe. Complete hole #1, insert probe, and return drill to MESA and cover.

i. Raise sunshield; remove gimbal box from SIDE subpallet, mount and aim antenna, activate shorting plug with UHT.

j. Deploy second probe. Complete hole #2, insert probe and return drill to MESA and cover.

k. Remove SIDE/CCGE from subpallet and complete SIDE/CCGE deployment.

1. Complete LSM deployment.*

m. Deploy LRRR.

n. Recheck aiming mechanism alignment and document deployment with photographs.

* Shorting plug can apply and remove short to RTG before and after experiment deployment if deemed necessary. Applying short is not recommended since experiments can be commanded to standby power OFF so no hazard would exist for astronauts.

2

1.4 EXPERIMENT RESCHEDULING

In the event of a change in mission profile, e.g., no TLI capability-earth orbit only, deployment and operation of non-lunar surface experiments will be affected. Table 1 shows which experiments may be scheduled for alternate missions. Lunar surface experiments are covered in Tables 2 through 19. Lunar orbit experiments are covered in Tables 20 through 27.

Experiments should be exercised during any alternate mission to verify hardware operation and to evaluate procedures.

1.5 EXPERIMENT PRIORITIES

Mission priorities for Lunar Surface Experiments Deployment, Orbital Photography and Lunar Geology Investigation are defined as follows:

LUNAR SURFACE ACTIVITIES

PRIORITY	OBJECTIVE/EXPERIMENT
1.	Contingency Sample Collection
2.	Documented Samples at Apennine Front
3.	Apollo 15 ALSEP • HFE • LSM • PSE • CCGE • SWS • SIDE • Lunar Dust Detector
4.	Drill Core Sample
5.	Laser Ranging Retro-Reflector
6.	Lunar Geology Investigations
7.	Solar Wind Composition
8.	Soil Mechanics

1.5 (CONT'D)

 \bigcirc

.

•

LUNAR ORBITAL ACTIVITIES

PRIORITY	OBJECTIVE/EXPERIMENT
1.	Gamma-Ray Spectrometer
2.	X-Ray Fluorescence
3.	SM Orbital Photographic Tasks
4.	Subsatellite
	 Particle Shadows/Boundary Layer Magnetometer S-Band Transponder
5.	Bistatic Radar
6.	S-Band Transponder (CSM/LM)
7.	Alpha Particle Spectrometer
8.	Mass Spectrometer
9.	UV Photography - Earth and Moon
10.	Gegenschein from Lunar Orbit
11.	CM Photographic Tasks

4

		MIS	SION	TYPE		
EXPERIMENT	SL	EO	LF	LO/ NSE	NTE	
SM Orbital Photographic Tasks:						
o 24-Inch Panoramic Camera	_G 3	Gl	N	G	N	
o 3-Inch Mapping Camera	_G 3	Gl	N	G	N	
o Laser Altimeter*	G	N	N	G	G	
CM Photographic Tasks	G	Gl	G ⁴	G	G	
UV Photography - Earth and Moon	G	G ⁴	G ⁴	G	G	
Gegenschein from Lunar Orbit	G	N	N	G	G	
Gamma-Ray Spectrometer	G ⁵	N	G ⁴	G	G	
Alpha Particle Spectrometer*	G2	N	G ⁴	G	G	
X-Ray Fluorescence	g5	Gl	G ⁴	G	G	
Mass Spectrometer	G2	N	ц С	G	G	
S-Band Transponder (CSM/LM)	G	N	N	·G	N/A	
Subsatellite:						
o Magnetometer*	\mathbb{N}^2	N	G ⁴	G	N/A	
o Particle Shadows/Boundary Layer	\mathbb{N}^2	Gl	G ⁴	G	N/A	
• S-Band Transponder	\mathbb{N}^2	N	N	G	N/A	
Bistatic Radar	G	N/A	N/A	G	N/A	
*No useful science data in earth orbit						
LEGEND: SL - Scrubbed launch: can be recycled without experiment effect. EO - Earth Orbit X - TBD LF - Lunar Flyby G - Go LO/NSE - Lunar Orbit/No Surface EVA N - No/Go NTE - No Transearth Coast EVA N/A - Not Applicable Note: 1. Objectives may be changed if operated during alternate missions. 2. Batteries may have to be recharged. 3. Film may require reloading. 4. Possible particle and/or degraded data. 5. Dependent upon time period (calibration sources may have to be renewed).						

C

5

ł

TABLE 2. EVA DECISIONS

...

TABLE 2.1 - OFF NOMINAL EVA PLANNING TABLE 2.2 - OFF NOMINAL LANDINGS TABLE 2.3 - DELAYED EVA TIMELINES TABLE 2.4 - EVA WALKING TRAVERSE TABLE 2. EVA DECISIONS

TABLE 2.1 - OFF NOMINAL EVA PLANNING

• f

TABLE 2.1 - OFF NOMINAL EVA PLANNING

ł

٠

EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
l.	Crew unable to locate touch- down point in the landing ellipse.	Crew	describe features around the LM.	
		MCC	1. Compare television images and the astronauts' descrip- tion of features to the over- all features in the map package.	
		MCC/ Crew	2. Revise ALSEP deployment and traverse plans as required	

7.1

c í

TABLE 2.1 - OFF NOMINAL EVA PLANNING

EVENT NO.	CONTINGENCY	AGENI	ACTION	REMARKS
2.	Not enough time for EVA.	Crew	Make careful observations and descriptions of surface through LM windows. Numerous still camera photos should be taken with both black and white and color films from both windows. Photos with polarizing filter in three different positions should be made.	
		MCC	Study landing area on maps and submit pertinent questions relating to surface smoothness or roughness, the contours of surface size of rocks and craters in area.	

*

3

(F

TABLE 2. EVA Decisions (Cont'd)

TABLE 2.1 - OFF NOMINAL EVA PLANNING

EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
	e for brief EVA. or 2 men)	Crew Crew	2 above. 2. Collect contingency sam- ple.	

7.3

۳

P

TABLE 2.1 - OFF NOMINAL EVA PLANNING

-

EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
4.	EVA 1 only. (2 men)	Crew	l. Collect contingency sample.	
		Crew	2. Collect documented samples at the Apennine Front.	Photograph and describe geological features as well as collect samples (in- cluding the core samples).
		Crew	3. Deploy ALSEP as normal and according to priority listing in Mission Require- ments Document, but in direction toward the nearest available and recognizable Hadley Rille material.	
		Crew	4. Perform lunar geology investigation during return traverse from ALSEP site.	Cut down the number of stations and distance attempted.
		Crew	5. Deploy LRRR	LRRR science data may be degraded if de- ployed less than 300 feet from LM.

7.4

r +

TABLE 2.1 - OFF NOMINAL EVA PLANNING

EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
5.	One Man EVA 1. (No EVA 2 or 3.)	Crew	l. Collect contingency sample.	
		Crew	2. Collect documented sam- ples at the Apennine Front.	
		Crew	3. Deploy ALSEP as normal and according to priority listing in Mission Require- ments Document, but in direc- tion toward the nearest avail- able and recognizable Hadley Rille material.	
		Crew	4. Perform lunar geology investigation during traverse from ALSEP site.	Cut down the number of stations and distance attempted.
		Crew	5. Deploy LRRR.	LRRR science data may be degraded if de- ployed less than 300 feet from LM.

s t

•

.

TABLE 2.1 - OFF NOMINAL EVA PLANNING

EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
6.	One man EVA l (EVA 2 planned, no EVA 3).	Crew	l. Collect contingency sample.	
		Crew	2. Collect documented sample at the Apennine Front.	
		Crew	3. Deploy ALSEP as normal.	
		Crew	4. Perform lunar geology investigation during return traverse from ALSEP site.	Cut down the number of stations and distance attempted.
		Crew	5. Deploy LRRR.	LRRR science may be degraded if deployed less than 300 feet from LM.
		Crew	6. Deploy SWC.	

7.6

TABLE 2.1 - OFF NOMINAL EVA PLANNING

¥ 1

EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
7.	One man EVA 2 or EVA 3.	Crew	 ACTION 1. If LRV is usable: a. Perform geology sample collection and documentation. b. Take panorama shots of traverse area. 2. If LRV is not usable. a. Perform geology sample collection and documentation. b. Take panorama shots of traverse area. 	Collect material. Crew will have to carry HTC. Crew may abbreviate documentation require- ments for samples if MCC concurs.

7.7

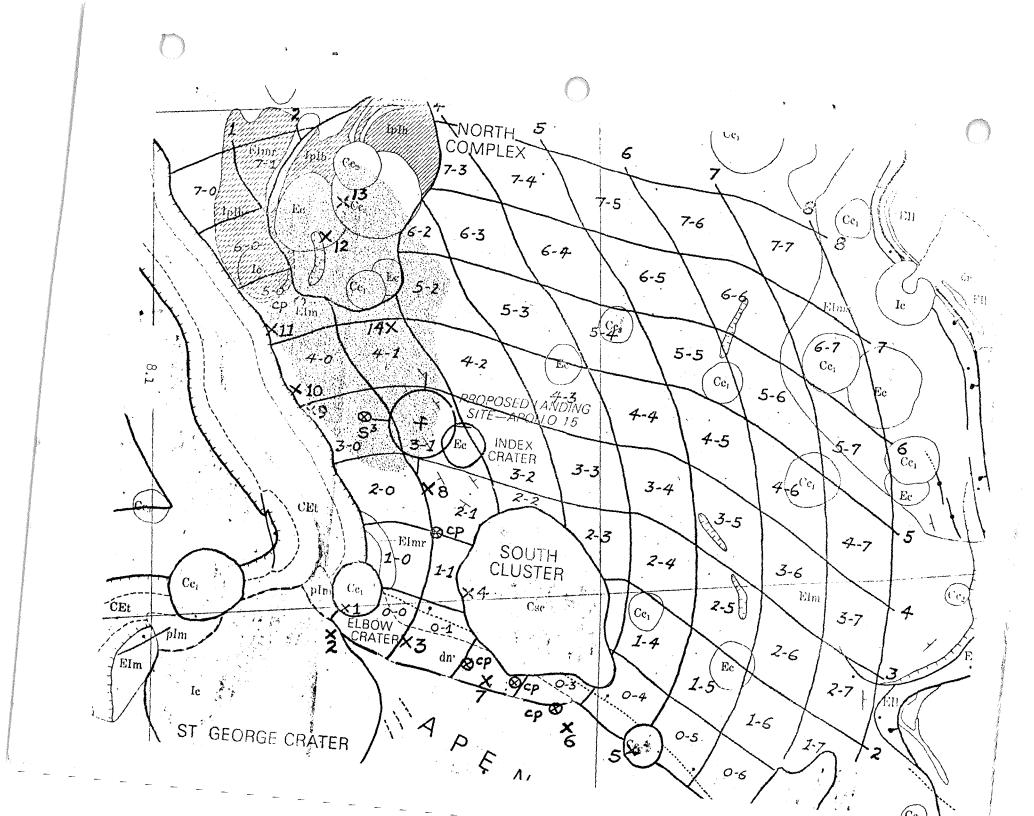
`` *`*⊀

~

~

TABLE 2. EVA DECISIONS

TABLE 2.2 - OFF NOMINAL LANDINGS


(

r

_

ł

Section of the sectio

TABLE 2.2 - OFF NOMINAL LANDINGS

LANDING POINT CONTINGENCIES

Contingencies have been selected for the following cases:

1. Dispersions in normal landing ellipse 35 (within 3-1) N-S \pm 1 bm. E-W \pm 700 m.

2. Dispersions within no noun 69 ellipse 35
N-S + 1 bm.
E-W + 3.5 bm.

3. Selected points of interest around TCT for no landmark tracking N-S \pm 7.8 bm. E-W \pm 3.1 bm.

4. Selected points of interest around the TCT for west landing point.

Limit: 7.6 km north of front to do 1 hour of front geology.

TABLE 2.2 - OFF NOMINAL LANDINGS

9

.

LANDING POINT (GRID LOCATION)	EV		
	EVA - l	EVA - 2	EVA - 3
2 - 0	Gain time for front exploration (approx. 10 min.)	Essentially nominal (move Station 8)	Addition of 1 bm Reduce 10 to 15 minutes from North Complex
2 - 1	Essentially nominal	Essentially nominal (move Station 8)	Same as 2 - O
2 - 2	Same as 3 - 2	Same as 3 - 2	Same as 3 - 2

8 •3

. Denie i s .

٠

,

۲

٤.

8.4

٨

TABLE 2.2 - OFF NOMINAL LANDINGS

LANDING POINT	EVA		
(GRID LOCATION)	EVA - 1	EVA - 2	EVA - 3
3 - 0	No significant impact Adjust traverse distances and times	No significant impact Station 5 may be beyond distance limit	No significant impact
3 - 1	Normal landing point.	Normal landing point.	Normal landing point.
3 - 2	Minor adjustment to distances	Minor adjustments to distances	Shorten Station 14 to accommodate tasks from EVA 1, 2.
3 - 3	Do traverse on east side of sec crater cluster Do ALSEP on Refern.	 a) Approx. 1¹/₂ hr. at Front (1,2,3) + approx. 1 hr. 24 min. of Stop 8 b) Approx. 1¹/₂ hr. at 1, 2, 3 + traverse along Front toward Stop 6. + Stop 8 	 a) North Complex - Sta.12 & + Mare Stops within 3.7 b b) Rille Stops only (9,10,11 + Mare Stops within 3.7 b
3 - 4	Same as 3 - 3	 a) Approx. l¹/₂ hr. at Front (1, 2, 3) + Rille tasks 9, 10, ll one bm. south of planned site. + Station 8 b) Approx. l¹/₂ hr. at Front + traverse along Front toward Stop 7 + Stop 8 	 a) North Complex - Sta. 12 & + Mare Stops within 3.7 br b) Rille Stops only (9, 10, 1 + Mare stops within 3.7 br

a a

TABLE 2.2 - OFF NOMINAL LANDINGS

+ 4.

8 • 5

LANDING POINT	EVA		
(GRID LOCATION)	EVA - l	EVA - 2	EVA - 3
4 – 0	Adds 16 min driving time 16 min. of tasks at end of EVA 1. Accomplish later EVA's.	 Adds 16 min. driving time a) Drive by Stop 4 and return after Front Stops. If it looks important. b) Do all or part of 8 depending importan of 4. c) May not reach Sta. 5 d) Add in EVA 1 LM task at LM. Move 8 in clo to LM 	5 S
4 - 1	Same as 4 - O	Same as 4 - O	Same as 4 - O
4 - 2	Adds 1 km distance to Front (16 min. driving time) Same as 4 - 0	Same as 4 - O	Adds 1 km to Rille (8 min. NET drive time) May have to pickup up to 30 min. tasks from EVA Sta. 8. Near LM.
4 - 3	Adds 25 min. driving time. Present ground rules call for deleting 25 min. of post ALSEP.	 a) Adds 25 min. drive time on normal EVA 2 traverse. b) Use approach to east of secondary crater cluster means new location for Station 4 (33 min. to front crater.) 	Adds 33 min. drive time Delete SSS's Delete 16 min. at 12, 13 Do leftover tasks at LM with LM tasks to eliminate extra stop and allow complet: of Sta 8 tasks at same site.

۵

¥.

TABLE 2.2 - OFF NOMINAL LANDINGS

LANDING POINT	EVA	A IMPACT AND ACTION		
(GRID LOCATION)	EVA - 1	EVA - 2	EVA - 3	
4 - 4	Adds 41 min. driving time Treat as 45 min. late at Stop 1.	Same as 4 - 3.	Must shorten 9, 10, 11 by 20 minutes. Keep 12, 13 within walk back limit. Stop 14 can be increased by 15 min. because of walk back. Remaining tasks from EVA 1.	
4 - 3b	Traverse to South in vicinity of Front crater - Return to deploy ALSEP (50 MN time at Front).	Traverse to Front in vicinity of Elbow and St.George (Sta. 1,2,3) and traverse to Rille (Sta. 9,10,11).	Traverse to North Complex and Mare.	
4 - 4b	Same as 4 - 3b. (1 hr. at Front)	Same as 4 - 3b. (l hr. 3 min. at Front) (l hr. at Rille)	Same as 4 - 3b.	

8.6

۲

ø

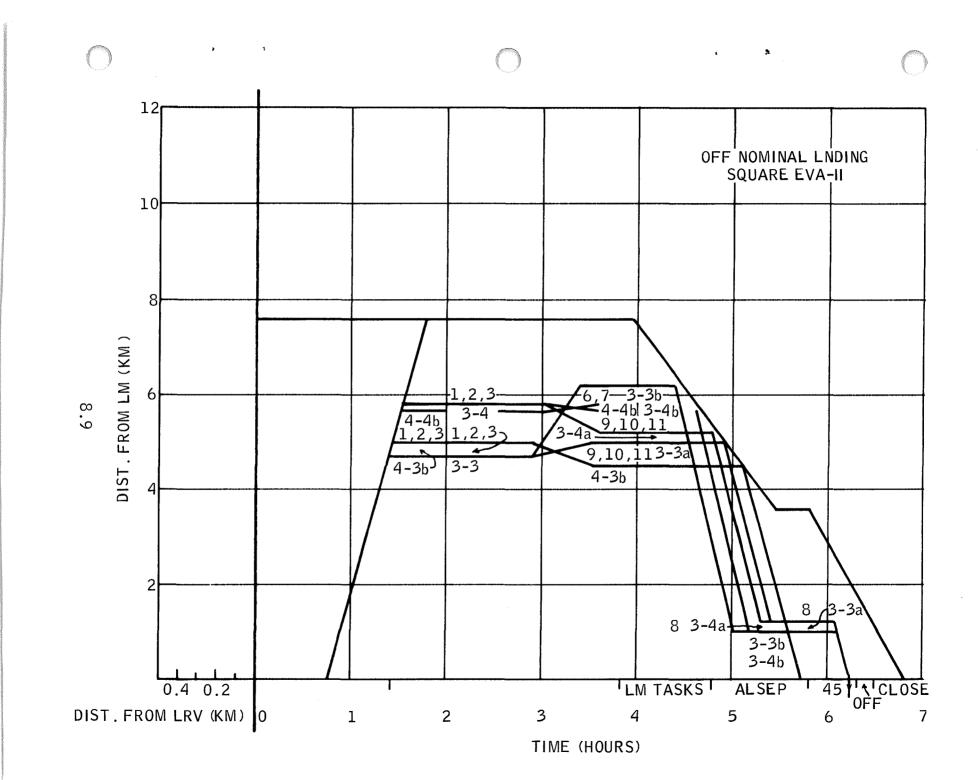
¥

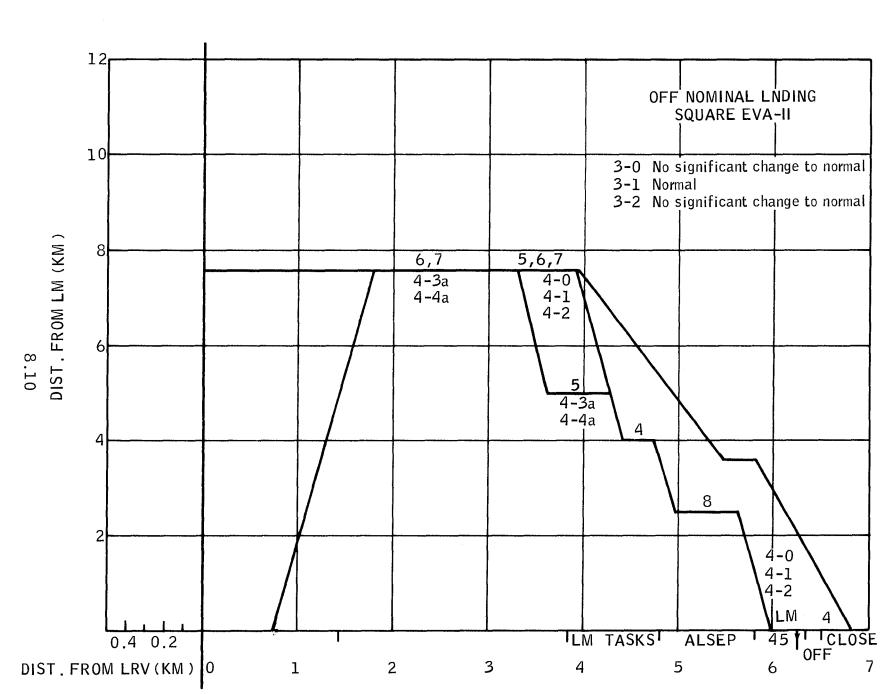
د

TABLE 2.2 - OFF NOMINAL LANDINGS

CONTINGENCY LANDING POINT ON WEST SIDE OF RILLE

(Degraded descent propulsion)

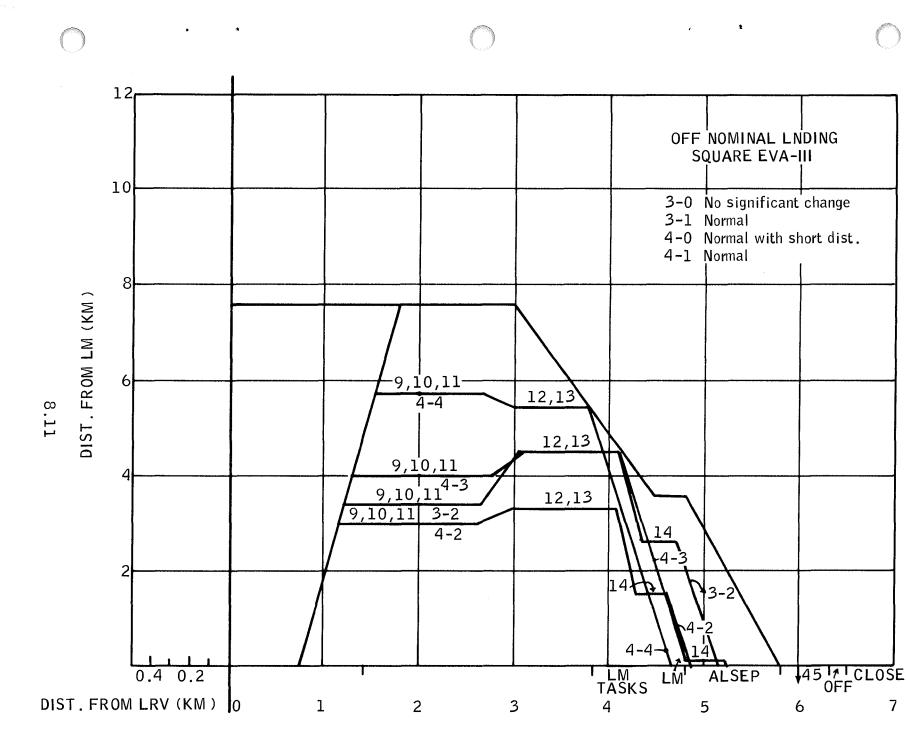

Prime Targets:


ţ

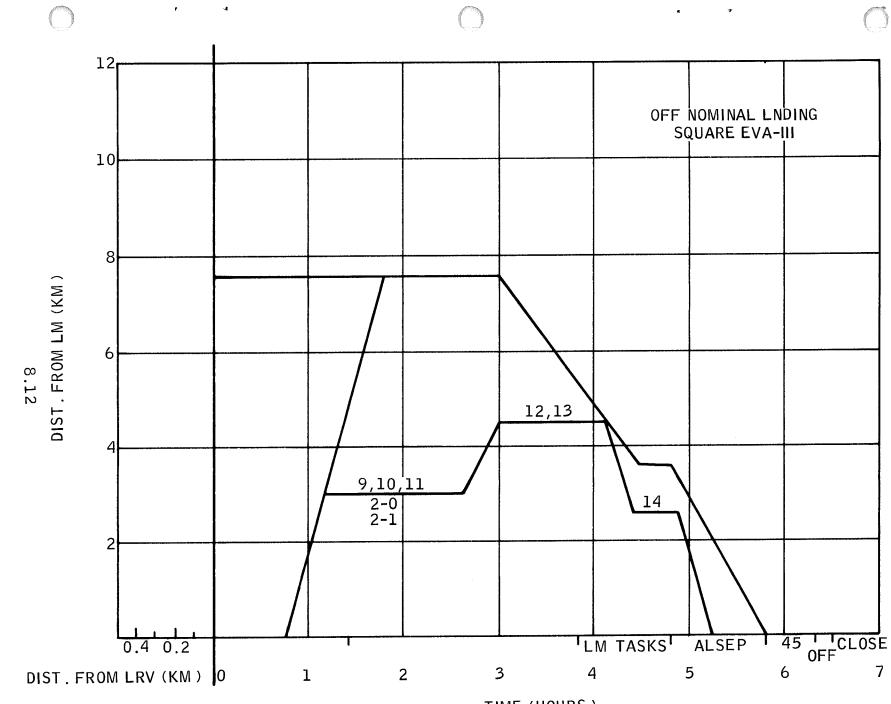
1

- 1. Detailed sampling at Bridge Crater to look for Front throwout breccias radial sampling.
- 2. Sampling of Mare using craters such as Crook and OS.

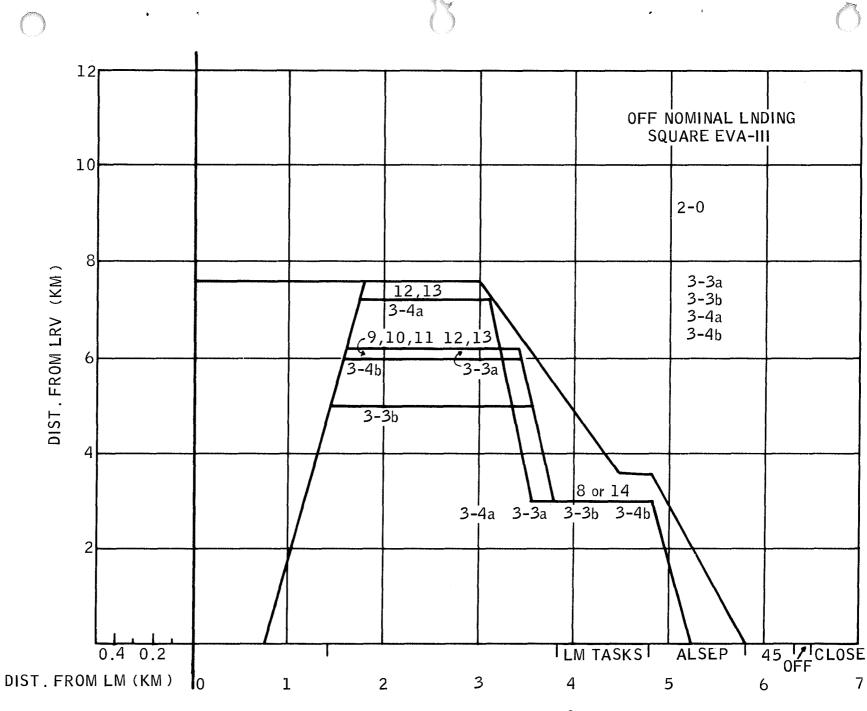
3. Sampling of Rays.



TIME (HOURS)


۰.

٠


.. **1**

TIME (HOURS)

TIME (HOURS)

8.13

TIME (HOURS)

TABLE 2. EVA DECISIONS

4

.

TABLE 2.3 - DELAYED EVA TIMELINES

	О ·	4	\bigcirc		\bigcirc
			TABLE 2. EVA Decision	S	
			TABLE 2.3 - DELAYED EVA TI	MELINES	
	PROBLEM	EFFECT	EVA #1 ACTION	EVA #2 ACTION	EVA #3 ACTION
	EVA Plan - Update #1 - Arrive at Stop #1				
	A. Up to 17-Minute Delay	Delete portions of tasks at LM.	Switch LM site photos to CDR while LMP deploys SWC. Delete: • Samples at ALSEP site • Polarimetric Photog.		•
	B. 17 to 36-Minutes Delay	Delete portions of tasks at LM. Reduce geology time.	Delete tasks in A above. Reduce or Delete: Station 3 and 5 minutes travel down front.	Perform items deleted from EVA #1 at Station 8 or at LM at end of EVA #2.	
	C. 36 to 46-Minutes Delay	Delete portions of tasks at LM. Reduce geology time.	LMP: Deploys SWC CDR: Deploy LRRR LM Site Photog. Delete: • Polarimetric Photog. • Samples at ALSEP Site • Station 3	Perform ALSEP Photog.	
9.1			Drill deep core stem sample and leave drill core in hole until EVA #2.	Finish deep core stem sample.	

. .

TABLE 2.3 - DELAYED EVA TIMELINES (CON'T)

x \$

<u>PROBLEM</u> D. 46 to 54-Minutes Delay	EFFECT Must shorten geology time. Delete portions of tasks at LM.	EVA #1 ACTION Deploy LRRR Delete: • Polarimetric Photog. • Samples at ALSEP Site • Station 3 Drill deep core stem sample and leave drill core in hole until EVA #2.	EVA #2 ACTION Perform ALSEP Photog. Do SWC Deployment. Do LM Site Photos. Finish deep core stem sample. Do Station 8 activities at ALSEP site. Comprehensive Sample (negates need for ALSEP samples) • Rake Sample • Double Core Sample • Soil Sample • Rock Sample • Deep Trench Sample • Trench Samples • Special Environmental Sample (SESC)	<u>EVA #3 ACTION</u>
E. More than 54- Minutes Delay	Must shorten time at Front. Delete portions of tasks at LM.	Leave drill at ALSEP site in proper oriented stowed positions. Deploy LRRR Shorten time at Front. Delete: • Polarimetric Photog. • Samples at ALSEP Site • Station 3 • Delete portions of ALSEP deployment.	Do SWC Deployment. Do LM Site Photos. Do ALSEP Photos. Drill deep core stems. Finish ALSEP deployment. Do Station 8 activities at ALSEP site. Comprehensive Sample (negates need for ALSEP samples) • Rake Sample • Double Core Sample • Soil Sample • Rock Sample • Deep Trench Sample • Trench Samples • Special Environmental Sample (SESC)	Return to Front <u>or</u> North Complex depending on real time evaluation of EVA #1 and EVA #2.

TABLE 2.3 - DELAYED EVA TIMELINES (CON'T)

۵.

• •

PROBLEM	EFFECT	EVA #1 ACTION	EVA #2 ACTION	EVA #3 ACTION
F. More than 90- Minutes Delay	a) If l-hour minimum at Front is possible	Do Front traverse. Delete portions of ALSEP deployment.		Return to Front <u>or</u> North Complex depending on real time
	b) If l-hour minimum at Front is not possible.	Delete Front traverse. Perform ALSEP deployment	Front traverse - to St. George and traverse to East.	evaluation of EVA #1 and EVA #2.

TABLE 2.	EVA Decisions

TABLE 2.3 - DELAYED EVA TIMELINES (CON'T)

٠

ð

PROBLEM	EFFECT	EVA #1 ACTION	EVA #2 ACTION	<u>eva #3</u>	ACTION	[
EVA Plan - Update #2 - Arrive at LM Late For ALSEP Deployment						
l7-Minute Delay	Delete tasks at LM	Same as 17-min. late at Stop l.		Same a arr St	s EVA # op l.	l cont
36-Minute Delay	Delete tasks at LM	Same as applicable Stops in 36-min. delay at Stop 1, plus may drill deep core sample and leave drill core in hole until EVA #2.	Finish deep core sample.	11 17	"	"
46 -Minute Delay	Delete tasks at LM	Same as 46-min. late at Stop l.	Finish deep core sample.	11 11	"	**
46 -90 Minute Delay	Cannot complete all of ALSEP deployment.	Leave ALSEP at completion of last experiment deployment.	Complete ALSEP at beginning EVA #2 (0-40 min. required)	11 11	11	11
90-105 Minute Delay	Cannot complete ALSEP C/S Deployment	Offload, carry ALSEP to site, fuel RTG and connect cable.	Complete ALSEP at beginning EVA #2 (60-min. required)	11 11	11	11
105-135 Minute Delay	Cannot emplace ALSEP at site.	Offload ALSEP - do not fuel.	Complete ALSEP at beginning EVA #2 (1 + 35 required)	** **	**	"
135 + Minute Delay	Cannot offload ALSEP.	Deploy SWC, flag polarimetric photog, etc.	Complete ALSEP at beginning EVA #2 (2 + 40 required)	11 11	*1	"

9.4

.

PROBLEM	TABLE EFFECT	2.3 - DELAYED EVA T EVA #1 ACTION	IMELINES (CONTY)	EVA #3 ACTION
LRV Traverse Rates			· · ·	/
8 KPH	None	50 - 14 - 14 - 14 - 14 - 14 - 14 - 14 - 1	- «»	
7 КРН	Adds 9 min. total driving time (4 min. in return to LM)	Same as 17-min. delay.	-	• • • • • •
6 крн	Adds 23 min. total driving time (10 min. in return to LM)	Same as 36-min. delay.		
5 КРН	Adds 39 min. total driving time (17 min. in return to LM)	Same as 46-min. delay.	•	
4.5 КРН	Adds 50 min. total driving time (22 min. in return to LM)	Same as 54-min. delay.		
3.3 KPH (Walking <u>Equivalent</u>)	Adds 50 min. total driving time. Limited to 3.7 KM dist.	Same as Walking Traverses.		•

.

9.5

. د د الغریز ک

12Anduite

TABLE 2.3 - DELAYED EVA TIMELINES (CON'T)

LRV TRAVERSE RATE	EFFECT ON EVA - 2	ACTION
8 крн	None	Preplanned.
7 KPH	Adds 17 min driving time (stop 5 outside LRV/BSLSS limit)	Reduce distance along front to keep science time same. Eliminate stop 5 (can go Z 2.75 KM past tur do stop 6 and 7 select feature to do 5 type activities.
6 крн	Adds 41 min driving time	Reduce distance down front between 7 and 6 2 + 30 time on front. Consider deleting -7 (stop 4) and reducing stop 8.
5 КРН	Adds 71 min driving time	Reduce distance down front 2 + 30 time on front. Consider deleting (stop 4 and reducing stop 8.
4 крн	Adds 119 min driving time (max distance 54.1 KM with Zero range from LRV limit.)	Consider going to front toward west to keep max distance from LRV higher. Delete stop 4, reduce stop 8.
3.3 KPH	Limited to 3.7 KM (BSLSS/OPS limit)	Same as walking traverse.

9.6

Enclosure

F

TABLE 2. EVA DECISIONS

i

TABLE 2.d - EVA WALKING TRAVERSE

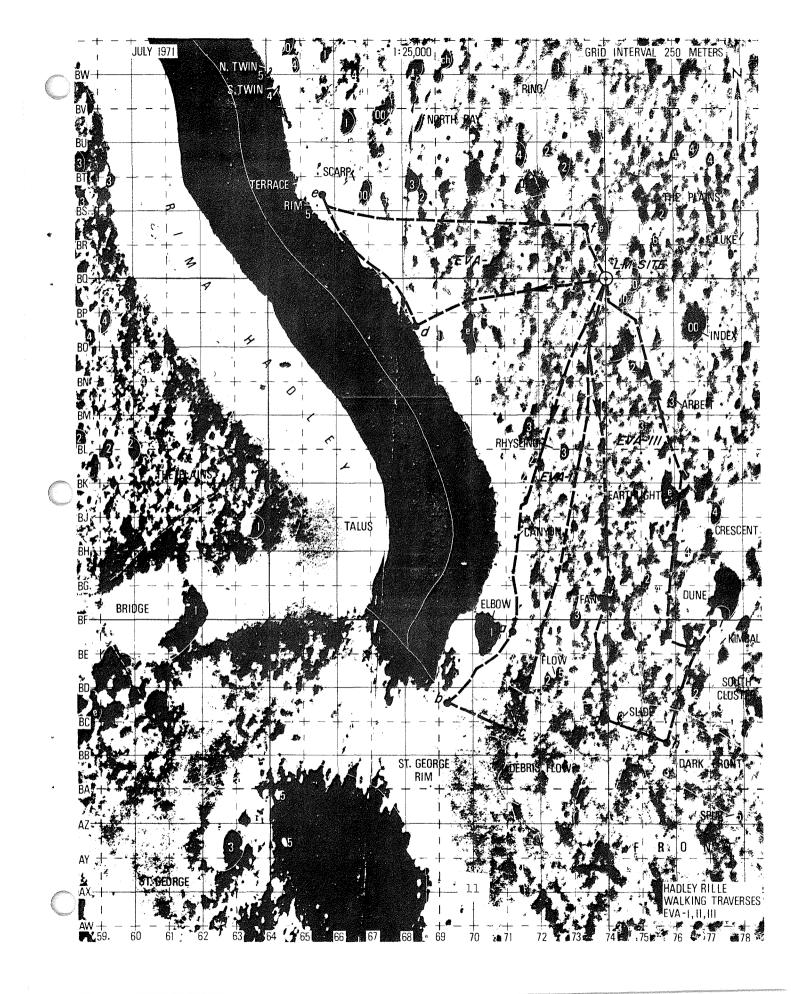


TABLE 2 O Decisions

•

5.

TABLE 2.4 - EVA I WALKING TRAVERSE

٠,

.

	STATION/ • <u>ACTIVITY</u>	ELAPSED TIME AT START	SEGMENT TIME	GEOLOGICAL FEATURES	OBSERVATIONS AND ACTIVITIES
、 、	LM	- .	1:43 .	SMOOTH MARE	SEE SECTION
	TRAVEL	1:43	1:10	ACROSS TYPICAL SMOOTH MARE FILL TOWARD RIM OF HADLEY RILLE	OBSERVE AND DESCRIBE TRAVERSE OVER SMOOTH MARE FILL MATERIAL DESCRIBE SURFACE FEATURES AND BLOCK DISTRIBUTION NOTE ANY DIFFERENCES BETWEEN MARE AND RILLE RIM MATERIAL
`. 	a	2:53	0:15	NEAR SOUTHERN PART OF ELBOW CRATER EJECTA BLANKET	RADIAL SAMPLING OF ELBOW CRATER PAN
v	TRAVEL	3:08	0:17	TO APENNINE FRONT SLOPE NORTH OF ST. GEORGE CRATER	LOOK FOR CHANGES IN LITHOLOGY OR GROUND TEXTURE AS INDICATIONS OF BASE OF FRONT COMPARE MARE AND RILLE RIM MATERIAL TO APENNINE FRONT OBSERVE CHARACTER AND DISTRIBUTION OF ST. GEORGE EJECTA BLANKET
	b	3:25	0:43	NEAR BASE OF APENNINE FRONT NORTH OF ST. GEORGE CRATER	RADIAL SAMPLE OF ST. GEORGE CRATER AS SLOPE PERMITS COMPREHENSIVE SAMPLE AREA AT APENNINE FRONT DOUBLE CORE TUBE STEREO PAN FROM HIGH POINT - 100 m BASE ALONG FRONT FILL SESC AT APENNINE FRONT

TABLE 2.4 - EVA I WALKING TRAVERSE (CONT)

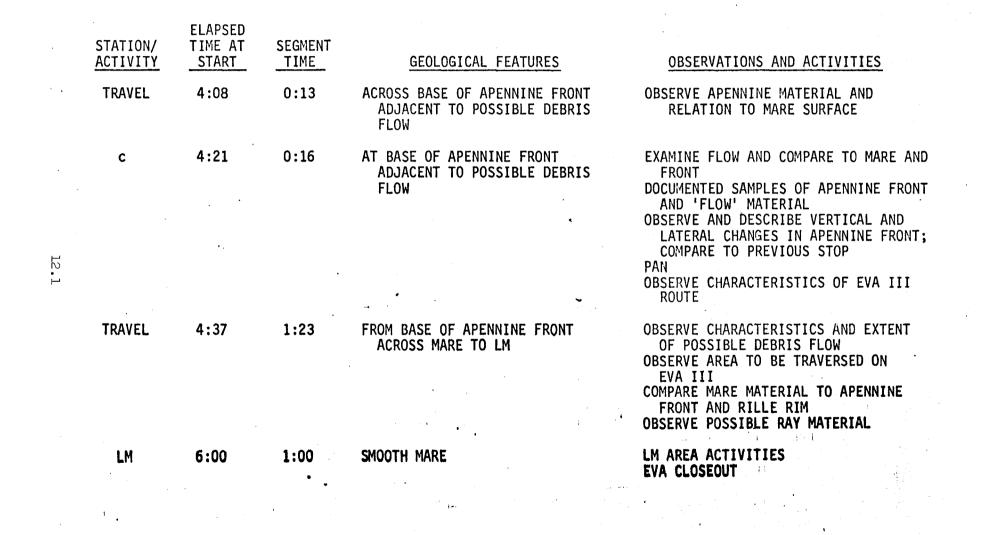
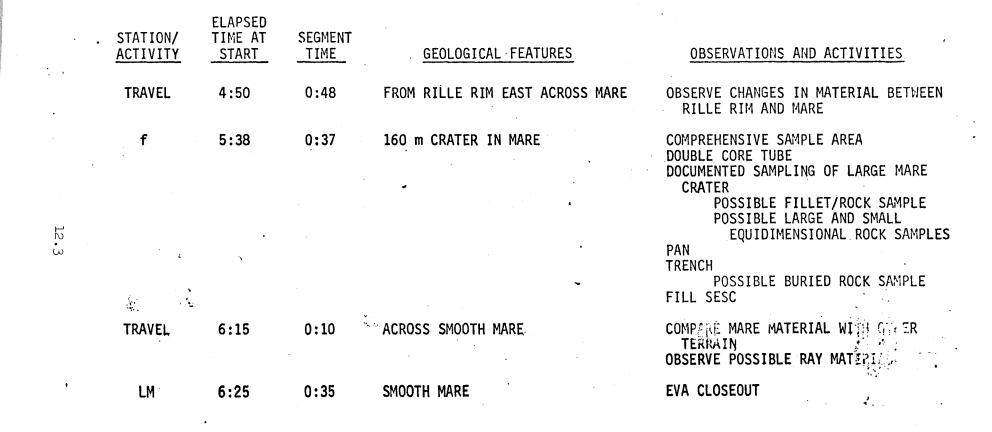



TABLE 2.4 - EVA II WALKING TRAVERSE (CONT)

	STATION/ ACTIVITY	ELAPSED TIME AT START	SEGMENT TIME	GEOLOGICAL FEATURES	OBSERVATIONS AND ACTIVITIES
•	LM	-	2:48	SMOOTH MARE	EGRESS LM ALSEP DEPLOYMENT PREPARE FOR TRAVERSE
	TRAVEL	2:48	0:34	ACROSS SMOOTH MARE BETWEEN LM AND RIM OF HADLEY RILLE	COMPARE SMOOTH MARE MATERIAL TO RILLE RIM MATERIAL
12.2	d	3:22	0:31	AT RIM OF HADLEY RILLE	OBSERVE AND DESCRIBE RILLE AND FAR WALL 500-mm LENS CAMERA PHOTOGRAPHY COMPREHENSIVE SAMPLE AREA SINGLE (DOUBLE) CORE TUBE PAN DOCUMENTED SAMPLING OF CRATER AT EDGE OF RILLE
	TRAVEL	3:53	0:29	ALONG RILLE RIM TO TERRACE	DESCRIPTION OF RILLE AND RIM MATERIAL PHOTOGRAPHY AS APPROPRIATE
	e .	4:22	0:28	RILLE RIM AT TERRACE	OBSERVE AND DESCRIBE RILLE AND FAR RILLE WALL; COMPARE TO PREVIOUS OBSERVATIONS 500-mm LENS CAMERA PHOTOGRAPHY DOCUMENTED SAMPLES OF RILLE RIM AND CRATER AT EDGE OF RILLE PAN COMPARE RILLE RIM MATERIAL.TO OTHER TERRAIN

TABLE 2.4 - EVA II WALKING TRAVERSE (CONT)

TABLE 2.4 - EVA III WALKING TRAVERSE (CONT)

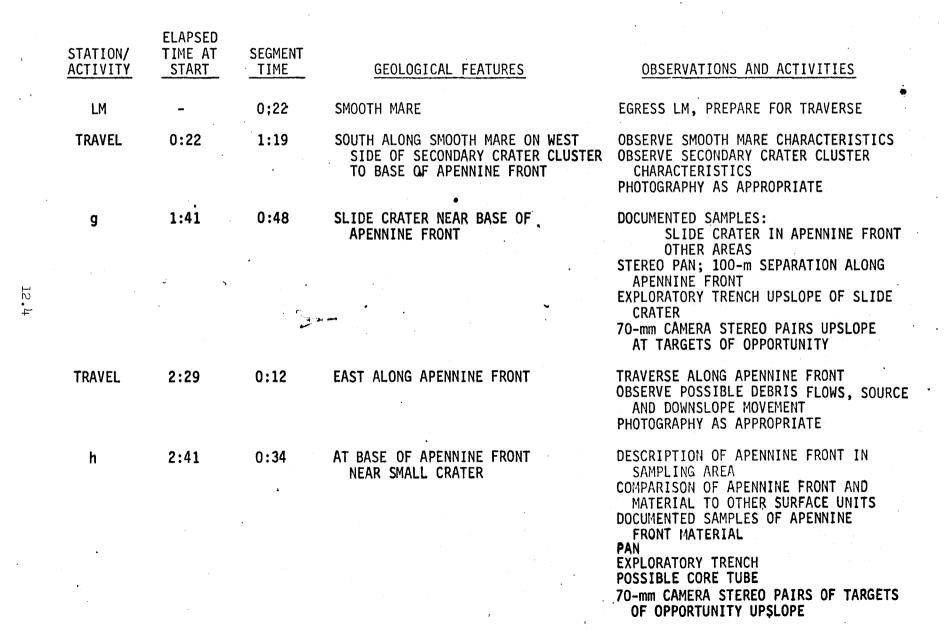


TABLE 2.4 - EVA III WALKING TRAVERSE (CONT)

• ,

	STATION/ ACTIVITY	ELAPSED TIME AT START	TIME	GEOLOGICAL FEATURES	OBSERVATIONS AND ACTIVITIES
• • •	TRAVEL	3:15	0:24	FROM BASE OF APENNINE FRONT TO SOUTH OF DUNE CRATER IN SECONDARY CLUSTER	OBSERVE SECONDARY CRATER DEPOSITS AND RELATION TO OTHER TERRAIN OBSERVE EASTERN EDGE OF POSSIBLE DEBRIS FLOW FROM APENNINE FRONT PHOTOGRAPHY AS APPROPRIATE
	i	3:39	0:21	SECONDARY CRATER CLUSTER: SOUTH OF DUNE CRATER	SOIL SAMPLE DOCUMENTED SAMPLING PAN EXPLORATORY TRENCH
12.5	•	· · · · · · · · · · · · · · · · · · ·	• •		POSSIBLE CORE TUBE THROUGH SECONDARY EJECTA OBSERVE CRATER INTERIOR AND EJECTA SAMPLE TYPICAL AND EXOTIC ROCK TYPES COMPARE SECONDARY CRATER MATERIAL TO OTHER TERRAIN UNITS
	TRAVEL	4:00	1:15	ALONG WEST SIDE OF SECONDARY CRATER CLUSTER, AND ACROSS SMOOTH MARE	OBSERVE SECONDARY CRATER DEPOSI.S COMPARE MARE MATERIAL WITH GILLS TERRAIN OBSERVE POSSIBLE RAY MATERIAL
	LM	5:15	0:45	SMOOTH MARE	EVA CLOSEOUT

TABLE 3. MESA Deployment

£.

x *F*

EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
1.	MESA release handle will not release.	Crew	1. Attempt to free release handle by exerting side loads on pip pin.	
		Crew	2. Attempt to reach cable from release handle to MESA. Pull on this cable or cable bell crank mechanism with hand to deploy MESA.	
		Crew	3. Attempt to reach cable beyond bell crank and pull to deploy MESA.	
2.	Release handle releases, MESA does not deploy.	Crew	1. Try repeated pulls on release handle.	
		Crew	2. Manually deploy MESA from surface with lanyard.	
		Crew	3. One crewman pull on MESA lanyard while other crewman pulls release handle.	
3.	MESA fails to stop and hits lunar surface (lanyard breaks).	Crew	l. Attempt to block up MESA with LRRR pallet.	
	DI Catto J.	Crew	2. Attempt to tie up MESA if lanyard available.	

TABLE 3. MESA Deployment (Cont'd)

3

τ t

EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
4.	Unable to open SRC	Crew	1. Hit corners of SRC lid with available tools and attempt to pull lid free.	
		Crew	2. If forced to abandon SRC #1, use MESA sample collec- tion bag for Selected Samples and transfer the bag to LM ascent stage in ETB and stow in the ISA.	Loss of SRC #1 will result in the loss of 40 documented sample bags, 6 drill stems and 1 environmental soil sample container (SESC).
		Crew	3. If forced to abandon SRC #2, use MESA sample collec- tion bags for documented samples and transfer the bags to LM ascent stage in the ETB and stow in the ISA.	Loss of SRC #2 will result in the loss of 6 core tubes, 2 SESC, and 80 documented sample bags.
5.	SRC Seal Area Dirty.	Crew	Use hand brush to clean seal.	

· · · ·

د

.

 \bigcirc

EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
6.	Unable to latch SRC.	Crew	l. Check that spacer has been removed. If not, remove.	
		Crew	 2. Open and look for interference. a. Relocate item, shake or pat to settle loaded collection bag. If "O" ring is out of groove, pull out and discard. 	
			b. Remove excess packing material or sample and repack.	
		Crew	3. If no apparent interfer- ence close and engage other strap latch. If this latch will rotate to within 30° of being closed, place other hand on back of box to permit application of maximum clos- ing pressure by a muscular squeezing action.	
			a. If this strap latches, try first latch again in the same manner.	

TABLE 3. MESA Deployment (Cont'd)

2

4

EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
6. (Cont'd)			 b. If the second latch will not latch, return to earth with the first latch closed. c. If still cannot latch at least one side, abandon SRC. 	
		Crew	4. Transfer samples in Sample Containers.	
7	Unable to transfer items via LEC.	Crew	l. Use LEC as a tether, attach and pull it up to hatch.	
		Crew	2. If possible climb ladder while holding SRC.	
	6. (Cont'd)	 6. (Cont'd) 7. Unable to transfer items via 	6. (Cont'd) 7. Unable to transfer items via Crew LEC.	 6. (Cont'd) b. If the second latch will not latch, return to earth with the first latch closed. c. If still cannot latch at least one side, abandon SRC. 7. Unable to transfer items via LEC. 7. Unable to transfer items via LEC. 7. Crew 1. Use LEC as a tether, attach and pull it up to hatch. 7. Crew 2. If possible climb ladder

16

.

t

÷

T

TABLE 4. Apollo Lunar Hand Tools

EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
1.	Hand tool carrier (HTC) damaged or unuseable.	Crew	Stow hand tools in bag under seat of LRV.	There may be a reduced geology capability if the HTC is not avail- able.
2.	ALSEP tool subpallet pull pin jams.	Crew	1. Apply additional force while rotating pin with the aid of the second crewman.	
		Crew	2. Use hammer to pry pin free or break pin.	If subpallet cannot be removed, RTG will not radiate heat even- ly, causing excessive heat buildup.
		Crew	3. Remove all accessible tools, stow on MESA and de- ploy subpackage #2 with HTC attached.	

17

× 4

()

TABLE 4. Apollo Lunar Hand Tools (Cont'd)

، **ب**

EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
3.	ALSEP forward tool support pull pin jams.	Crew	l. Apply additional force on pin with hammer.	ALSEP cannot be deployed without DRT, FTT and one UHT.
		Crew	2. Remove UHT and DRT pins, remove UHT's, and attempt to pry open the outer half to break the bracket off at the point where the pin is jammed	
,		Crew	3. Use hammer to break bracket.	
		Crew	4. The tools can be removed by prying the bracket away far enough to gain access to the tools.	
				·
	<u> </u>			

18

ъ в

TABLE 4. Apollo Lunar Hand Tools (Cont'd)

,

۲

EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
4.	ALSEP UHT pull pin jams.	Crew	l. Apply additional force on pin with hammer.	Note: ALSEP cannot be deployed without access to DRT, FTT and one UHT.
		Crew	2. Remove DRT pin and attempt to break the bracket off at the point where the pin jammed.	
		Crew	3. Use hammer to break bracket.	
		Crew	4. The tool can be removed if the bracket is pried away far enough to gain access to the tools.	
5.	ALSEP DRT pull pin jams.	Crew	l. Apply additional force while rotating pin.	ALSEP cannot be de- ployed without DRT, FTT, and one UHT.
		Crew	2. Apply additional force on pin with hammer or break pin.	
		Crew	3. Attempt to break the brac- ket off at the point where the pin jammed.	
		Crew	4. Use hammer to break bracket.	
		Crew	5. The tools can be removed if the bracket is pried away far enough to gain access to the tools.	The DRT may be used with the bracket attached.

TABLE 4. Apollo Lunar Hand Tools(Cont'd)

EV	ENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
6.		Handle comes off Contingency Lunar Sample Return Container before sampling, container falls on lunar surface.	Crew Crew	 Attempt to retrieve with handle. Get tongs and retrieve bag from surface, then re- install bag ring on handle. 	
7.	·	Handle will not come off Contingency Lunar Sample Return Container after sampling.	Crew	 Remove clip. If handle is stuck, bend sampler toward cup ring until bag retaining pin is free of cup ring (approximately 90°) and remove bag. 	
8.		Unable to open special envir- onmental sample containers (SESC).	Crew	l. Unable to open - hit rotation handle with hammer.	If it is not possible to open and close container, abandon sample task.
			Crew	2. Unable to seal - check/ remove both seal protectors. Check/free lanyard if imped- ing proper lid manipulation.	

· ·

TABLE 5. Cameras

EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
1.	Still camera not working.	Crew	test photograph 2. Keep in view of tele- vision and time sequence	Still camera includes all 16mm, 70mm, and 35mm cameras.
• •		Crew	cameras so long as data return not compromised. 3. Use photomap if LM loca- tion is known, to locate sampling sites with reference to LM.	

27

 \bigcirc

1 N

TABLE 6. Solar Wind Composition Experiment

.

ĸ

ſ	EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
	1.	Pole will not go into sur- face.	Crew	Lean against LM, facing sun.	
	2.	Pole partially extended.	Crew	1. If pole is half or more of normal length, continue experiment.	
			Crew	2. Remove foil and proceed to event 6.2.	
	3.	Reel not removable. No foil exposed to solar radiation.	Crew	Discard experiment.	
	4.	Foil torn during extension.	Crew	Continue experiment.	
	5.	Foil comes off reel.	Crew	Hang foil on pole by lanyard.	
	6.	Foil reel comes off poles.	Crew	1. Reconnect to pole.	
			Crew	2. Hang foil on LM structure facing most available solar radiation.	
	7.	Unable to reroll foil by spring.	Crew	Roll by hand or fold as con- veniently as possible.	
	8.	No SWC bag available.	Crew	Continue experiment. Bag not mandatory. Attempt to put a bag over each end.	

23

,

۰,

 \cap

TABLE 6. Solar Wind Composition Experiment (Cont'd)

X

EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
event no.	Deployment selection alternative.	Crew	In full sunlight at least 6 feet from any shadow.	

ы С .

TABLE 7. Laser Ranging Retro-Reflector Experiment

۲

.

, ,

EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
1.	Unable to deploy LRRR at least 25 feet west of Cen- tral Station.	Crew	 Locate LRRR as far west of Central Station as pos- sible. Locate LRRR as far north- west or north of Central Station as possible and at least 300 feet from the LM. Locate LRRR as far south- west or south of Central Station as possible, and at least 300 feet from the LM. Locate LRRR east or north- east of Central Station at least 300 feet from LM, and at least 10 ft. from the RTG. Locate LRRR southeast of Central Station, at least 300 feet from LM, at least 10 feet from RTG. 	Note: Possible thermal degradation of LRRR due to deposition of lunar debris kicked up by LM ascent stage blast, and RTG heating.

EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
2.	UHT will not engage in LRRR UHT socket.	Crew	l. Try to engage UHT in second UHT socket.	
		Crew	2. Try to engage second UHT in both UHT sockets.	
		Crew	3. If UHT engagement fails, use UHT handle hooked into carry handle to rotate LRRR to lunar surface. Attempt to use UHT handle hooked into carry handle to level and align LRRR.	
3.	UHT disengages from experi- ment due to accidental trig- gering of UHT release mechanism.	Crew	Use UHT handle to hook carry handle, retrieve LRRR and attempt to re-engage UHT in socket.	Reduced thermal con- trol due to degrada- tion of thermal point with lunar dust.
4.	LRRR tips over during deploy- ment.	Crew	l. Pick up unit using UHT handle as a hook.	Dust will degrade per- formance if the unit tips over on the array with the dust cover off.
		Crew	2. Brush off with EMU brush.	

TABLE 7.Laser Ranging Retro-Reflector Experiment(Continued)

1

t

25

ł

EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
5.	Leveling leg pull pin jams or unable to deploy.	Crew	l. Attempt to pry pin out or jar leg free.	Leveling may be out of limits.
		Crew	2. Attempt to level using core tube or penetrometer for props.	Experiment aiming accuracy stability on the thermal control may be degraded.
6.	Reflector array pull pin jams or lanyard breaks.	Crew	1. If lanyard breaks, attempt to remove pin manually.	
		Crew	2. If pin jams, apply addi- tional force while rotating pin.	
		Crew	3. Apply additional force with hammer or break pin.	
		Crew	4. Use hammer to break bracket.	
		Crew	5. Leave reflector array in stowed position, but con- tinue with LRRR deployment.	Experiment science data may be degraded.

TABLE 7.	Laser	Ranging	Retro-Reflector	Experiment
		(Conti	nued)	

t

ĸ

26

1

¥

EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
7.	Small array will not fully rotate or lock in position.	Crew	1. Examine for obstructions, dislodge obstructions with UHT or MESA tools and re- rotate small array into deployed position.	Force small array into deployed position if necessary.
		Crew	2. Leave small array in partially deployed position. Continue with LRR deployment.	Experiment science data may be degraded.
8.	Alignment mechanism pull pin jams.	Crew	l. Apply additional force while rotating pin.	
		Crew	2. Use UHT handle and attempt to bend or break alignment mechanism free.	Experiment aiming accuracy may be degraded.
		Crew	3. Level by using estima- tion of true verticle and other equipment as a refer- ence, align by using shadows and other equipment orienta- tions.	Without accurate leveling and alignment science data and ther- mal control will be degraded.
9.	Dust cover will not release.	Crew	1. Apply additional force.	
		Crew	2. If unsuccessful or lan- yard breaks, use UHT handle to pry dust cover free at velcro attachment points.	

TABLE 7. Laser Ranging Retro-Reflector Experiment (Continued)

t

t

Contraction of the local distance of the loc

î.

х

EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
10.	Lunar dust degrades reada- bility of bubble level or compass rose, or bubble level or sun compass is damaged.	Crew	1. Level by using estima- tion of true vertical and other equipment as a refer- ence, align by using shadows and other equipment as refer- ences. Ensure ample photo is obtained to verify experi- ment orientation.	Without accurate leveling and align- ment, science data and thermal control may bê degraded.
11.	UHT will not disengage from LRRR UHT socket.	Crew Crew	 Apply additional force: Obtain assistance from second crewman. 	
		Crew	3. Leave UHT in socket.	Experiment aiming accuracy, stability or thermal control may be degraded.

TABLE 7. Laser Ranging Retro-Reflector Experiment (Continued)

t .

83

TABLE 8. ALSEP Offload

, 4

8.1 SEQ Bay Door

EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
1.	SEQ Bay door lanyards unusable (for opening)	Crew	1. Lanyard free from cable, pull cable.	
		Crew	2. Lanyard melted and fused to Inconelif unable to break free with hand pull, use hammer to free and pull cable.	
2.	SEQ Bay doors will not open.	Crew	1. No cable movement (worse case) pry open astronaut pro- tection door and fail mecha- nism. Pull on lanyard again.	
		Crew	2. Use hammer to chop hole in main door Inconel shield at center patch. Hook hammer behind cable and pull to release latch and open door while latch is pulled. Con- tinue to open door upward.	
		Crew	3. With small cable movement, doors are unlatched and can be opened manually.	
3.	SEQ Bay door partially open and jammed.	Crew	 Continue pulling on lan- yard. Get assistance to aid in manually raising door. 	
		Crew	2. Discontinue use of lan- yard and manually raise door.	

, i

8.1 SEQ Bay Door

EVENT NO	. CONTINGENCY	AGENT	ACTION	REMARKS
· 4,	SEQ Bay Door will not lower (for closing)	Crew	Attempt to close manually.	Note: SEQ Bay door should be closed to thermally insulate the LM.
5.	SEQ Bay door partially closed	. Crew	1. Continue pulling on lan- yard while second crewman manually assists in closing door.	
		Crew	2. Discontinue use of lan- yard and manually close door or use hammer to fail mech- anism in order to close door.	

З

i 1

*

۲.

.

*

8.2 Subpackage Removal by Boom

EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
1.	Subpackage latching mecha- nism will not release.	Crew	1. If lanyard pulls loose or mechanism jams, remove ther- mal covering from bottom of SEQ Bay and attempt to move release mechanism lever forward.	
		Crew	2. Use hammer to pry outward from structure on right-hand link of latching mechanism forcing latch over center and releasing packages.	
2.	Subpackage will not slide on rails.	Crew	Get assistance from second crewman.	
3.	Boom will not deploy.	Crew	Release hockey stick at boom interface and manually deploy subpackage.	
4.	Boom partially deployed.	Crew	Use two-man deployment: one supports, other man releases hockey stick at boom inter- face and manually deploys subpackage.	
5.	Ratchet fails.	Crew	Use two-man deployment: One supports, other pulls small lanyard to release hockey stick from boom interface and manually deploy subpackage.	

¢

4

8.2 Subpackage Removal by Boom

EVI	ENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
6.		White portion of deployment lanyard will not release from base of subpackage.	Crew	1. Grasp release latch at base of subpackage and twist with an upward motion in an effort to break the latch or the slot.	
			Crew	2. Attempt to cut lanyard with hammer against LM or rock to break or tear lanyard (webbing) loose.	
7.		Unable to release hockey stick at boom interface (pin jams or lanyard breaks)	Crew	1. Attempt to pull pin manually.	
			Crew	2. Release hockey stick at handle interface.	
8.		Unable to release hockey stick at subpackage interface (pin jams).	Crew	 Apply additional force on pin with hammer or break pin. 	
			Crew	2. Attempt to break the hockey stick off at the point where the pin jammed either manually or with hammer.	
			Crew	3. Attempt to pry hockey stick away from package.	
			Crew	4. Leave hockey stick on subpackage.	Central Station thermal control may be degraded

32

1

8.2 Subpackage Removal by Boom

.

EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
9.	Boom does not retract.	Crew	1. Attempt retraction by both crewmen working simul- taneously, one pulling the lanyard and the second push- ing on boom (if within reach).	Crewmen should spend a minimum amount of time on task before abandoning.
		Crew	2. Apply loads on end of the boom with the hammer while second crewman pulls lanyard.	

З

TABLE 8. ALSEP Offload

8.3 Manual Subpackage Removal

Ŷ

4

EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
1.	Unable to release hockey stick at boom interface (Pin	Crew	1. Attempt to pull pin at pin interface.	
	jammed or lanyard breaks)	Crew	2. Remove package on boom.	
		Crew	3. Remove entire hockey stick by removing pull pin at carry handle interface after boom removal.	
2.	Subpackage latching mechan- ism will not release.	Crew	1. If lanyard pulls loose or mechanism jams, remove ther- mal covering from bottom of SEQ bay and attempt to move release mechanism lever for- ward.	
		Crew	2. Use hammer claw to pry outward from structure on right-hand link of latching mechanism forcing latch over center and releasing sub- packages.	
3.	White portion of deployment lanyard will not release from base of subpackage.		1. Grasp release latch at base of subpackage and twist with an upward motion in an effort to break the latch or the slot.	
		Crew	2. Attempt to cut lanyard with hammer against LM or rock to break or tear (web- bing) loose.	

34

\$

ŧ

8.3 Manual Subpackage Removal

τ τ

EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
4.	Subpackage will not slide on rails.	Crew	Using MESA tools with assist- ance of second crewman, attempt to clear package.	
5.	Unable to release hockey stick at subpackage inter- face (pin jams).	Crew Crew Crew	 pin with hammer or break pin. 2. Attempt to break the hockey stick off at the point where the pin jammed, either manually or with hammer. 3. Attempt to pry hockey stick away from package. 	

35

___/

*

*

TABLE 9. RTG Fueling

EVEN	T NO.	CONTINGENCY	AGENT	ACTION	REMARKS
1.		Lanyard breaks or pulls away from cam lever.	Crew	l. Use hammer/extension as hook and pull forward on cam lever to release	Caution: Direct expo- sure to hot fuel cask could damage or fail the space suit.
			Crew	2. If cam lever cannot be released, abandon ALSEP.	
2.		Cam lever fails to release the upper trunnion after lever is fully deployed.	Crew	1. Use hammer/extension as hook on astronaut guard to break cask free at trunnions while second crewman pulls lanyard to tilt.	
			Crew	2. If upper trunnion cannot be released, abandon ALSEP.	

36

.

s = ==

TABLE 9. RTG Fueling (Cont'd)

EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
3.	Lanyard fails to remove spline lock from cask/dome or breaks.	Crew	1. Use hammer/extension to release second trunnion lock, rotate cask if required, and use hammer/extension as hook to remove spline.	
		Crew	2. Rotate cask, attempt to gain access to fuel capsule by using hammer/extension to destroy cask dome and pry away bands.	
		Crew	3. If spline lock cannot be removed from dome, or dome cannot be removed by impact- ing with hammer/extension, abandon ALSEP.	

37

•

. .

TABLE 9. RTG Fueling (Cont'd)

EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
4.	Cask will not rotate with lanyard pull.	Crew	1. Verify upper trunnion release by attaching exten- sion to hammer, hook hammer on astronaut guard and ensure that the cask is free of the upper trunnion.	Exercise caution when working in close proximity to hot fuel cask.
		Crew	2. Request aid of the second crewman to apply forward and downward force with hammer/ extension on the guard while the first crewman attempts to rotate with the lanyard.	
		Crew	3. Continue to apply force to fail gear box if required.	If gear box fails, second crewman must support cask with the hammer/extension handle to the proper angle for fuel capsule removal.
		Crew	4. If cask cannot be rotated, abandon ALSEP.	

38

.

.

Second Second

٠

TABLE 9. RTG Fueling (Cont'd)

EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
5.	Engaging mechanism on DRT does not lock on cask dome due to mechanical failure.	Crew	1. Apply forward pressure and rotate. Attempt to re- move dome with side loading on the DRT so it will be removed with some assistance from the tool. (Caution: Stand clear of dome when finally released and removed.)	
		Crew	2. After dome is rotated (without locking pin engage- ment) use hammer/extension to remove dome.	
		Crew	3. Attempt to gain access to fuel capsule by using hammer to destroy cask dome and pry away bands.	
		Crew	4. If dome cannot be re- moved, abandon ALSEP.	•

39

TABLE 9. RTG Fueling (Cont'd)

EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
6.	Lock nut assembly will not rotate.	Crew	1. Apply additional force with hammer on end of the DRT to jar loose the binding while continuing to rotate DRT.	
		Crew	2. Attempt to gain access to fuel capsule by using hammer to destroy cask dome and pry away bands.	
		Crew	3. If assembly cannot be removed, abandon ALSEP.	
7.	Pretension bands do not release causing excessive loading on dome locking legs.	Crew	l. Use hammer/extension to free lugs at the lock nut assembly on the dome.	
		Crew	2. Attempt to gain access to fuel capsule by using hammer to destroy cask dome and pry away bands.	
		Crew	3. If dome cannot be removed, abandon ALSEP.	

 \bigcirc

.

.

TABLE 9. RTG Fueling (Cont'd)

EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
8.	FTT engagement fingers do not expand (inoperative).	Crew	 Visually inspect fingers for debris and re-engage FTT in fuel cask. 	
		Crew	2. Request aid of second crewman to apply additional force to FTT knob.	
		Crew	3. Apply impact pressure on knob by knocking on the LM landing gear.	
		Crew	4. If FTT will not function, the RTG cannot be fueled and ALSEP will be abandoned.	

41

.

¢

 \bigcirc

1 1

TABLE 9. RTG Fueling (Cont'd)

EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
9.	Capsule will not release from cask body after FTT is attached and locked.	Crew	l. Apply additional side loads by wiggling on FTT while pulling capsule out.	
		Crew	2. Retract FTT, rotate 120 ⁰ and repeat task in all three positions.	
		Crew	3. Using hammer/extension apply impact force on side of cask body to free the capsule.	
		Crew	4. Using hammer, apply im- pact force on the end of the FTT to free the capsule.	
		Crew	5. Allow for back plate cool down (5-10 min.) and repeat task.	- - -
		Crew	6. If capsule cannot be released, abandon ALSEP.	

51

κ.

r

 \bigcirc

•

ł

TABLE 9. RTG Fueling (Cont'd)

EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
10.	FTT will not release from capsule while in RTG body.	Crew	l. Visually check engagement alignment.	There will be no prob- lem of excessive heat buildup if the FTT cannot be disengaged from the fueled RTG.
		Crew	2. Check for full outward travel of FTT fingers.	
		Crew	3. Apply additional force to release knob.	
		Crew	4. Leave FTT in place on the fueled RTG. Manually carry subpackage #2 in the barbell mode, or on the LRV. Monitor the RTG/Capsule during pre- paration for the traverse to the site.	
		Crew	5. If fuel capsule is not locked in RTG, carry subpack- age #1 in suitcase mode and transport carry bar on LRV.	

£4

Y

۴.

2 i

TABLE 9. RTG Fueling (Cont'd)

EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
11.	Tempilabel indicates temper- ature of component is in excess of 250 ⁰ F.	Crew	1. Do not handle component manually. Use UHT or MESA tool to avoid direct contact with hot component and con- tinue deployment, if possible.	Caution: Direct ex- posure to temperatures in excess of 250 ⁰ F could damage or fail the spacesuit.
		Crew	2. Unable to continue deployment without coming into direct contact with component, place component in shade and work around hot component until MCC noti- fies that component should have cooled off enough to permit manual handling.	Crew should verify that temperature is less than 250°F before handling.

.

x.

.

E (

EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
1.	Carry bar will not engage in subpackage keyhole socket.	Crew	1. Check mating bar to see if properly mated. Mating bar could be mated 180 ⁰ out of phase.	The carry bar is required for use as an antenna mast and must be transported to the ALSEP deployment site.
		Crew	2. Ensure flange on carry bar is free of debris; if not, clean by impact or with gloved hand.	
		Crew	3. Ensure keyhole socket is clean; if not, clean with available MESA tools.	
		Crew	4. If one or both sockets are unuseable, the LMP must carry subpackage #1 and sub- package #2 in suitcase mode.	Transport carry bar on LRV.

TABLE 10. ALSEP Traverse (Cont'd)

e C

EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
2.	Carry bar sections become disengaged and rotate.	Crew	1. Attempt to relock carry bar sections.	If carry bar sections do not lock, ensure that sections are properly aligned when they are used as an antenna mast in order to permit proper alignment of ALSEP antenna.
		Crew	2. If carry bar sections do not lock, disengage carry bar from subpackages. Use suit- case carry mode and transport carry bar on LRV.	
3.	C a rry bar becomes disengaged from subpackage.	Crew	l. Attempt to re-engage carry bar in subpackage keyhole socket.	The carry bar is required for use as an antenna mast and must be transported to the ALSEP deployment site.
		Crew	2. If carry bar will not remain in keyhole socket, use suitcase carry mode and transport carry bar on LRV.	

TABLE 10. ALSEP Traverse (Cont'd)

r F

EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
4.	Carry bar binds in keyhole socket on subpackage.	Crew	 Ensure trigger release is operable. 	
		Crew	2. If trigger is released, apply additional downward pressure while applying side loads to subpackage #2.	
		Crew	3. Request aid of CDR to lift subpackage #1.	
		Crew	4. With second crewman's UHT, depress antenna lock and rotate subpackage #1 to separate masts. With single section attached to subpack- age #2, continue as in step #2 above.	
		Crew	5. Attempt to break carry bar off at keyhole socket.	
		Crew	6. Separate two carry bar sections and emplace sub- packages #1 and #2 with carry bar section still attached to subpackage.	The ALSEP antenna may be roughly aligned with the antenna aim- ing mechanism mounted on the central station sunshield.

47

x 1

TABLE 10. ALSEP Traverse (Cont'd)

i r

EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
5.	Planned deployment site > 300 feet west of LM (12 o'clock) unsuitable for ALSEP deployment.	Crew	Select alternate site >300 feet Northwest to West or Southwest to West of LM.	Landing site analysis may provide additional inputs.
6.	Planned deployment site includes a crater with walls that slope more than 5°.	Crew	Locate ALSEP components on rim of crater, on elevated local terrain or select another deployment site.	If the crater's south wall slopes more than 5 ⁰ , select another deployment site.
7.	Planned deployment site includes an outcropping whose height is greater than one foot.	Crew	1. Locate ALSEP components at least 12 feet from a one- foot outcropping, 24 feet from a two-foot outcropping, etc.	
		Crew	2. If outcropping cannot be avoided, orient ALSEP components thermal radiators away from outcropping (so as to achieve a clear view of space).	
8.	Planned deployment site is in LM shadow.	Crew	Locate ALSEP components out- side LM shadow, but within <u>+</u> 15° of E-W axis drawn through LM.	Separation distance from LM is more critcal than angular relationship with respect to LM E-W axis.

48

1

i 9

EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
9.	Planned deployment site is comprised of loose, granular soil or small rocks.	Crew	l. Compact individual areas prior to final emplacement of each ALSEP component.	
		Crew	2. Attempt to avoid emplacing ALSEP components on small rocks.	

î (

· ,

ll.l General

EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
1.	Carry bar will not stow on subpallet taper fitting	Crew	 Examine carry bar for obstruction, dislodge obstruction by impact and restow carry bar on sub- pallet taper fitting. 	
		Crew	2. Examine subpallet taper fitting for obstruction, dislodge obstruction with UHT or MESA tools and restow carry bar on subpallet taper fitting.	
		Crew	3. If taper fitting is unusable, stow carry bar on LRV.	The carry bar is required for use as an antenna mast and can- not be discarded or emplaced on the lunar surface where debris might foul the sub- package or aiming mechanism interfaces.
2.	Unable to locate subpackage #1 10 feet due West of sub- package #2.	Crew	Locate subpackage #1 as far from subpackage #2 as possible and attempt to keep RTG out-of-field of view of Central Station radiator.	

٠

Table 11. Subpallet Removal (Cont'd)

• •

11.2 HFE Subpallet Removal

EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
l.	Astronaut pull pin james or lanyard breaks.	Crew	 If lanyard breaks, attempt to remove pins manually. If pin jams, apply addi- tional force while rotating pin. Apply additional force with hammer or break pin. Use hammer to break bracket. 	If Astromate connector cannot be released, abandon HFE deployment after removing HFE subpallet.

Table 11. Subpallet Removal (Cont'd)

•

5

11.2 HFE Subpallet Removal

• •

EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
2.	HFE subpallet pull pin jams of lanyard breaks.	Crew	 If lanyard breaks, attempt to remove pin manually. If pin jams, apply addi- tional force while rotating pin. 	
			 Apply additional force with hammer or break pin. Use hammer to break bracket. Leave HFE subpallet on Subpackage #2, but remove Astromate connector, HFE Electronics Package and HFE Probe Package immediately. 	If HFE subpallet can- not be removed, RTG will not radiate heat evenly, causing exces- sive heat buildup.
3.	HFE subpallet carry handle will not lock.	Crew	Continue HFE deployment using UHT if required.	

TABLE 11. Subpallet Removal (Cont'd)

-

.

11.2 HFE Subpallet Removal

EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
4.	HFE subpallet Boyd bolt spline will not depress.	Crew	l. Check hex head of UHT and, if damaged, use second UHT.	If HFE subpallet can- not be removed, RTG will not radiate heat evenly causing exces- sive heat buildup.
		Crew	2. Use hammer on top of UHT to force depression of Boyd bolt spline.	
		Crew	3. Attempt to overcome spline lock by forcefully rotating UHT.	
		Crew	4. Use hammer to break bracket or strut.	
		Crew	5. Leave HFE subpallet on Subpackage #2, but remove Astromate connector, HFE Electronics Package, and HFE Probe Package immediately	

53

• •

.

٠

TABLE 11. Subpallet Removal (Cont'd)

11.2	HFE	Subpallet	Removal
		N GRO POLICO	

EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
5.	HFE subpallet Boyd bolt will not rotate.	Crew	l. Check hex head of UHT and, if damaged, use second UHT.	If HFE subpallet can- not be removed, RTG will not radiate heat evenly, causing exces- sive heat buildup.
		Crew	2. Attempt to overcome boyd bolt threads by forcefully rotating UHT.	
		Crew	3. Use hammer to attempt to break bracket or strut.	
		Crew	4. Leave HFE subpallet on Sub- package #2, but remove Astro- mate connector, HFE Electron- ics Package and HFE Probe Package immediately.	

47

2

đ

.

TABLE 11. Subpallet Removal (Cont'd)

11.2 HFE Subpallet Removal

EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
6.	HFE subpallet will not come off Subpackage #2.	Crew	l. Ensure both Boyd bolts have been released.	
		Crew	2. Use UHT to ensure that Boyd bolts have been sprung upward.	
		Crew	3. Ensure that front of subpallet has been rasied to clear the mounting stud.	
		Crew	4. Use hammer to force for- ward movement of subpallet or to break bracket or strut.	
		Crew	5. Leave HFE subpallet on Subpackage #2, but remove Astromate connector, HFE Electronics Package, and HFE Probe Package immedi- ately.	If subpallet cannot be removed, RTG will not radiate heat evenly, causing exces- sive heat buildup.

5 5 t. X

TABLE 11. Subpallet Removal (Cont'd)

3

11.3 Side/CCGE Subpallet Removal

EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
l.	Side subpallet Boyd bolt spline will not depress.	Crew	l. Check hex head of UHT and, if damaged, use second UHT.	
		Crew	2. Use hammer on top of UHT to force depression of Boyd bolt spline.	
		Crew	3. Attempt to overcome spline lock by forcefully rotating UHT.	
		Crew	4. Leave side subpallet on Subpackage #2, but remove Side/CCIG and aiming mechan- ism immediately.	If side subpallet can- not be removed, RTG will not radiate heat evenly, causing exces- sive heat buildup.
2.	Side subpallet Boyd bolt will not rotate.	Crew	l. Check hex head of UHT, and if damaged, use second UHT.	
		Crew	2. Attempt to overcome Boyd bolt threads by forcefully rotating UHT.	
		Crew	3. Leave side subpallet on Subpackage #2, but remove Side/CCIG and aiming mechan- ism immediately.	If side subpallet can- not be removed, RTG will not radiate heat evenly, causing exces- sive heat buildup.

TABLE 11. Subpallet Removal (Cont'd)

. .

11.3 Side/CCGE Subpallet Removal

EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
3.	Side subpallet will not come off Subpackage #2.	Crew	1. Ensure both Boyd bolts have been released.	
		Crew	2. Use UHT to ensure that Boyd bolts have been sprung upward.	
		Crew	3. Ensure that front of side subpallet has been raised 3/8 inch to clear mounting stud.	
		Crew	4. Kick side subpallet to force forward movement.	
		Crew	5. Use hammer to force for- ward movement of the side subpallet.	
		Crew	6. Leave side subpallet on Subpackage #2, but remove side/CCIG and aiming mechan- ism immediately.	If side subpallet can- not be removed, RTG will not radiate heat evenly, causing exces- sive heat buildup.

57

.

TABLE 12. RTG Cable Interconnect

. .

EVEN	NT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
1.		RTG cable reel tempilabel dots are all black.	Crew	l. Do not touch RTG cable reel, cable or shorting plug.	Direct exposure to temperature in excess of 250 ⁰ F could damage space suit.
			Crew	2. Use UHT handle to deploy RTG cable, release shorting plug pull pin and retrieve shorting plug.	
			Crew	3. Attempt to carry out RTG cable interconnect using available tools and materials.	
			Crew	4. Stow shorting plug on Subpackage #1 until cool enough to handle manually.	If shorting plug can- not be mated to Central Station, abandon ALSEP.

58

, (

1 H

EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
2.	RTG cable reel Boyd bolts cannot be released.	Crew	 Visually check (if possible) to see if bolt is released and not loose/raised due to side loading. 	Exercise caution when working in close proximity to hot RTG.
		Crew	2. Check for spring loading on bolt.	
		Crew	3. Repeat release procedure, i.e., engage depress, rotate ccw 75°.	
		Crew	4. Insert UHT and apply downward pressure on center spline. Use hammer if necessary, turn ccw to release.	
	•	Crew	5. If spline is depressed and bolt will not rotate, back off slightly cw then turn back ccw.	
		Crew	6. Visually check hex head on UHT and if broken, use second tool.	

59

. •

1

z

 \cap

۲

ŧ

TABLE 12. RTG Cable Interconnect (Cont'd)

2. (Cont'd) Crew 7. If procedure fails to release bolts, tilt package on carry handle side, and utilize UHT to unwind cable manually to expose shorting plug. If RTG cable reel cannot be removed, RTG will not radiate heat evenly, causing excessive heat buildup.	EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
			Crew	release bolts, tilt package on carry handle side, and utilize UHT to unwind cable manually to expose shorting	cannot be removed, RTG will not radiate heat evenly, causing excessive heat

60

. ·

r

z

()

• F

TABLE 12. RTG Cable Interconnect (Cont'd)

EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
3.	Cable reel falls to the lunar surface when final Boyd bolt is removed.	Crew	1. Retrieve cable reel with UHT handle. Determine tempilabel temperature. If under 250°F, grasp reel assembly, connect UHT, and continue deployment.	
		Crew	2. If tempilable indicates a temperature over 250°F, request the aid of the second crewman. The CDR will retrieve reel with UHT, deploy the cable, lay the reel assembly on subpackage #1, secure with UHT and continue deployment.	

61

••

1

4

•

4

÷

EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
EVENT NO. 4.	CONTINGENCY Shorting plug pull pin does not release.	AGENT Crew Crew Crew Crew	ACTION 1. Apply additional force while rotating pin. 2. Apply additional force on pin with hammer or break pin. 3. Use hammer to break bracket. 4. Attempt to separate cable from shorting switch. 5. If shorting plug cannot be mated to Central Station, abandon ALSEP.	REMARKS If ALSEP deployment is terminated anytime prior to Central Station activation, the RTG shorting plug reset lanyard will be pulled to assure the RTG is shorted.
			· · ·	

ч - 4

٤

4

ſ	EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
	5.	Shorting plug connector fails to engage and lock to Central Station (C/S).		 Check shorting plug connector for proper orientation. 	
			Crew	2. Check both connectors for debris on pins or Central Station receptacle.	
	·		Crew	3. Depress outer flange of shorting plug connector to ensure proper function .	
			Crew	4. Reconnect applying additional downward pressure on the flange assembly with the LMP helping to provide additional stability (LMP can aid by holding PLSS).	
			Créw	shorting plug from the RTG cable, discard and connect	If RTG cable connector cannot be mated to Central Station, aban- don ALSEP.

63

••

1

EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
6.	Ampere gauge unreadable due to debris or arrow in ampere gauge is at zero (no movement).	Crew Crew	 Report condition and continue ALSEP deployment. Reset the shorting switch if reading is zero. 	
7.	Shorting plug depressed but ammeter shows no drop in amperage.	Crew Crew	 Reset the switch, and redepress. Apply additional force to shorting plug and note if amperage drops. 	Absence of amperage drop is not justi- fication for abandon- ing ALSEP deployment.
		Crew	3. Disconnect shorting plug from Central Station, separate shorting plug from the RTG cable and connect RTG cable connector to Central Station.	
8.	Shorting plug engages, but falls off when subpackage is rotated.	Crew Crew	 Return subpackage to vertical position, retrieve cable, remove any debris and remate connectors. Ensure locking mechanism 	
			is fully forward.	

64

- ·

٩

÷

TABLE 13. Passive Seismic Experiment

EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
1.	Deploy PSE Stool (Boyd bolt fails to release).	Crew	 Insert UHT and apply downward pressure on center spline. Use hammer if necessary; turn ccw to release. 	
		Crew	2. If spline is depressed and bolt will not rotate, back off slightly cw then turn back ccw.	
		Crew	3. Visually check hex head on UHT, if broken, use second tool.	
	•	Crew	4. Attempt to pry the retainer bracket assembly loose with hammer.	The PSE sensor could be placed directly on the lunar surface, if the PSE stool cannot be released. Experiment thermal control and science may be degraded.
2.	Unable to deploy PSE stool 10 feet west of Central Station.	Crew	Locate PSE stool as far from Central Station and other experiments as possible.	

TABLE 13. Passive Seismic Experiment (Cont'd)

¥

•

8

4

ſ	EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
	3.	Unable to pack lunar surface.	Crew	Provide best PSE stool to lunar surface coupling that site will permit.	
	4.	Boyd bolts do not release on PSE mounts.	Crew	 Visually check (if pos- sible to see if bolt is released and not loose/raised due to side loading. 	
			Crew	2. Check for spring loading on bolt.	
			Crew	3. Insert UHT and apply downward pressure on center spline. Use hammer if neces- sary; turn ccw to release.	
			Crew	4. If spline is depressed and bolt will not rotate, back off slightly cw then turn back ccw.	
			Crew	5. Visually check hex head on UHT, if broken, use second tool.	
			Crew	6. Leave experiment on sun- shield and deploy PSE/Central Station as one unit. Do not deploy PSE skirt.	

66

...

.

4

TABLE 13. Passive Seismic Experiment (Cont'd)

÷

•

EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
4. (Cont'd)		Crew	7. Force cable reel free from retainer bracket and de- ploy sufficient cable to allow sunshield deployment.	
5.	PSE binds on pallet and will not come off in normal manner using UHT.	Crew	1. Ensure the front portion of the subpallet has been raised $(3/8")$ to clear the mounting stud.	
		Crew	2. Apply side loads. Kick with lunar boot (foot) as necessary to eliminate bind- ing.	
		Crew	3. Assist the forward move- ment of the PSE with the lu- nar boot making sure the mounting stud is clear.	
		Crew	4. With the second crewman's help, manually aid in removal by using the back support structure as additional lever.	
		Crew	5. Leave PSE on sunshield and deploy PSE/Central Sta- tion as one unit. Do not deploy PSE skirt.	Experiment thermal con- trol and science data, as well as Central Sta- tion thermal control,
		Crew	6. With UHT, tear away or deploy cable from cable reel.	may be degraded.

TABLE 13.	Passive	Seismic	Experiment	(Cont'd)

T

÷.

EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
6.	UHT will not engage in PSE carry socket.	Crew	l. Try to engage second UHT in carry socket.	
		Crew	2. If UHT engagement fails, deploy manually or remove girdle, partially open shroud/skirt assembly and manually emplace experiment using gnomon.	Reduced alignment accuracy if gnomon is handled. NOTE: At 1/6 gravity the skirt should not unfold and cause interference.
7.	Experiment falls off UHT due to accidental triggering of UHT.	Crew	1. Using UHT, retrieve cable and gently lift experiment with cable. Secure mounting lug (tab) with hand and attempt to re-engage UHT in socket.	Reduced thermal control due to degradation of skirt and shroud assem- bly with lunar debris.
		Crew	2. If UHT engagement fails, deploy manually or remove girdle, partially open <u>shroud</u> /skirt assembly and manually emplace experiment using gnomon.	Reduced alignment accuracy due if gnomon is handled. NOTE: At 1/6 gravity, skirt should not unfold and cause interference.
8.	Experiment falls off PSE stool while leveling after skirt fully deployed.	Crew	1. Retrieve experiment with UHT handle hooked into gnomon opening and lift experiment.	Reduced thermal control due to degradation of skirt and shroud assem- bly with lunar debris and reduced alignment accuracy due to hand- ling of gnomon.

68

. .

()

к **к**

.

*

TABLE 13. Passive Seismic Experiment (Cont'd)

3

•

EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
9.	Thermal shroud will not lay flat at outer edge.	Crew	Place discarded ALSEP parts and/or lunar rocks on shroud edge.	
10.	UHT punctures thermal shroud during leveling sequence.	Crew	Remove UHT from puncture and attempt to cover the opening, if the hole remains.	Experiment thermal control may be degraded
11.	Lunar debris degrades reada- bility of bubble leveling indicator and alignment index on shroud.	Crew	 Level by using the local surface area as a reference (PSE shadow). 	Improper alignment will result in difficulty correlating PSE data to a position on the lunar surface. Without + 5 [°] leveling of LP XYZ and tidal sensors, sensors will not operate.
		Crew	2. Ensure ample picture coverage is obtained to veri- fy experiment orientation.	

69

٠.

TABLE 14. Heat Flow Experiment

5 K

14.1 Deployment

EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
1.	Astromate connector will not come out of stowage assembly.	Crew Crew	 Apply additional force. Obtain assistance from second crewman. 	
		Crew	3. Use hammer to break bracket.	If astromate connector cannot be removed from stowage assembly, abandon HFE deploy- ment.
2.	Astromate connector falls to lunar surface.	Crew	Retrieve connector with UHT handle.	Ensure connector is free of debris.
ġ.	Astromate connector fails to engage and lock.	Crew	1. Check connector for pro- per orientation.	
		Crew	2. Check connectors on cable and Central Station for de- bris and bent pins.	
		Crew	3. Remove or shake out debris.	
		Crew	4. Ensure flange is free to travel to the lock position.	
		Crew	5. Attempt to reconnect.	If astromate connector cannot be mated to Central Station, aban- don HFE deployment.

70

.

\$

+

×

TABLE 14. Heat Flow Experiment (Cont'd)

, '

14.1 Deployment

EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
4.	Astromate connector locking lever fails to rotate and lock.	Crew Crew	 Apply additional force. Abandon effort to rotate locking lever. 	Primary locking fea- ture should suffice.
5.	Astromate connector engages, but falls off when subpackage is rotated.	Crew	1. Return subpackage to vertical position, retrieve cable, remove any debris and remate connectors.	
		Crew	2. Ensure locking mechanism is fully forward and locking lever is fully rotated.	
6.	Unable to deploy heat flow experiment electronics thirty feet from Central Station	Crew	l. Deploy electronics as far as possible from the Central Station, staying as far as possible from the RTG.	
		Crew	2. Probe should be placed in bore hole pattern as shown in Figure 1.	÷

<u>.</u> t

	14.1	Deployment
--	------	------------

÷

	14.1	Deplo	yment	
EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
7.	UHT will not engage in HFE carry socket.	Crew	l. Try to engage second UHT in carry socket.	
		Crew	2. If UHT engagement fails, deploy manually.	
8.	HFE falls off UHT.	Crew	1. Use UHT handle to re- trieve cable, gently lift experiment and attempt to re-engage UHT in socket.	Reduced thermal con- trol due to degradation of experiment with lunar dust.
		Crew	2. If UHT engagement fails deploy manually.	Carry experiment to deployment site by holding the leg.
9.	Crewman walks too far and jerks Centrol Station.	Crew	1. Carry HFE subpallet back toward Central Station to provide slack cable and con- tinue deployment of HFE.	
х		Crew	2. Check cable and con- nectors of experiment and Central Station interfaces for visible sign of damage.	
	ζ.			

á

TABLE 14. Heat Flow Experiment (Cont'd)

<u>,</u>

ŝ

14.1 Deployment

 HFE subpallet strut will not collapse. Crew 1. Apply additional force. Apply additional force with hammer. Crew 3. Continue HFE deployment with strut uncollapsed. HFE subpallet falls over on lunar surface. Crew Use UHT handle to hook HFE subpallet carry handle and properly emplace HFE sub- pallet. Reduced therma with lunar definition of therma with lunar definition. 	
11. HFE subpallet falls over on lunar surface. With strut uncollapsed. With strut uncollapsed. Use UHT handle to hook HFE subpallet carry handle and trol due to de properly emplace HFE sub-	
lunar surface.subpallet carry handle and properly emplace HFE sub-trol due to de tion of therma	
	egrada- 1 point

, (

14.1 Deployment

.

.

EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
12.	HFE Probe Package boyd bolts will not depress.	Crew	 Visually check (if pos- sible) to see if bolt is released and not loose/raised due to side loading. 	
		Crew	2. Check for spring loading on bolt.	
		Crew	3. Insert UHT and apply down- ward pressure on center spline. Use hammer if neces- sary; turn ccw to release.	
		Crew	4. If spline is depressed and bolt will not rotate, back off slightly cw then turn back ccw.	
		Crew	5. Visually check hex head on UHT, if broken, use second tool.	
		Crew	6. Rip probe containers apart with hammer, attempt to retrieve emplacement tool and probes, and deploy probes as far as possible from Central Station.	

, 1

14.1 Deployment

EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
13.	HFE Probe Package boyd bolt will not rotate.	Crew	l. Check hex head of UHT and, if damaged, use second UHT.	
		Crew	2. Forcefully rotate UHT to wipe out boyd bolt threads.	
		Crew	3. Use hammer in an attempt to break HFE Probe Package free.	
		Crew	4. Attempt to use hammer claw to rip HFE Probe Package apart starting at seams and retrieve probes and emplace- ment tool.	
		Crew	5. Cover HFE Probe Package with lunar surface debris.	HFE science data will be severely degraded.
м	l			

t

۲

14.1 Deployment

EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
14.	HFE Probe Package binds on subpallet and will not come off in normal manner using	Crew	l. Ensure all boyd bolts have been released.	
	UHT.	Crew	2. Use UHT to ensure that Boyd bolts have been sprung upward.	
		Crew	3. Use hammer in an attempt to break HFE Probe Package free.	
		Crew	4. Attempt to use hammer claw to rip HFE Probe Package apart starting at seams, and retrieve probes and emplace- ment tool.	
		Crew	5. Cover HFE Probe Package with lunar surface debris.	HFE science data will be severely degraded.
15.	HFE Probe Pack a ge halves will not separate.	Crew	1. Apply additional force.	
	neo separate.	Crew	2. Obtain assistance from second crewman and attempt to use hammer claw to rip HFE Probe Package apart at the seams and retrieve probes and emplacement tool.	
		Crew	3. Cover HFE Probe Package with lunar surface debris.	HFE science data will be severely degraded.

14.1 Deployment

EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
16.	Unable to deploy HFE Probe Package 16 feet west or northeast of HFE Electronics Package.	Crew	Locate HFE Probe Package as far from RTG, Central Station and other surface experiments as possible.	
17.	HFE Probe Package falls to lunar surface.	Crew	Use UHT to hook handle or carry strap and retrieve HFE Probe Package.	
18.	Crewman walks too far and jerks HFE Electronics Package.	Crew	1. Carry HFE Probe Package back toward HFE Electronics Package to provide suffi- cient slack cable for probe emplacement and continue deployment of HFE.	Orange and black marker at 16' on probe cable.
		Crew	2. Check cable and con- nector at HFE Electronics Package interface for visible signs of damage	
19.	GAC pip pin on ALSD difficult to withdraw.	Crew	Apply side loads to drill using ALSD handle, while exerting removal force on pip-pin.	

i

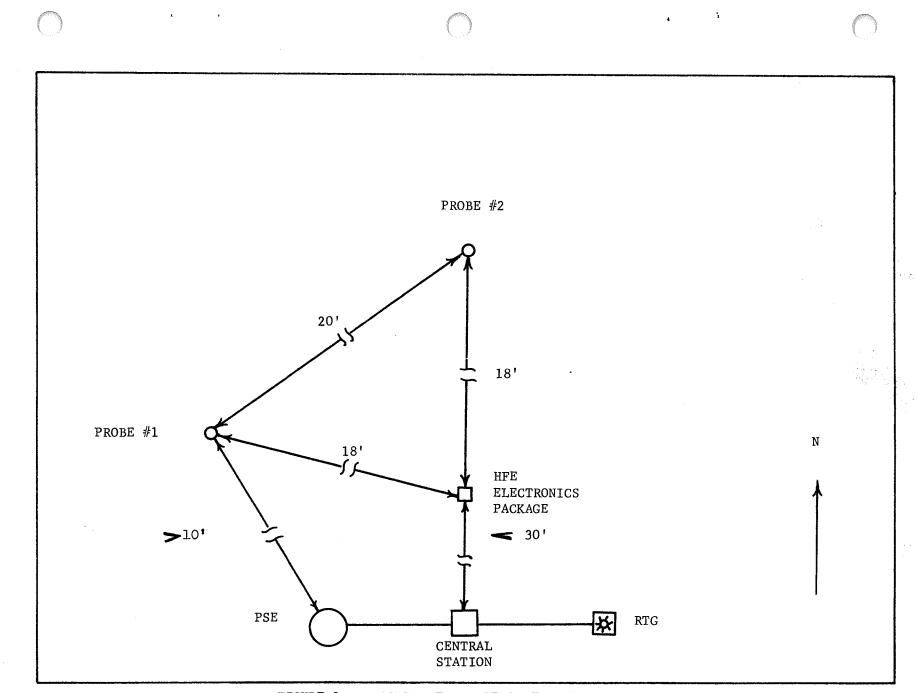
14.1 Deployment

3

١

EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
20.	Drill not available at ALSEP site or difficulty in deploy- ing drill.	Crew	 Use core stem to make deepest possible hole in the lunar surface. 	Use extreme care when removing core stem, to minimize cave-in of the hole.
		Crew	2. Remove core stem before inserting probes.	
		Crew	3. After removing core stems, insert heat flow probes into hole as far as possible.	Astronaut should get as close to the open hole as possible; grasp the lower sec- tion near its mid- point and insert probe very carefully to pre- vent cave-in of material.
		Crew	4. Should cave-in of hole occur place adapter over bore stem tapered joint and drive in bore stem with hammer into existing hole as far as possible. Adapter should be in the release mode.	If more than one sec- tion can be buried in this way so that drill stem will remain standing unattended, insert probes to maxi- mum depth possible.

ì


.

14.1 Deployment

EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
20.		Crew	5. If upper section and ca- ble cannot be placed in hole, dig small trench approxi- mately three to six inches deep out from the hole approximately 5 feet and bury the upper section of the probe and the first four feet of the cable in the trench. Cover lightly with soil using the trenching tool.	Caution: Once the probe has been placed in hole, do not try to remove.
21.	Drill and tools not available at ALSEP site but the adjust- able Sampling Scoop is available.	Crew	1. Dig trench approximately 4-feet long sloping from one inch depth at one end to approximately 18 inches at the other end.	Actual slope not critical. Astronaut should dig trench with a sloping floor as deeply as possible.
		Crew	2. Lay heat flow probe in tandem along the bottom of the trench; fill trench with soil using the adjustable Sampling Scoop.	NOTE: Any of these contingencies may arise after success- fully drilling the first hole. In this case the contingency given above could be used to emplace heat flow probe #2.

79

i 1

80

FIGURE 1. CONTINGENCY DEPLOYMENT PATTERN FOR HFE

.

,

14.2 Drill Operations

ł

EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
l.	Temporary delay (any period exceeding 30 minutes) in ALSD operations after removal of drill from MESA torque box and drill is in the stowed configuration.	Crew	Place drill on lunar surface with battery end down and oriented such that the back of the battery is directed toward the sun (decal on thermal shroud 90° to sun).	Do not place ALSD in any shaded area.
2.	Carry rack binds while being removed from treadle assem- bly.	Crew	 Grasp rack in area where rack support legs converse. Pull rack up while hold- ing treadly assembly down on HTC. 	

1

+

14.2 Drill Operations

EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
3.	Handle assembly fails to lock properly to battery.	Crew	l. Ensure handle is free of interference.	
		Crew	2. Check alignment of handle.	
		Crew	3. Ensure that fixed pin is fully engaged and slap handle to engagement position with additional force.	
		Crew	4. Request second crewman to depress engagement pin and slap handle to engage- ment position.	
		Crew	5. With the aid of the second crewman attempt dril- ling operations without the handle.	
		Crew	6. If unsuccessful use treadle assembly to drive bore stems.	

14.2 Drill Operations

ĩ

EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
4.	Power Head does not operate during pre-deployment test (no spindle rotation).	Crew	1. Remove power head and place on ALHT and check oper- ations again.	Special attention should be given to switch and connector
		Crew	2. Rotate spindle with wrench, ccw from the spindle end.	
		Crew	3. Try to loosen spindle with wrench and hammer (turn ccw).	
		Crew	4. Use power head to hand auger and insert probes in holes as far as possible.	

4 P

14.2 Drill Operations

EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
5.	ALSD operations are inter- rupted after drill deployment from stowage configuration and drilling commenced.	Crew	1. Replace thermal shroud. Place power head and battery assembly into MESA. Properly reposition MESA blankets.	
		Crew	2. If not feasible to place power head and battery into MESA then replace thermal shroud and place drill on lunar surface with battery end down and oriented such that the back of the battery is oriented toward the sun o (decal on thermal shroud 90 to sun).	Do not place ALSD in in shaded area.
6.	Power head bracket jams causing difficulty in removal from the treadle.	Crew	Grasp spindle with left hand and press down on treadle with thumb.	

84 4 i

Ì

×.

14.2 Drill Operations

.

EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
7.	Difficulty in drilling hole with first two sections.	Crew Crew	 5 in./min., remove drill and move 3 feet to new location. 2. If unsuccessful, repeat Step 1 up to 2 new locations. 	If crewman is drilling on first hole then proceed to second hole after completing Step #3. If drilling on second hole, proceed to coring operation after completion of Step #3.

TABLE	14.	Heat Flow 1	Experiments	(Cont'd)
	14.2	Drill Ope	rations	

Ŧ

EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
8.	Unable to add additional stem sections due to adapter not releasing.	Crew	1. Set adapter to release mode and check visually to see that adapter is set correctly.	
		Crew	2. Apply power to drill to force release of stems.	
		Crew	3. Drill hole to minimum handle height.	
		Crew	4. Break stem off using power head and inspect adapter.	
		Crew	5. Assure that taper joint does not remain inside adapter.	If part of stem re- mains inside adapter, use end of wrench to clean adapter.
		Crew	6. If unsuccessful in clean- ing adapter, proceed to cor- ing operation.	

98

Ť

к. Э.

14.2 Drill Operations

1

EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
9.	Unable to drill successfully with new stem sections.	Crew	 Remove power head and check visually for damaged male or female taper joints. 	A damaged male taper on top section would be indicated by non-rota- tion of stem.
		Crew	2. If damaged, attempt to remove damaged section and replace with new stem section.	
		Crew	3. If unable to remove dam- aged section, replace power head and drill hole to mini- mum handle height.	
		Crew	4. Remove power head and if male taper joint is damaged, insert handle of wrench and clean out the damaged taper joint.	Proceed to second hole or coring operation.

•

۲

14.2 Drill Operations

ł

۸.

EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
10.	Adapter contaminated with lunar debtis.	Crew	 Tap lightly to remove de- bris, cycle by hand several times to assure free movement. 	
		Crew	2. If adapter is separated from power head, adjust re- taining clips, replace care- fully and repeat step 1.	
		Crew	3. If unsuccessful in re- moving debris, use short burst of power to aid in cleaning effort.	
		Crew	4. If lunar debris remains, use lunar dust brush first and then use lens brush to more thoroughly clean adapter.	

x

,

14.2 Drill Operations

۲

*

EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
11.	High torque exists during drilling operations.	Crew	 Leave power head oper- ating and lift repeatedly until torque decreases. 	
		Crew	2. If unsuccessful, continue drilling.	Slip clutch will pre- vent excessive torque from over-powering astronaut.
12.	Power head runs slowly.	Crew	1. Tap relief valve with hammer or wrench.	
		Crew	2. If unsuccessful, use hand auger and apply power only when necessary.	

¢

.

14.1 Probe Emplacement

4

1

EVENŢ NO.	CONTINGENCY	AGENT	ACTION	REMARKS
l.	Possible to drill only a shallow bore hole.	Crew	1. If bore stems are drilled into the lunar surface and will remain standing unattended, emplace heat flow probes into bore hole as far as possible.	
		Crew	2. Make careful measurement with the emplacement tool to determine the depths of hole and depth of probe emplace- ment.	
		Crew	3. If less than two sections of bore stem are drilled into the lunar surface and drill string will not stand unattended, use available tools to make deepest pos- sible hole and emplace probes into bore hole as far as possible.	0
		Crew	4. Cover any exposed area of the probes and cable with lunar soil.	At least the first four feet of cable should be buried.

٠

.

14.3 Probe Emplacement

CONTINGENCY	AGENT	ACTION	REMARKS
Heat flow emplacement tool sections do not lock in extended position.	Crew	1. Rotate unlocked section and attempt to lock, apply additional force.	
	Crew	2. Restow unlocked section and attempt to lock again by applying additional force.	
	Crew	3. If only one section is inoperative, continue to use as is.	HFE science data may be degraded.
	Crew	4. Insert probe with cable as deep as possible.	
×			
	Heat flow emplacement tool sections do not lock in	Heat flow emplacement tool Crew sections do not lock in extended position. Crew Crew	Heat flow emplacement tool sections do not lock in extended position. Crew 1. Rotate unlocked section and attempt to lock, apply additional force. Crew 2. Restow unlocked section and attempt to lock again by applying additional force. Crew 3. If only one section is inoperative, continue to use as is. Crew 4. Insert probe with cable

· 1

ĸ

14.3 Probe Emplacement

Γ	EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
	3.	Emplacement tool collapses while driving probe into bore hole.	Crew	1. Withdraw emplacement tool. re-extend and lock emplace- ment tool and resume driving probe into bore hole.	
			Crew	2. If emplacement tool collapses again, insert probe into bore hole as far as possible and report col- lapse of tool.	HFE science data may be degraded.
	4.	Obstructions in the bore stem prevent probe from being inserted completely.	Crew Crew	 Use the emplacement tool to attempt to clear obstruc- tion from the hole. Emplace brobe in bore hole. 	Caution: Exercise care when removing probes. Probes can safely be pulled with a force up to 30 lbs.
			Crew	3. If unsuccessful, repeat Steps 1 and 2 until able to emplace probe.	Note: The most likely cause of an obstruc- tion in the bore stem is that one of the male taper joints has been peened over so that filaments of glass project into the center portion of the bore stem.

92

r

.

t

Ŧ

14.3 Probe Emplacement

EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
5.	Obstruction prevents heat flow probes from being pushed to bottom of bore stems but probes cannot be removed.	Crew	Push on top of heat flow probes with emplacement tool as firmly as possible.	Do not hit top of probes. Astronaut should use caution in determining strengt of the resistance in the bore stem (probes should withstand 40 lbs. of pressure.
6.	Heat flow probe does not lock on bottom "Hook" of first bore stem.	Crew Crew	 Repeat downward pressure cycles to engage hook. Emplace probe as deep in stem as possible utilizing emplacement tool. 	
		Crew	3. Read depth on emplacement tool.	

93

..

÷

.

14.4 Core Operations

EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
1.	Core sections do not engage at male/female connections.	Crew	1. Check axial alignment and attempt rearrangement.	
		Crew	2. Inspect male joint for foreign material and clean.	
•		Crew	3. Attempt to add new stem sections and repeat Steps 1 and 2 until engagement.	
		Crew	4. If unsuccessful in mating by hand, use wrench for additional torque.	Aid of second crewman is necessary.
2.	Power head will not couple to core stem.	Crew	1. Hold power head spindle to the core stem and rotate the power head until full thread engagement is achieved	Care should be exer- cised to assure proper axial alignment.
		Crew	2. If unsuccessful, use new core stems (6 stems avail- able) and repeat Step 1 until engagement is achieved.	abandoning coring
		Crew	3. If unsuccessful in mating by hand, use wrench for additional torque.	Aid of second crewman is necessary.

494

••

٠

.

4

...

14.4 Core Operations

EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
3.	Core bit will not pass through treadle lock.	Crew	 Hold stem and rotate treadle assembly ccw with foot using wrench if neces- sary. (Start of coring oper- ation.) 	
		Crew	2. Remove power head, place treadle lock over the top of stem assembly and replace power head.	Assure male joint is free from foreign material.
		Crew	3. (End of Coring Operation) Remove power head from core stem, attempt to remove treadle lock over top of male joint.	

95.

2

ι

14.4 Core Operations

	EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
	4.	Core stem cannot be unscrewed from power head spindle.	Crew	1. Turn and lift stems to attempt to set treadle lock.	
			Crew	2. If unsuccessful, use wrench to hold core stem and decouple.	Aid of second crewman needed.
>			Crew	3. If unsuccessful, tap stem spindle interface with hammer and repeat Step 2.	If successful, inspect and clean exposed male joint and consult P.I. concerning cleaning of female joint.
			Crew	4. If unsuccessful, retract stem until second joint is exposed, remove power head with first stem attached, and continue coring operation by adding core stems at this interface.	

£

14.4 Core Operations

EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
5.	Power head spindle binds on male end of core stem after drilling.	Crew	 Cradle handle assembly between thumbs and fore- fingers and lift up and forward. 	Align power head vertically.
		Crew	2. Use wrench to decouple power head and core stem and repeat Event 1, Steps 1 and 2.	
		Crew	3. Use hammer impact force to free binding.	
6.	Core stems do not disengage at male/female connections.	Crew Crew	 Use treadle as additional torque. Tap interface with hammer 	Aid of second crewman is necessary.
		Crew	and repeat Step 1. 3. Bypass joint and attempt disengagement at next core joint.	Consult P.I. about status of double length core stem.
7.	Core stem vice jaws on LRV aft pallet fails or support- ing structure fails.	Crew	Use treadle core stem lock and ALSD wrench to separate core stems.	

TABLE 15. Lunar Surface Magnetometer Experiment

ę

•

EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
1.	Boyd bolts do not release on LSM mounts.	Crew	 Visually check (if pos- sible) to see if bolt is released and not loose/raised due to side loading. 	
		Crew	2. Check for spring loading on bolt.	
		Crew	3. Insert UHT and apply downward pressure on center spline. Use hammer if neces- sary; turn ccw to release.	
		Crew	4. If spline is depressed and bolt will not rotate, back off slightly cw then turn back ccw.	
		Crew	5. Visually check hex head on UHT, if broken, use second tool.	
		Crew	6. Leave experiment on sun- shield and deploy LSM/Central Station as one unit.	
		Crew	7. Force cable reel free from retainer bracket and deploy sufficient cable to allow sunshield deployment.	

86

. •

ŧ

¥

٠

EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
2.	Upper support bracket handle does not deploy.	Crew	 Use the UHT to pry handle into the upright position for grasping. 	
		Crew	2. Apply tension to the cen- ter lanyard with glove or UHT to release "pip pin" at the Electronic Gimbal Flip Unit.	
		Crew	3. If successful, apply tension to other two lanyards to release "A" frame swing brackets from the Electronic Gimbal Flip Unit.	The forward bar bracket upper and lower sec- tions can be separated later after removal from subpackage #1.
		Crew	4. Use hammer in an attempt to break bracket.	
		Crew	5. Leave LSM on sunshield and deploy LSM/Central Station as one unit.	Experiment thermal control and science data, as well as Central Station thermal control, may be degraded.

99

4

¥

TABLE 15. Lunar Surface Magentometer Experiment (Cont'd)

EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
3.	LSM binds on pallet and will not come off in normal manner using UHT.	Crew	 Check center lanyard and if untied or broken, there is no means of unlocking from the mounting pins. 	
		Crew	2. If lanyard is intact, pry under the Electronic Gimbal Flip Unit handle to effect unlocking.	
		Crew	3. If unlocked, but binding on mounting pins, attempt to pry under rear of the Elec- tronic Gimbal Flip Unit with the UHT.	
		Crew	4. Leave LSM on sunshield and deploy LSM/Central Sta- tion as one unit.	Experiment thermal con- trol and science data, as well as Central Sta-
		Crew	5. Force cable reel free from retainer bracket and deploy sufficient cable to allow sunshield deployment.	tion thermal control, may be degraded.
4.	UHT will not engage in LSM carry socket.	Crew	l. Try to engage second UHT in carry socket.	
		Crew	2. If UHT engagement fails, deploy LSM manually.	

TABLE 15. Lunar Surface Magnetometer Experiment (Cont'd)

ŧ

4

EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
5.	Experiment falls off UHT due to accidental triggering of UHT release mechanism.	Crew	1. Use UHT handle to re- trieve cable, gently lift experiment and attempt to re-engage UHT in socket.	Reduced thermal control due to degradation of experiment with lunar dust.
		Crew	2. If UHT engagement fails, deploy manually.	
6.	Unable to deploy legs.	Crew	 If spring-loaded legs do not self-deploy after removal of forward bracket, assist their deployment by hand. 	
		Crew	2. Emplace experiment on local surface with legs in stowed position and prop up with rocks or debris to pro- vide the best possible level- ing.	Experiment stability will be degraded.
		Crew	3. As a last resort, lay the Electronic Gimbal Flip Unit flush on the lunar surface and attempt leveling.	
7.	UHT punctures thermal shroud during leveling sequences.	Crew	Remove UHT from puncture and attempt to smooth thermal surface.	Experiment thermal control may be de- graded.

101

. •

TABLE 15. Lunar Surface Magnetometer Experiment (Cont'd)

1

.

EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
8.	LSM tips over on booms while emplacing experiment.	Crew	1. Attempt to pick up exper- iment with UHT.	Reduced thermal control due to degradation of experiment with lunar dust.
		Crew	2. Grasp experiment by boom and reinsert UHT.	
		Crew	3. Clean experiment with thermal glove.	
9.	Lunar debris degrades reada- bility of bubble leveling indicator and alignment index on shroud.	Crew	l. Level by using the local surface area as a reference (LSM shadow).	Improper alignment will result in difficulty correlating data to a position on the lunar surface.
		Crew	2. Ensure ample picture coverage is obtained to verify experiment orienta- tion.	

102

ŧ.

.

TABLE 16. Suprathermal Ion Detector Experiment/ Cold Cathode Gauge Experiment (Cont'd)

*

.

EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
1.	Connector fails to engage to Central Station.	Crew	 Check connectors on ca- ble and Central Station for foreign material and bent pins. 	
		Crew	2. Remove or shake out debris.	
		Crew	3. Ensure outer flange is free to travel to the lock position.	
· · · · · · · · · · · · · · · · · · ·		Crew	4. Attempt to reconnect checking visual indicator (orange ring).	
2.	Connector engages but falls off when package is rotated.	Crew	 Return package to verti- cal position, retrieve cable (as above) check for foreign matter and remove connectors 	
		Crew	2. Ensure locking mechanism is fully forward and orange ring is visible.	
3.	Connector retainer pull pin does not release.	Crew	 Attempt release by push- ing down on fasterner before pulling up, using UHT. 	
		Crew	2. Apply additional force while rotating pin.	
		Crew	3. Use hammer or break pin.	

103

*

.

L6. Suprathermal Ion Detector Experiment/ Cold Cathode Gauge Experiment (Cont'd)

٠

4

EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS	
4.	Cable reel does not deploy from experiment stowage cavity.	Crew	 Check to see if Boyd bolt and cup are free; if not, remove manually. 		
		Crew	2. Grasp the reel and re- move manually.		
		Crew	3. Use second UHT handle to aid in extracting the reel.		
		Crew	4. Deploy as much cable as possible which tends to force the reel out.		
		Crew	5. Deploy experiment as far from ALSEP in the preferred direction as possible.	Experiment thermal control and science may be degraded.	
5.	SIDE connector falls to lunar surface.	Crew	 Retrieve connector with UHT handle in pull ring on lanyard. 		
		Crew	2. Retrieve connector by lifting cable and working hand along cable to connector.		
		Crew	3. Ensure connector is free of foreign particles.		

¢

16. Suprathermal Ion Detector Experiment/ Cold Cathode Gauge Experiment (Cont'd)

۳

.

EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
6.	UHT will not engage in SIDE/ CCGE carry socket.	Crew	l. Try to engage second UHT in carry socket.	
		Crew	2. If UHT engagement fails, deploy manually by grasping back support structure or tool brackets.	
7.	Experiment falls off UHT due to accidental triggering of UHT release mechanism.	Crew	1. Use UHT handle to re- trieve cable, gently lift experiment, manually secure ground screen tube or leg and attempt to re-engage UHT in socket.	
		Crew	2. If UHT engagement fails, deploy manually by grasping ground screen tube.	
8.	Crewman walks too far and jerks Central Station out of alignment.	Crew	1. Carry experiment back toward Central Station to provide slack cable, con- tinue deployment of SIDE/CCGE and realign Central Station and check other experiments upon return.	
		Crew	2. Check cable and connector at experiment and Central Station interfaces for visible signs of damage.	

105

. ·

TABLE 16. Suprathermal Ion Detector Experiment/ Cold Cathode Gauge Experiment (Cont'd)

EVENT NO.	. CONTINGENCY A		ACTION	REMARKS	
9.	UHT will not disengage from SIDE subpallet UHT socket.	Crew Crew	 Apply additional force. Obtain assistance from second crewman. 		
		Crew	3. If UHT will not disen- gage, leave it on the SIDE subpallet and continue de- ployment using second UHT.	SIDE subpallet sta- bility will be de- graded. Although only one UHT is needed for deployment, deployment time will be increased Second crewman could carry out geological tasks while first astronaut completes ALSEP deployment.	
10.	SIDE/CCGE will not come off subpallet.	Crew	l. Ensure all boyd bolts have been released.		
		Crew	2. Use UHT to ensure that boyd bolts have been sprung upward.		
		Crew	3. Leave SIDE/CCGE on sub- pallet and deploy SIDE/CCGE subpallet. Remove ground screen and discord.	Experiment thermal control and science may be degraded.	

t

1

6. Suprathermal Ion Detector Experiment/ Cold Cathode Gauge Experiment (Cont'd)

۳

٩

	EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
	11.	Unable to deploy legs.	Crew	l. If lanyard breaks, attempt to remove pin manu- ally.	
a de la companya de l			Crew		Experiment stability may be degraded.
	12.	UHT will not engage in ground screen socket.	Crew	 Attempt to release ground screen with UHT and to remove and deploy ground screen manually. 	
			Crew	2. Try to engage second UHT in ground screen socket.	
			Crew	3. If unsuccessful, continue SIDE/CCGE deployment without ground screen.	SIDE science will be degraded.

L6. Suprathermal Ion Detector Experiment/ Cold Cathode Gauge Experiment (Cont'd)

¥

ŧ

EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
13.	Ground screen will not dis- engage from UHT with trigger during screen deployment.	Crew Crew Crew	from UHT. 2. Deploy screen manually and drop on the lunar surface as flat as possible.	Loss of one THT will increase deployment time. Second crewman could carry out geo- logical tasks while first crewman com- pletes ALSEP deploy- ment.

.

٠

6. Suprathermal Ion Detector Experiment/ Cold Cathode Gauge Experiment (Cont'd)

1

EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
14.	SIDE falls over while em- placing experiment.	Crew	 Attempt to pick up exper- iment by cable after re- trieving cable with UHT. 	Reduced thermal control due to degradation of experiment with lunar dust.
		Crew	2. Grasp experiment at reel housing and reinsert UHT.	
		Crew	3. Clean experiment with thermal glove or through gentle impact.	
15.	SIDE leg breaks.	Crew	l. Prop experiment on RTG cable reel, rock, or other lunar debris.	Place ground screen beside experiment (not touching SIDE or CCGE).
				Experiment thermal con- trol may be degraded.

109

. •

TABLE 16. Suprathermal Ion Detector Experiment/ Cold Cathode Gauge Experiment (Cont'd)

٢

r

EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
16.	CCGE Boyd bolt jams or will not rotate.	Crew	 Check hex head of UHT and, if damaged, use second UHT. 	
		Crew	2. Forcefully rotate UHT to wipe out boyd bolt threads.	
		Crew	3. Leave CCGE in stowage cavity and continue SIDE deployment.	Loss of CCGE will not interfere with suc- cessful operation of SIDE.
17.	Deutsch fastener will not rotate.	Crew	l. Check hex head of UHT and if damaged, use second UHT.	
		Crew	2. Forcefully rotate UHT to wipe out Deutsch fastener.	
		Crew	3. Use UHT or MESA tools to pry or fail retention bracket in an attempt to gain access to CCGE.	
		Crew	4. Deploy SIDE/CCGE as one unit.	Loss of CCGE will not interfere with suc- cessful operation of SIDE.

Getavar

٤.

Ŧ

Suprathermal Ion Detector Experiment/ Cold Cathode Gauge Experiment (Cont'd)

s f

EVENT NO.	CONTINGENCY		ACTION	REMARKS	
18.	CCGE cannot be removed from stowage cavity.		l. Ensure that CCGE Boyd bolt is not preventing CCGE removal.		
		Crew	2. Use second UHT to aid in extracting CCGE.		
		Crew	3. Pull on cable in order to force the CCGE out of the cavity.		
		Crew	4. Leave CCGE in stowage cavity and continue SIDE deployment.		
19.	CCGE cannot be attached to ground screen tube.	Crew	Deploy CCGE by using the s cable instead of the fixed deployment tube.		
20.	Dust cover releases when pull pin is removed.	Crew	Deploy with cover open, but minimize dust contamination.	Experiment thermal con- trol science may be degraded.	
21.	Dacron dust bag does not come free.	Crew	Manually lift experiment and remove dacron bag.		

111

٠.

\bigcirc	٠	k		\bigcirc	£	4
			TABLE 16.	Suprathermal Ion Detector Cold Cathode Gauge Experi		

EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
22.	SIDE/CCGE connector pull pin jams.	Crew	1. Apply additional force while rotating pin.	
		Crew	2. Apply additional force on pin with hammer or break pin.	
		Crew	3. Use hammer to break brac- ket.	If SIDE/CCGE connector cannot be released, abandon SIDE/CCGE de- ployment. Ensure con- cector is free of debris.
23.	SIDE/CCGE connector falls to lunar surface.	Crew	Retrieve connector with UHT handle.	
24.	SIDE/CCGE connector fails to engage and lock.	Crew	l. Check connector for proper orientation.	
			2. Check connectors on cable and Central Station for debris and bent pins.	
			3. Remove or shake out debris.	
			4. Ensure outer flange is free to travel to the lock position.	
		anna antaga suna	5. Attempt to reconnect and check visual indicator (orange ring).	If SIDE/CCGE connector cannot be mated to Cen- tral Station, abandon SIDE/CCGE deployment.

TABLE 16. Suprathermal Ion Detector Experiment/ Cold Cathode Gauge Experiment (Cont'd)

Ŧ

t

EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
25.	SIDE/CCGE connector engages but falls off when subpackage is rotated.		1. Return subpackage to vertical position, retrieve cable, remove any debris and remate connectors.	na ny zakona na na provinské vytok na pokradné krád kan krád kan na pokradné vytok na pokradné krád kan krád k
		Crew	2. Ensure locking mechanism is fully forward and orange ring is visible.	

113

4

*

TABLE 17. Solar Wind Spectrometer Experiment

.

EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
ŀ	Boyd bolts fail to release	Crew	 Visually check (if pos- sible) to see if bolt is re- leased and not loose/raised due to side loading. 	
		Crew	2. Check for spring loading on bolt.	
		Crew	3. Insert UHT and apply downward pressure on center spline. Use hammer if neces- sary; turn ccw to release.	
		Crew	4. If spline is depressed and bolt will not rotate, back off slightly cw then turn back ccw	
		Crew	5. Visually check hex head on UHT, if broken, use second tool.	
		Crew		

114

. •

TABLE 17.	Solar Wind	Spectrometer	Experiment	(Cont'd)
-----------	------------	--------------	------------	----------

• *

EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
l. (Cont'd)	-	Crew	sufficient cable to allow sun- shield deployment.	shield will not deploy

115

.

™c ♦

TABLE 17. Solar Wind Spectrometer Experiment (Cont'd)

۲

.

EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
2.	Carry/removal socket unusa- ble. UHT will not lock in socket.	Crew	l. Remove manually by grasp- ing leg.	
		Crew	2. Deploy cable from reel while grasping leg.	
		Crew	3. Emplace experiment while grasping thermal plate, using UHT (as required) to aid in emplacing unit upright.	
		Crew	4. Use UHT on thermal plate to align and level unit.	
3.	Swivel socket pull pin jams.	Crew	1. Apply additional force while supporting experiment on HTC.	
		Crew	2. If unsuccessful, disen- gage UHT, emplace experiment by grasping thermal plate, and use UHT to level and align experiment.	
¥.	SWS sensor dust cover comes off during deployment.	Crew	Do not reinstall.	Continue deployment.

TABLE 17. Solar Wind Spectrometer Experiment (Cont'd)

EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
5.	Experiment falls off UHT due to accidental triggering of UHT release mechanism.	Crew	1. Use UHT handle to re- trieve experiment by hooking the lip of the handle through the "A" frame leg. Grasp the experiment by the top part of the leg and slide the hand up to the bottom of the thermal plate and manually secure experiment. Attempt to re- engage UHT in socket.	Reduced thermal control due to degradation of experiment with lunar dust.
		Crew	2. If UHT engagement fails, deploy manually.	
6.	Unable to deploy SWS 13 feet north of Central Station.	Crew	l. Locate SWS as far from Central Station as possible.	
		Crew	2. Attempt to maintain a 13 foot separation between SWS and Central Station.	
		Crew	3. Attempt to maintain at least 10 foot separation between RTG and SWS.	

 \mathbf{J}

TABLE 17. Solar Wind Spectrometer Experiment (Cont'd)

EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
7.	Unable to deploy legs.	Crew	1. If leg is sticking at- tempt to pull harder on the foot pad.	
		Crew	2. Emplace experiment on local rock or debris to pro- vide the best possible leveling.	Experiment stability will be degraded.
8.	Leg breaks off while em- placing the experiment.	Crew	1. Prop up experiment with core tube, penetrometer, or lunar debris, to provide the best possible leveling.	Experiment thermal con- trol may be degraded.

溺

TABLE 18. Central Station

EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
1.	Boyd bolt(s) fail to re- lease.	Crew	 Visually check (if pos- sible) to see if bolt is released and not loose/raised due to side loading. 	
		Crew	2. Check for spring loading on bolt.	
		Crew	3. Insert UHT and apply downward pressure on center spline. Use hammer if neces- sary; turn ccw to release.	
		Crew	4. If spline is depressed and bolt will not rotate, back off slightly cw then turn back ccw.	
	•	Crew	5. Visually check hex head on UHT, if broken, use second tool.	
		Crew	6. Engage UHT in Subpackage #1 temporary stowage socket and use UHT as a lever to raise sunshield.	
		Crew	7. Leave sunshield in stowed condition and attempt to gain access to antenna mass bracket.	

r *

• •

)

4

.

ŧ

7

.

EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
l. (Cont'd)		Crew	8. If unsuccessful, mount antenna aiming mechanism on sunshield.	Antenna aiming accur- acy will be degraded.
2.	Sunshield fails to raise after all Boyd bolts are released.	Crew	 Engage UHT in temporary stowage socket and raise sunshield manually with UHT as lever arm. 	
		Crew	2. Check to see if rear thermal curtain on ALSEP antenna cable is jammed and release it with UHT handle, if required.	
		Crew	3. Check to see if curtain covers are marred.	
		Crew	4. If sunshield does not raise, remove curtain retain- ers and mount antenna mast bracket on the bottom shoe of the structure bracket.	
3.	RF antenna cable reel lan- yard breaks or pin jams.	Crew	1. Use handle of UHT to en- gage (hook) restraining brac- kets and bend/break restrain- ing brackets off the sun- shield.	
		Crew	2. Deploy cable using UHT.	

ą.

,

EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
4.	UHT will not engage in aiming mechanism housing carry socket.	Crew Crew	 Try to engage second UHT in carry socket. If UHT engagement fails, deploy manually. 	
5.	Aiming mechanism Boyd bolts fail to release.	Crew	 Visually check (if pos- sible) to see if bolt is re- leased and not loose/raised due to side loading. 	
		Crew	2. Check for spring loading on bolt.	
		Crew	3. Insert UHT and apply downward pressure on center spline. Use hammer if neces- sary; turn ccw to release.	
		Crew	4. If spline is depressed and bolt will not rotate, back off slightly cw, then turn back ccw.	
		Crew	5. Visually check hex head on UHT, if broken, use second tool.	
		Crew	6. If unsuccessful, break housing off mounting legs with side loading to gain ac- cess to aiming mechanism.	

121

٠.

TABLE 18. Central Station (Cont'd)

٠

t

EVENT NO.	CONTINGENCY	AGENI	ACTION	REMARKS
5. (Cont'd)		Crew	7. If unable to gain access to aiming mechanism, mount antenna on Central Station sunshield brackets and point antenna toward earth.	Antenna aiming accuracy will be degraded.
6.	Antenna mast binds on sub- pallet taper fitting.	Crew	Stand on edge of subpallet and rotate mast while applying additional lifting force on lower half.	
7.	Aiming mechanism housing will not come off subpallet.	Crew	1. Ensure both Boyd bolts have been released.	
		Crew	2. Use UHT to ensure that Boyd bolts have been sprung upward.	
		Crew	3. If unsuccessful, use hammer to break housing off mounting legs in order to gain access to aiming mecha- nism.	
		Crew	4. If unable to gain access to aiming mechanism, mount antenna on Central Station sunshield.	Antenna aiming accur- acy will be degraded.

122

4

٤

÷ ۴

EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
8.	Antenna mast bracket on Central Station covered with lunar debris.	Crew	Clear area with lunar boot or use UHT to probe or jar bracket and free it of debris.	
9.	Aiming mechanism falls out of housing onto lunar surface.	Crew	Retrieve mechanism with UHT handle and shake off debris. Clean taper fitting with glove.	Reduced operational capability or jamming of the gears and pivot points is possible due to degradation of the aiming mechanism sur- faces with lunar debris.
10.	Aiming mechanism knobs will not rotate.	Crew	1. Apply additional force with hand and hammer, being careful not to damage mecha- nism.	
	-	Crew	2. Attempt to intentionally fail mechanism, achieve approximately correct orien- tation using sighting and shim or brace antenna to maintain aiming accuracy.	
		Crew	3. Remove antenna mast from Central Station and push it into surface pointing at earth (rough alignment).	

TABLE 18. Central Station (Cont'd)

.

¥

۵ ، ۲

EVENT NO.	CONTINGENCY	AGENI	ACTION	REMARKS
l0. (Cont'd)		Crew	4. Adjust as required in real-time communication to capsule communicator.	
11.	Antenna mast will not seat in bracket on Central Station.	Crew	1. Examine antenna mast for obstructions, dislodge ob- structions by impact and reseat antenna mast in brac- ket in Central Station.	If antenna mast cannot be fully seated in bracket, the antenna aiming accuracy may be degraded.
		Crew	2. Use hammer to apply additional force.	Caution: Do not damage aiming mechanism inter- face.
		Crew	3. If antenna mast is par- tially seated, continue with nominal deployment sequence.	
		Crew	4. If antenna mast cannot be seated in bracket or is un- stable, mount aiming mecha- nism and antenna on sunshield.	
		Crew/ MCC	5. Adjust antenna and aiming mechanism as required, in real time, to achieve good communication.	

\$

Central Station (Cont'd)

. ì

EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
12.	Aiming mechanism will not seat on antenna mast.	Crew	obstructions, dislodge ob- structions by impact and reseat aiming mechanism on antenna.	If aiming mechanism cannot be fully seated on antenna mast the antenna aiming accur- acy may be degraded.
		Crew	2. If aiming mechanism is partially seated and stable, continue with nominal deployment.	
		Crew	3. Examine antenna mast for damage and if damaged, mount aiming mechanism and antenna on sunshield.	

TABLE 18. Central Station (Cont'd)

¥

•

CONTINGENCY	AGENT	ACTION	REMARKS
Antenna will not seat on aim- ing mechanism.	Crew	 Ensure cable outlet is properly oriented. 	
	Crew	2. Examine antenna and aim- ing mechanism for obstruc- tions, dislodge obstructions by impact and reseat antenna on aiming mechanism.	
	Crew	3. If antenna is partially but firmly seated on aiming mechanism, continue with nom- inal deployment.	
	Crew	4. Examine antenna and aim- ing mechanism for damage and, if damaged, mount antenna on sunshield.	
	Antenna will not seat on aim-	Antenna will not seat on aim- ing mechanism. Crew Crew	Antenna will not seat on aim- ing mechanism.Crew1. Ensure cable outlet is properly oriented.Crew2. Examine antenna and aim- ing mechanism for obstruc- tions, dislodge obstructions by impact and reseat antenna on aiming mechanism.Crew3. If antenna is partially but firmly seated on aiming mechanism, continue with nom- inal deployment.Crew4. Examine antenna and aim- ing mechanism for damage and, if damaged, mount antenna on

126

.

.

¢

EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
14.	ALSEP deployment time becomes constrained.	Crew	l. If antenna is level and aligned, actuate the RTG shorting switch and ASTRO switch No. 1.	
		Crew	2. If antenna is not aligned or level and there will be a second EVA, do not actuate these switches.	
		Crew	3. If no second EVA, level and align as accurate as pos- sible and actuate switches.	
		Crew	4. Do not activate any switches if none of the exper- iments have been deployed and no second EVA.	
	N. State of the second s			

ŧ

.

EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
EVENT NO.	Switch #1 cannot be turned cw to ON position.	AGENT Crew/ MCC Crew Crew/ MCC MCC		REMARKS

٠

1

TABLE 19. ALSEP Activation (Cont'd)

· · ·

EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
2.	Central Station contingency antenna alignment.	Crew	l. Point antenna in general direction of earth.	
		Crew	2. Adjust antenna pointing angle in small increments, stepping back after each ad- justment to avoid distortion of antenna beam pattern.	
		Crew/ MCC	3. Perform required offsets under MCC direction.	
3.	Turn-on of ALSEP transmitter	Crew MCC	1. Astronaut standby for manual turn-on of ALSEP transmitter.	Initiate command CD-4 (octal O15) "Trans- mitter B Select." If no response, advise astronaut via voice link to turn on trans- mitter.
		Crew/ MCC	2. Actuate ALSEP back-up switch No. 2 with following functions:	Acknowledge turn-on of transmitter by recep- tion of RF signal from
			 a. Select Transmitter B. b. Turn on Transmitter. c. Reset receiver circuit breaker. d. Select and turn on data processor Y. 	ALSEP.

•

ŗ

\$

.

EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
3. (Cont'd)		Crew/ MCC	3. Advise MCC via voice link back-up switch No. 2 has been actuated.	Advise astronaut via voice link whether transmitter is functioning.
		Crew	4. Acknowledge MCC trans- mitter message via voice link.	
		Crew	5. If transmitter is not functioning, actuate ALSEP back-up switch No. 1, per- mitting PCU to operate on marginal voltage output of RTG.	
		Crew/ MCC	6. If transmitter is still not functioning, actuate back- up switch No. 3, energizing all experiments, sequentially.	Acknowledge back-up switch No. 3 actuation via voice link. Confirm power turn-on by telemetry indica- tion (channels 12 and 14).
		Crew/ MCC	7. Advise MCC via voice link that switch No. 3 has been actuated.	Advise astronauts that all experiments have been turned on via voice link.

>

.

CONTINGENCY	AGENT	ACTION	REMARKS
MCC reports downlink signal problems.	Crew	1. Crew should verify that antenna is properly oriented, Central Station is properly leveled and aligned, and RF cable and connectors are intact.	
	Crew	2. Notify MCC if antenna did not require reorientation, leveling or alignment, and if RF cable and connectors are intact.	
	MCC	3. If antenna is properly oriented, Central Station is leveled and aligned and RF cable and connectors are intact, select Trans "B".	
	MCC/ Crew	4. If unsuccessful, notify crew to adjust antenna point- ing angle in small increments under MCC direction and to step back after each adjust- ment to avoid distortion of antenna beam pattern.	
	MCC reports downlink signal	MCC reports downlink signal Crew problems. Crew Crew MCC	MCC reports downlink signal problems.Crew1. Crew should verify that antenna is properly oriented, Central Station is properly leveled and aligned, and RF cable and connectors are intact.Crew2. Notify MCC if antenna did not require reorientation, leveling or alignment, and if RF cable and connectors are intact.MCC3. If antenna is properly oriented, Central Station is leveled and aligned and RF cable and connectors are intact.MCC4. If unsuccessful, notify crew to adjust antenna point- ing angle in small increments under MCC direction and to step back after each adjust- ment to avoid distortion of

131

í

+

ł

L

TABLE 19. ALSEP Activation (Cont'd)

EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
4. (Cont'd)	*****	MCC	5. Request data through a site with 85 foot antenna.	
		MCC	6. Select "Low Bit Rate."	
		Crew/ MCC	7. If signal still too weak to yield useful data, notify crew to complete remainder of ALSEP deployment.	NOTE: High Bit Rate data not usable.

132

.

6

TABLE 19. ALSEP Activation (Cont'd)

ą.

.

¥

	EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
	5.	Downlink frequency so unsta- ble that Manned Space Flight Network (MSFN) receiver can-	MCC	l. Select redundant trans- mitter.	
		not synchronize.	MCC/ Crew	2. Select "Low Bit Rate."	
			MCC/ Crew	3. If signal still unstable, notify crew to complete remainder of ALSEP deployment.	
2					

133

1

TABLE 20. S-Band Transponder (CSM/IM)

i

+

	EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
	1.	No LM docking.	MCC	l. If CSM lunar orbit mission, proceed with CM portion of experiment only.	
			MCC	2. If CSM lunar flyby mission, scrub all experiment items.	
'{C L					
• } •					
	an a	a for more than the formation of the state of the			

134

ŧ

TABLE 21. Down-Link Bistatic Radar Observation of the Moon

ł

9

EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
1.	VHF antenna failure.	Crew	Switch to other VHF antenna. Position S/C so that selected antenna faces lunar surface.	Assumes one antenna failure.
2.	VHF ground equipment failure	Crew	Scrub VHF position of experi- ment.	Special VHF ground equipment located at Stanford University.
3.	Not enough time to perform a complete pass with S-band and VHF operating simultan- eously.	Crew	Perform the experiment for as much of each pass as possible.	Two VHF/S-band passes, separated by approxi- mately 20 hours, are planned.
· 4.	S-band 210' dish at Goldstone not available.	Crew	Scrub S-band portion of experiment.	
5.	Unable to determine S-band high-gain antenna pointing.	Crew	Perform the experiment using the S-band omni-directional antenna.	

135

, 1

TABLE 22. Subsatellite

٠

4

. *

EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
l.	Subsatellite does not launch.	Crew	Position switch to retract and reinitiate extend launch sequence.	nen kongenter genanne frei kongen ander ein gete gesette frei frei den verken gene sette konste frei Schweizer
2.	Earth Orbit	MCC	Operations of Subsatellite will be real-time decision depending upon type of orbit obtained.	

TABLE 23. Alpha Particle Spectrometer

٠ •

EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
1.	Earth Orbit Only.	Crew	Limited Operation.	Meaningful science data would be attenuated by earth's atmosphere. Would obtain operation- al and housekeeping data only.
2.	Lunar Polar or Modified Lunar Orbit	Crew	Operate Experiment in Normal Manner.	Excellent opportunity to obtain Lunar Alpha Particle Scientific Information.
3.	Experiment Mechanical/Elec- trical Malfunction.	Crew	Abort Experiment.	Conserve Spacecraft Power.

137

r F

TABLE 24. Gamma Ray Spectrometer

۰ ^۱

EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
l.	Earth Orbit Only	Crew	Limited Operation	Meaningful science data would be attenuated by earth's atmosphere. Would obtain operation- al and housekeeping data only.
2.	Lunar Polar or Modified Lunar Orbit	Crew	Normal experiment operation.	Excellent opportunity to obtain lunar gamma ray scientific data.
3.	Boom Fails to Extend	Crew	 Recycle extension con- trol. Limited operation 	Obtain spacecraft back- ground data
ч.	Boom Fails to Fully Extend	Crew	 Recycle retraction and extension controls. Limited operation (real- time P.I. decision.) 	Degraded data. Operation based upon real-time data evalua- tion and P.I. deter- minations.
5.	Boom Fails to retract for TEI SPS Burn.	Crew	 Recycle retraction con- trol. Jettison the Boom 	
6.	Experiment Mechanical/Elec- trical Malfunction.	Crew	Abort Experiment	Conserve Spacecraft Power

TABLE 25. X-Ray Fluorescence Spectrometer

- 4

ŧ

EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
1.	Earth Orbit Only.	Crew	Limited Operation.	Meaningful scientific data would be attenua- ted by earth's atmos- phere. Would obtain operational and house- keeping data only.
2.	Lunar Polar or Modified Lunar Orbit.	Crew	Normal Experiment Operation.	Excellent opportunity to obtain Lunar X-Ray scientific data.
3.	Experiment Sensor Direct Sunlight Exposure.	Crew	Normal Experiment Operation.	Degraded data. P.I. determination based upon real-time data evaluation.
4.	Experiment mechanical/elec- trical malfunction.	Crew	Abort Experiment	Conserve Spacecraft Power.

139

A

•

•

R

TABLE 26. Mass Spectrometer

EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
1.	Earth Orbit Only	Crew	Limited Operation	Obtain operational and housekeeping data only.
2.	Lunar Polar or Modified Lunar Orbit	Crew	Normal experiment operation.	Excellent opportunity to obtain lunar scientific data.
3.	Boom Fails to Extend	Crew	 Exercise extension con- trol. Limited operation. 	Obtain spacecraft back- ground data.
٤.	Boom Fails to Extend	Crew	 Exercise retraction and extension controls. Limited operation (real- time P.I. decision). 	Degraded data. Operation based upon real-time data evalua- tion and P.I. deter- minations
5.	Boom Fails to retract for TEI SPS Burn.	Crew	 Exercise retraction control. Jettison the Boom. 	
6.	Experiment Mechanical/Elec- trical Malfunction.	Crew	Abort Experiment	Conserve Spacecraft Power

140

.

TABLE 27. Gegenschein from Lunar Orbit

9

¥

EVENT NO.	CONTINGENCY	AGENT	ACTION	REMARKS
1.	Not possible to schedule dur- ing lunar orbit.	MCC/ Crew	Try during TEC.	Updated pointing.
2.	Film magazine jams or fails.	Crew	Switch to other magazine using dim light (fast) film.	
3.	Attitude rates higher than allowed.	Crew	1. Control rates to low as possible.	May reduce number of exposures.
4.	Not enough time to accomplish all photography.	Crew	 2. Try 2 minute exposures. Photo priority 1. 2 minute exposures 2. 2 minute exposures 3. 2 minute exposures 4. 1 minute exposures 5. 1 minute exposures 6. 1 minute exposures 	Of Moulton Point Of Antisolar Point Of Midway Point Of Moulton Point Of Antisolar Point Of Midway Point

141

, ,

APPENDIX

ABBREVIATIONS AND ACRONYMS

ABBREVIATIONS

Ф,

al .

R

¥

(

DEFINITIONS

ALSEP	Apollo Lunar Surface Experiment Package
* CCGE	Cold Cathode Gauge Experiment
CDR	Commander
CLSRC	Contingency Lunar Sample Return Container
CSM	Command Service Module
DRT	Dome Removal Tool
EMU	Extravehicular Mobility Unit
EVA	Extravehicular Activity
FTT	Fuel Transfer Tool
HFE	Heat Flow Experiment
HTC	Hand Tool Carrier
lec	Lunar Equipment Conveyer
im	Lunar Module
imp	Lunar Module Pilot
irrr/ir ³	Laser Ranging Retro-Reflector
ism	Lunar Surface Magnetometer
MCC	Mission Control Center
MESA	Modularized Equipment Stowage Assembly
PCU	Power Control Unit
PDR	Power Dissipation Resister
PSE	Passive Seismic Experiment
RTG	Radioisotope Thermoelectric Generator
SEQ/Bay	Scientific Equipment Bay
SESC	Special Environmental Sample Container
SIDE	Suprathermal Ion Detector Experiment
SRC	Sample Return Container
SWC	Solar Wind Composition
SWS	Solar Wind Spectrometer
TM	Telemetry
UHT	Universal Handling Tool

* The abbreviations CCIG and CCGE are often used interchangeable, however, CCIG is the nomenclature assigned by NASA Headquarters to the instrument described herein.

A-1

Addressees: CA/D. K. Slayton CB/J. P. Allen CG/J. W. Bilodeau CG3/R. G. Zedekar (5) CG_3/J . McKee (3) CG5/T. W. Holloway (3) EE3/L. Leopold EH/D. G. Wiseman (5) FC9/J. E. Saultz (5) JM2/E. Hill (3) PD4/J. R. Sevier PD7/J. Peacock PG/R. Newlander TA/A. J. Calio TA/J. A. Lovell TA/G. Simmons TD4/R. A. Moke (10) TD5/R. R. Baldwin TD5/F. J. Herbert TD5/J. R. Bates TN/P. W. Gast (3) TF/D. E. Evans TDX/R. Miley (5) NASA Hqs, W. T. O'Bryant, MAL (3) KSC, C. M. Vaughn, PSK

۴.

够

Addressees:

Dr. Gary V. Latham Lamont-Doherty Geological Observatory Columbia University Palisades, New York 10964

Dr. Marcus E. Langseth Lamont-Doherty Geological Observatory Columbia University Palisades, New York 10964

Dr. Francis S. Johnson University of Texas at Dallas P.O. Box 30365 Dallas, Texas 75230

Dr. John W. Freeman Department of Space Science Rice University Houston, Texas 77001

Dr. Conway W. Snyder Jet Propulsion Laboratory 4800 Oak Grove Drive Pasadena, California 91103

Mr. James R. Bates Mail Code: TD5 Science Requirements and Operations Branch NASA-Manned Spacecraft Center Houston, Texas 77058

Dr. J. Faller Scott Laboratory Wesleyan University Middletown, Connecticut 06457

Dr. Palmer Dyal, Code N204-4 Space Science Division Electrodynamics Branch Ames Research Center Moffett Field, California 94034

Dr. Gordon Swann Center of Astrogeology U.S. Geological Survey 601 E. Cedar Avenue Flagstaff, Arizona 86001 Dr. Robert O. Pepin School of Physics and Astromony University of Minnesota Minneapolis, Minnesota 55455

Dr. James K. Mitchell Department of Civil Engineering 440 Davis Hall University of California at Berkeley Berkeley, California 94726

Dr. Johannes Geiss University of Berne Physikalisches Institut Sidlerstrasse 5 Berne, Switzerland

Mr. Lawrence Dunkelman Planetary Optics Section Mail Code: 673 Goddard Space Flight Center Greenbelt, Maryland 20771

Mr. H. T. Howard Stanford Electronic Laboratories Stanford University Stanford, California 94305

Mr. F. J. Doyle U.S. Geological Survey Topographic Division 1340 Old Chain Bridge Road McLean, Virginia 22101

Dr. William M. Kaula Institute of Geophysics and Planetary Physics University of California at Los Angeles Los Angeles, California 90024

Dr. James R. Arnold Chemistry Department University of California at San Diego La Jolla, California 92037 Addressees:

Dr. Isidore Adler Theoretical Studies Branch - Code 641 NASA-Goddard Space Flight Center Greenbelt, Maryland 20771

÷.

Dr. Paul Gorenstein American Science and Engineering, Inc. 11 Carleton Street Cambridge, Massachusetts 02142

Dr. John H. Hoffman Atmospheric and Space Sciences University of Texas at Dallas P.O. Box 30365 Dallas, Texas 75230

Mr. William L. Sjogren Mail Code: 156-251 Jet Propulsion Laboratory 4800 Oak Grove Drive Pasadena, California 91103

Dr. Kinsey A. Anderson Space Science Laboratory University of California at Berkeley Berkeley, California 94726

Dr. Paul J. Coleman, Jr. Department of Planetary and Space Science University of California at Los Angeles Los Angeles, California 90024

Mr. D. S. Crouch Martin Marietta Corporation Denver Division Mail Code 1640 P.O. Box 179 Denver, Colorado 80201

Mr. J. Head Bellcomm, Inc. 955 L'Enfant Plaza North, S.W. Washington, D.C. 20546