THERMAL VACUUM CONTINGENCY PLAN

Prepared by: D. Douthat

Approved by: L. Lewis
1.0 THERMAL VACUUM WATCHKEEPING GUIDELINES

1. The watchkeeping mode of operation is that which obtains between functional tests while achieving thermal soaking or transitions, pump-down, etc. This specifically excludes RTG start up.

2. The recommended condition of the ALSEP during these periods is:

Central Station Timer - OFF
Central Station - ON
DATA RATE - NORMAL
TRANSMITTER A
Data Processor Y
ADDRESS - A
CENTRAL STATION HEATERS - ON
PCU #2
DUMP LOAD #1 - OFF
DUMP LOAD #2 - OFF
EXPERIMENT #1 (PSE) - ON
EXPERIMENT #2 (LSM) - ON
EXPERIMENT #3 (SWS) - ON
*EXPERIMENT #4 (SIDE) - ON
PSE STATUS - PRESET
LSM STATUS - PRESET
*SIDE STATUS - PRESET
SIDE -3.5 Kv - OFF
SIDE 4.5 Kv - OFF

3. The recommended program loading for these periods is:

Flights 1 and 2 Executive Thermal Vacuum Prototype - 2335227
LSM Temperature MONITOR - 2335202
SWS Temperature MONITOR - 2335209
SIDE Temperature MONITOR Prototype - 2335224
A1-A2 Integrated Decommutation - 2335210

*If pressure has been low enough to get SIDE on. \((< 5 \times 10^{-6} \text{ torr})\)
4. Manual Plotting is required on several parameters in order to maintain a constant and readily accessible record useful in determining trends. Graphical forms are provided for this purpose. The parameters to be plotted are shown in the attached table. This plotting is to be done at intervals indicated in the table. Note that these intervals vary depending on whether active testing or watchkeeping mode is in effect.

5. Emergency guidelines are provided to give "first aid" direction to test personnel whenever OT conditions occur. It is important to keep in mind that on a system as complex as ALSEP, the most obvious emergency procedure (e.g. turn-off) is not always correct or even safe. For this reason the Emergency Guidelines are given to be used whenever an OT condition occurs on the STS printout.

6. Reference should be made to ATM-704 Part 1, Appendix A for the values of normal limits (contained in programs) and danger limits.

2.0 STRUCTURAL/ THERMAL TEMPERATURES

<table>
<thead>
<tr>
<th>Corrective Action</th>
<th>Channel Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunshield Temperatures</td>
<td>Temp. = HK #</td>
</tr>
<tr>
<td>1) Verify temperature with environmental DAS to confirm data.</td>
<td>#1 = 27</td>
</tr>
<tr>
<td>2) Verify thermal plate temperatures are within limits.</td>
<td>#2 = 42</td>
</tr>
<tr>
<td>3) Verify external heat sources are functioning properly.</td>
<td></td>
</tr>
<tr>
<td>4) Continue to monitor thermal plate temperatures to insure they are not approaching limits if 2) and 3) are normal.</td>
<td></td>
</tr>
</tbody>
</table>
Corrective Action | Channel Assignment
--- | ---
5) Contact Engineering. |

2.2 Thermal Plate Temperature

1) Verify temperature with environmental DAS for confirmation of data. #1 = 4
 #2 = 28
 #3 = 43

2) If 1) verifies and temperature is too low, turn on back-up heater; if too high, turn off back-up heater. #4 = 58

3) Reduce or increase external heat sources to obtain a within tolerance output.

4) If unable to control temperature, contact Systems Engineering and appropriate Test Conductor prior to turn off of ALSEP.

2.3 Vertical Structures, Bottom Structure, Outer Multilayer Insulation

1) Verify temperatures with environmental DAS for confirmation. Temp. #1 = 59
 #2 = 87
 Bottom #3 = 15

2) Verify thermal plate temperatures are within limits. #4 = 88

3) Verify external heat sources are functioning properly.

4) If 2) and 3) are normal, continue to monitor thermal plate temperatures to insure they are not approaching limits.

5) Contact Engineering.

2.4 Inner Multilayer Insulation Temperature

1) Verify temperatures are within limits. Inner Multilayer = 60
Corrective Action

2) Verify external heat sources are functioning correctly.

3) If 1) and 2) are normal, monitor Central Station to insure temperatures are not approaching critical limits.

4) Contact Engineering.

3.0 ELECTRONIC TEMPERATURES

3.1 Receiver Local Oscillator

1) Check Receiver Pre-Limiting level HK-21, Receiver Local Oscillator level HK-36. Determine if a trend in output exists.

2) Determine if switchover from A to B has occurred i.e. is temperature B OT?

3) Determine if uplink is functioning correctly by sending the PSE filter in/out command twice, check for proper CV, printout.

4) If uplink is functioning, continue test. Notify Systems Engineering. If uplink has failed, notify appropriate Test Conductor and Systems Engineering to determine appropriate action.

3.2 Transmitter, Heat Sink and Crystal Temperature

1) Verify thermal plate temperatures are within limits.

2) Switch transmitters and verify a within tolerance output from the alternate transmitter.

<table>
<thead>
<tr>
<th>Channel Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local Osc. A = 16</td>
</tr>
<tr>
<td>Local Osc. B = 17</td>
</tr>
<tr>
<td>A Crystal = 18</td>
</tr>
<tr>
<td>B Crystal = 31</td>
</tr>
<tr>
<td>A Heat Sink = 19</td>
</tr>
<tr>
<td>B Heat Sink = 32</td>
</tr>
</tbody>
</table>
Corrective Action

3) Monitor temperatures of alternate transmitter to determine trend.

4) Contact Engineering.

3.3 Analog and Digital Processor Temperatures

1) Verify thermal plate temperatures are within limits.

2) Switch data processors and determine temperature trend.

3) If Step 2 fails to control temperature, verify correct operation of processors from the printout of analog channels (PSE) Status, etc.).

4) Contact appropriate Test Conductor and Systems Engineering if temperature cannot be controlled or processor does not operate correctly.

3.4 Command Decoder Temperatures

1) Verify Thermal Plate temperatures are within limits.

2) Test uplink by sending PSE filters in/out command twice, verify correct CV printout.

Channel Assignment

Analog Base = 33
Analog Internal = 34
Digital Base = 46
Digital Internal = 47

Base = 48
Internal = 49
Mod. VCO = 61
3) If there is no response to commands, switch to appropriate alternate address (1A to 1B etc.), retest uplink and determine temperature trend.

4) Contact appropriate test conductor and Systems Engineering if temperature cannot be controlled.

3.5 Power Distribution Temperatures

1) Verify thermal plate temperatures are within limits.

2) Contact appropriate test conductor and Systems Engineering.

3.6 PCU, Power Oscillator and Regulator Temperatures

1) Verify thermal plate temperatures are within limits.

2) Switch over PCU's monitor temperature to determine trend.

3) If unable to control temperature, contact appropriate Test conductor and Systems Engineering.

4.0 CENTRAL STATION ELECTRICAL

4.1 Analog Converter Calibration

1) Verify PCU output voltages are within tolerance.

2) Switch processors.

3) Contact Engineering.
Thermal Vacuum Contingency Plan

Corrective Action

4.2 PCU Input - Output Currents and Voltages

1) Verify Central Station is operating within regulation via Shunt Regulator Current on RTG Simulator.

2) Verify station status has not changed i.e. dump loads on, should be off, etc.

3) Verify correct output of RTG via IPU Test Console or RTG Simulator.

4) If Steps 1-3 are normal, switch over PCU's.

5) If unable to obtain correct output notify appropriate Test Conductor and Systems Engineering to determine appropriate action.

Channel Assignment

Input Volt = 1
Input Amp. = 5
Shunt Reg. #1 amp. = 8
Shunt Reg. #2 amp. = 13

Prelimit = 21
L, O. = 36
+29V = 20
+15V = 35
+12V = 50
+5V = 65
+12V = 79
-6V = 80

4.3 Receiver, Prelimiting and Local Oscillation Level

1) Verify STS transmitter output is within limits.

2) Determine if uplink is functioning correctly by sending PSE filter in/out twice.

3) If uplink is operative continue test and take further action during normal working hours.

4) If uplink fails contact appropriate Test Conductor and Systems Engineering.

4.4 Transmitter AGC Voltage, Power Doubler Current

1) Switch transmitters.

2) If unable to obtain correct limits, verify downlink is functioning via STS printer.

AGC A = 51
AGC B = 66

Power Doub. A = 81
Power Doub. B = 22
Corrective Action

3) Contact appropriate Test Conductor and Systems Engineering.

4.5 Receiver, 1 KHz Subcarrier

1) Verify if uplink is functioning by sending PSE filter in/out command twice.

2) If uplink has failed, check STS transmitter and cables to chamber.

3) If unable to rectify problem, contact appropriate Test Conductor and Systems Engineering.

4.6 ALSEP Experiment Power Distribution:

1) Verify correct status of experiment via STS Printer or by command switching and PCU shunt regulator current.

2) Contact Systems Engineering of out-of-tolerance condition during normal working hours.

5.0 RTG TEMPERATURES*

1) Confirm data by comparing with external RTG temperature measurements.

2) If temperatures exceed 1130°F max. for the hot frame and 575°F max. for the cold frame switch the load to the RTG Simulator and begin emergency turn off procedure for the RTG.

*NOTE: Proto ALSEP employs dummy resistors. Use external temperature monitor for correct values of RTG temperatures.
Corrective Action

3) Contact the appropriate Test Conductor and PE to determine further action.

6.0 DUST ACCRETION

1) Contact Systems Engineering.

2) Command Dust Detector off if meaningful data is not being obtained.

7.0 PASSIVE SEISMIC EXPERIMENT

1) Send commands to obtain correct response.

2) Contact Systems Engineering.

3) If thermal status exceeds critical limit, determine temperature trend of PSE sensor. Advise appropriate Test Conductor and PE if temperature exceeds limit.

4) If uncage status indicates uncaging, verify by a pressure measurement via PSE exciter. Notify PSE PE immediately and appropriate Test Conductor.

8.0 SUPRATHERMAL ION DETECTOR EXPERIMENT

1) Verify a shift in the "normal" output of the science data. SIDE words 4-5 and 9-10, has occurred.

NOTE: The HK is a logarithmic conversion of the science data rate.
Thermal Vacuum Contingency Plan

Corrective Action

2) If the science data appears abnormal switch the experiment to Standby. Contact the appropriate Test Conductor and the PE.

9.0 FAILURE OF DOWNLINK (LOSS OF MF LOCK)

1) Verify or correct if necessary phase locking of STS receiver.

2) Switch transmitters and return.

3) Switch data processors.

4) Reload DPS 2000 programs.

5) Verify proper NRZ and clock from STS demodulator to DPS 2000 with a scope.

6) Load a second STS with identical software and play back a portion of the Ampex magnetic tape just recorded.

7) Contact Systems Engineering before stopping test.

10.0 FAILURE OF UPLINK (TOTAL)

1) Switch Addresses

2) Check STS transmitter power output and cables to chamber (RF attenuation)

3) Check STS modulation (1000 cps attenuation, data attenuation, 1000 cps phase)

4) Contact Systems Engineering.
11.0 FAILURE OF UPLINK (PARTIAL)

1) Perform steps of 9.0 and test failed commands.

2) Modify procedures to omit affected commands and continue test.

3) Contact Systems Engineering.

12.0 LUNAR SURFACE MAGNETOMETER (LSM)

12.1 Analog Engineering Data (Word 5) Temperature

1) Verify temperature with environmental DAS to confirm data.
 Temp. #1 = 1, 9
 #2 = 2, 10
 #3 = 3, 11
 #4 = 4, 12
 #5 = 5, 13

2) Verify external heat sources are functioning correctly.

3) Reduce or increase external heat sources to return to within tolerance.

4) Contact Systems Engineering and PE.

12.2 Level Sensors

1) Verify by visual inspection that LSM is still in an upright condition.
 L. S. #1 = 6, 14
 #2 = 7, 15

2) If tipped, contact Systems Engineering and PE, also bring the lunar surface under LSM to room temperature as quickly as possible.

12.3 Supply Voltage

1) Determine trend to see if danger limits have been reached or are being approached.
2) If at, or approaching danger limit, command LSM to standby and immediately institute action to keep LSM within safe temperatures (as sensed via DAS) by using the chamber environmental controls.

3) Contact Systems Engineering and PE.

12.4 Status Bits (Change Only)

1) Note occurrence, include time, old and new values.

2) Restore original status by command(s).

3) Contact Systems Engineering and PE.

13.0 SUPRATHERMAL ION DETECTOR EXPERIMENTS (SIDE)

13.1 Temperatures

1) Verify temperature with environmental DAS to confirm data.

2) Verify external heat sources are functioning correctly.

3) Reduce or increase external heat to return within tolerance.

4) Contact Systems Engineering and PE.

13.2 High Voltages

1) Command off the OT high voltage.

2) Contact Systems Engineering and PE.

14.0 SOLAR WIND SPECTROMETER (SWS)

14.1 Temperatures
Thermal Vacuum Contingency Plan

Corrective Action

1) Verify temperature with environmental DAS to confirm data.

2) Verify external heat sources are functioning correctly.

3) Reduce or increase external heat sources to return within tolerance.

4) Contact Systems Engineering and PE.

Channel Assignment

Temp. Mod

100 1
200 2
300 3
Cups 4