NATIONAL AERONAUTICS AND SPACE ADMINISTRATION ALSEP CONSOLE HANDBOOK APOLLO 12, ALSEP 1 THROUGH APOLLO 17, ALSEP ARRAY E 1 GENERAL MISSION SPECIFICS MAY 15, 1971 3 OPERATIONAL PROCEDURES PREPARED BY FLIGHT CONTROL DIVISION MANNED SPACECRAFT CENTER HOUSTON, TEXAS FC035 ALSEP 11/2/72 NOV 20 1972 (PCN) NOV 21 1972 CONF CALL ## APOLLO #### ALSEP CONSOLE HANDBOOK APOLLO 12 ALSEP 1 THROUGH APOLLO 17 ALSEP ARRAY E PCN-2 #### PREFACE This page change notice (PCN) is a partial revision and should be incorporated into the basic document, dated May 15, 1971, according to the page change instruction sheet which follows this page. Incorporation of PCN-2 will make this handbook current as of November 2, 1972. This document has been prepared by the Lunar/Earth Experiments Branch, Flight Control Division, to detail the operational responsibilities and procedures of the Lunar/Earth Experiments Branch personnel assigned to the flight control of Apollo lunar surface experiments package (ALSEP) missions. This shall be the governing document defining specific conduct of ALSEP operations and missions. This shall be the governing document defining specific conduct of ALSEP operations and pertains to all activities to be conducted in Room 314B of the Mission Control Center (the ALSEP control area) for the operational duration of ALSEP control. Procedures and positions which interface with these described herein shall be as specified in the applicable Flight Control Operations Handbook. Information contained within this document is effective as of November 2, 1972. Questions and comments concerning the contents of this document should be directed to FC9/Mr. Keith K. Kundel, Lunar/Earth Experiments Branch, extension 3786. This document is not to be reproduced without the written approval of the Chief, Lunar/Earth Experiments Branch, Flight Control Division, Manned Spacecraft Center, Houston, Texas. Approved by: James E. Saultz, Sr. Chief, Lunar/Earth Experiments Branch # APOLLO # ALSEP CONSOLE HANDBOOK # APOLLO 12 ALSEP 1 THROUGH APOLLO 17 ALSEP ARRAY E # P-CN-2 # PAGE CHANGE INSTRUCTION SHEET Update this document in accordance with the following instructions: Remove and replace the following pages: ii iia iib Vii Add the following new SOP's: 6-1 6-2 6-3 6-4 6-5 6-6 6-7 6-8 6-9 6-10 6-11 6-12 # APOLLO # ALSEP CONSOLE HANDBOOK # APOLLO 12 ALSEP 1 THROUGH APOLLO 17 ALSEP ARRAY E # CHRONOLOGICAL PUBLICATION HISTORY | Issue | Publication Date | | | |-------|------------------|--|--| | Basic | May 15, 1971 | | | | PCN-1 | July 29, 1971 | | | | PCN_2 | November 2, 1972 | | | # CONTENTS | Sec | tion | | | Page | |-----|------|---------|--|------| | 1 | GENE | RAL | | 1-1 | | | 1.1 | INTRODU | JCTION | 1-1 | | | | 1.1.1 | Purpose | 1-1 | | | | 1.1.2 | Updates | 1-1 | | | 1.2 | ALSEP H | PREMISSION OPERATIONAL DOCUMENTATION | 1-1 | | | | 1.2.1 | ALSEP Systems Handbook | 1-1 | | | | 1.2.2 | ALSEP Mission Rules | 1-1 | | | | 1.2.3 | ALSEP Work Schedule | 1-1 | | • | | 1.2.4 | Console Handbook | 1-1 | | | 1.3 | ALSEP I | MISSION OPERATIONAL DOCUMENTATION | 1-2 | | | | 1.3.1 | Activity Planning Guide | 1-2 | | | | 1.3.2 | ALSEP Operations Report | 1-2 | | | | 1.3.3 | Data Book | 1-2 | | | | 1.3.4 | Console Log | 1-2 | | | | 1.3.5 | Deployment Log | 1-2 | | | | 1.3.6 | SPAN/Mission Evaluation Action Request (SMEAR) | 1-3 | | | 1.4 | DATA | | 1-3 | | | 1.5 | OPERAT | IONS PLANNING MEETINGS | 1-3 | | | 1.6 | REFERE | NCE FILE | 1-3 | | | 1.7 | ALSEP | SYSTEMS FLIGHT CONTROLLERS | 1-4 | | | | 1.7.1 | General | 1-4 | | | | 1.7.2 | ALSEP Senior Engineer | 1-4 | | | | 1.7.3 | ALSEP Systems Engineer | 1-5 | | | | 1.7.4 | ALSEP Data Engineer | 1-5 | | | | 1.7.5 | ALSEP Flight Controller Certification | 1-5 | | | 1.8 | CONSOL | E AREA | 1-6 | | | | 1.8.1 | Communications Positions | 1-6 | | | | 1.8.2 | ALSEP Command System | 1-8 | | | | 1.8.3 | High-Speed Printer Control Panels | 1-10 | | * | | | ALSEPCH
BASIC | |---------|----------|--|------------------| | Section | | | Page | | | 1.8.4 | Analog Recorders | 1-12 | | | 1.8.5 | Drum Recorders | 1-13 | | | 1.8.6 | <u>D/TV</u> | 1-13 | | | 1.8.7 | Limit Sensing | 1-14 | | | 1.8.8 | Event Indicator Panels | 1-14 | | | 1.8.9 | ALSEP Identification Panel (Module 30) | 1-14 | | 1.9 | GENERA | L OPERATING PROCEDURES (GOP) | 1-25 | | | 1.9.1 | GOP 1 REAL-TIME COMMANDING | 1-25 | | | 1.9.2 | GOP 2 HIGH-SPEED PRINTER FORMAT SELECTION | 1-27 | | | 1.9.3 | GOP 3 ANALOG RECORDER FORMAT SELECTION | 1-29 | | | 1.9.4 | GOP 4 DRUM RECORDER FORMAT SELECTION | 1-30 | | | 1.9.5 | GOP 5 ALSEP DATA AND DISPLAY PROBLEMS | 1-31 | | | 1.9.6 | GOP 6 P-TUBE ROUTING | 1-33 | | | 1.9.7 | GOP 7 DIGITAL HISTORY DELOG REQUEST | 1-34 | | | 1.9.8 | GOP 8 CALIBRATION CURVE CHANGES IN REAL TIME | 1-36 | | | 1.9.9 | GOP 9 SHIFT CHANGE | 1-38 | | | 1.9.10 | GOP 10 PRESUPPORT | 1-39 | | | 1.9.11 | GOP 11 CLEAN DOWN PROCEDURE FOR TERMINATION OF SUPPORT | 1-40 | | | 1.9.12 | GOP 12 CONTINGENCY SUPPORT | 1-41 | | 2 MISS | SION SPE | CIFIC | 2-1 | | 2.1 | APOLLO | 12 ALSEP 1 | 2-1 | | | 2.1.1 | EVENT LIGHT PANEL | 2-1 | | | 2.1,2 | HIGH SPEED PRINTER FORMATS | 2-4 | | | 2.1.3 | ANALOG RECORD FORMATS | 2-4 | | | 2.1.4 | LIMIT SENSING EVENT LIGHTS | 2-6 | | | 2.1.5 | DRUM RECORDERS | 2 - 9 | | 2.2 | APOLLO | 14 ALSEP 4 | 2-10 | | | 2.2.1 | EVENT LIGHT PANEL | 2-10 | | | 2.2.2 | HIGH SPEED PRINTER FORMATS | 2-13 | **:** . | * | | ALSEPCH
BASIC | |---------|----------------------------------|------------------| | Section | | Page | | | 2.2.3 ANALOG RECORDER FORMATS | 2-13 | | | 2.2.4 LIMIT SENSING EVENT LIGHTS | 2-15 | | | 2.2.5 DRUM RECORDERS | 2-18 | | 2.3 | APOLLO 15 ALSEP A2 | 2-19 | | | 2.3.1 EVENT LIGHT PANEL | 2-19 | | | 2.3.2 HIGH SPEED PRINTER FORMATS | 2-22 | | | 2.3.3 ANALOG RECORDER FORMATS | 2-22 | | | 2.3.4 LIMIT SENSING EVENT LIGHTS | 2-24 | | | 2.3.5 DRUM RECORDERS | 2 - 28 | | 2.4 | APOLLO 16 ALSEP ARRAY D | 2 - 29 | | 2.5 | APOLLO 17 ALSEP ARRAY E | 2-30 | | 2.6 | 72 EVENT LIGHT PANEL | 2-31 | # 3 STANDARD OPERATING PROCEDURES | SOP No | <u>Title</u> | |---------------|------------------------------------| | 1-1X | 2-HOUR SUPPORT | | 1-2X | SUNRISE SUPPORT | | 1-3X | SUNSET SUPPORT | | 1-4X | PSE AUTO LEVELING | | 1-5X | PSE FORCED LEVELING | | 1 - 6X | SOLAR WIND HI GAIN CHANGE | | 1-7X | SOLAR WIND LO GAIN CHANGE | | 4-1X | 2-HOUR SUPPORT | | 4-2X | SUNRISE SUPPORT | | 4-3X | PSE AUTO LEVELING | | 4-4X | PSE FORCED LEVELING | | 4-5X | ASE PASSIVE LISTENING MODE | | 4-6X | ASE MORTOR MODE | | 4-7X | CPLEE THERMAL CONTROL MODE CHANGE | | 4-8X | CPLEE PLATE VOLTAGE SELECTION | | 2-1 | MCC AND MSFN PRESUPPORT CHECKOUT | | 2-2 | ALSEP A-2 DEPLOYMENT | | 2-3 | PSE ACTIVATION | | 2-4 | PSE INITIAL AUTOMATIC LEVELING | | 2 - 5 | PSE AUTOMATIC RELEVELING | | 2-6 | PSE INITIAL FORCED LEVELING | | 2-7 | PSE FORCED RELEVELING TO BAND EDGE | | 2-8 | PSE GAIN CHANGE | | 2-9 | PSE SP OR LP CALIBRATION | | 2-10 | LSM ACTIVATION | | 2-11 | LSM SITE SURVEY | | 2-12 | SWS ACTIVATION | | 2-13 | SWS HI GAIN CHANGE | | 2-14 | SWS LO GAIN CHANGE | | 2-15 | SIDE/CCGE ACTIVATION | | SOP No | <u> Title</u> | i | |--------|---|-----| | 2-15A | CCGE SEAL REMOVAL | P-1 | | 2-15B | SIDE DUST COVER REMOVAL | | | 2-16 | HFE ACTIVATION | | | 2-17 | HFE HEATER STEPPING | | | 2-18 | CHANGE OF OPERATING STATUS OF HFE | | | 6-1 | LSG ACTIVATION | | | 6-2 | LSG INITIAL SET-UP | | | 6-3 | LSG TILT ADJUSTMENT | | | 6-4 | LSG TEMPERATURE INCREMENTING | | | -6-5 | LSG FINAL INSTRUMENT SET-UP | | | 6-6 | LMS ACTIVATION | P-2 | | 6-7 | LMS EMISSION MODE CONTROL | | | 6-8 | LMS J. PLATE STEP | | | 6–9 | LMS FILAMENT SWITCH | | | 6-10 | LEAM ACTIVATION | | | 6-11 | LSP EXPLOSIVE PACKAGE DETONATION LISTENING MODE | | | 6-12 | LSP PASSIVE LISTENING MODE | | | | | (| 1 GENERAL ## SECTION 1 #### GENERAL #### 1.1 INTRODUCTION ### 1.1.1 Purpose This document comprises a set of operational philosophies, ground rules, procedures, and pertinent facility and equipment descriptions formulated by the Lunar/Earth Experiments Branch, Flight Control Division, to govern conduct of operations in the ALSEP control area, Mission Control Center Room 314B. It shall be used by ALSEP system flight controllers, in conjunction with other documentation defined herein, for real-time and near-real-time support of the ALSEP's for their operational duration. #### 1.1.2 Updates This document shall be updated as deemed necessary by LEEB. However, it is not planned to update the general section on a mission basis. #### 1.2 ALSEP PREMISSION OPERATIONAL DOCUMENTATION These documents will be originated by ALSEP flight controllers to present requisite plans, procedures, and contingency problem solutions. #### 1.2.1 ALSEP Systems Handbook The ALSEP Systems Handbook is a functional representation of ALSEP systems prepared in a format for real-time use by flight controllers. Depth of detail will show telemetry and command interfaces and operational functions such that most contingencies can be determined and solved in real time. ### 1.2.2 ALSEP Mission Rules Mission rules will be preplanned solutions to single-point failures. The ALSEP Senior Engineer (ASE) will govern when and if to apply a mission rule. Deviation from a mission rule will be documented in the mission log and, if justified, the specific rule will be updated. Mission rules are published by the Flight Operations Directorate with appropriate concurrence and approval of other center elements. # 1.2.3 ALSEP Work Schedule The work schedule is a detailed operations plan for deployment, activation, and planned experiment operations. The schedule will include support periods for previously deployed ALSEP's. The work schedule will terminate at LM ascent stage impact. #### 1.2.4 Console Handbook The console handbook will contain information deemed necessary by ALSEP flight
controllers for real-time support of the ALSEP. #### 1.3 ALSEP MISSION OPERATIONAL DOCUMENTATION These documents and data will be collected during the mission for ALSEP analysis and historical purposes. ## 1.3.1 Activity Planning Guide The planning guide will begin at LM ascent stage impact and be a real-time support schedule and activity guide for all deployed ALSEP's. ## 1.3.2 ALSEP Operations Report The operations report is in two parts, a summary support plan and a parameter listing. The support plan is a weekly guide to the planned activities during real-time support. The parameter listing is to be completed with the last data slice before termination of support. ## 1.3.3 Data Book Two identical data books will be kept for each ALSEP, one for the ALSEP ops room and one for the ALSEP office. A new data book will be started for an ALSEP at sunrise (sun angle of zero). High-speed printer formats will be placed in the data book in the following order: Central Station, Experiment 1, Experiment 2, Experiment 3, Experiment 4, and Experiment 5. The central station format will have a tab placed on it with the following information written in black: day of year, date, and GMT. The formats will be obtained at the beginning and end of each support period and at even GMT hours. A PSE format of "before" and "after" a leveling sequence will be placed in each book. A tab written in black will state axis leveled and if "forced" or "auto" mode. "Before" and "after" will be written on the appropriate sheet. In the case of a contingency problem, a format of the contingency will be placed in each book and a tab written in red will state the problem and experiment affected. #### 1.3.4 Console Log The console log will be a history of everything that occurred during a support period. It will reflect all commanding and anomalies. It will detail what has been accomplished and what inputs are to be done. All ASE's will be knowledgeable of all inputs and all ASE's will use the console log to pass information on to other ASE's. Important information will be written in red. Routine information in black. #### 1.3.5 Deployment Log A deployment log will be originated and followed by the "Deployment ASE". It will be a detailed log of all operations accomplished from the time of initial deployment to the beginning of normal ALSEP operation. # 1.3.6 SPAN/Mission Evaluation Action Request (SMEAR) A SMEAR is generated for two reasons: 1) to determine the cause of ALSEP problems and 2) to request an action of an organization. SMEAR's are sent to S&AD concerning science priority, to MER for engineering problems, and to FOD for operational procedures. #### 1.4 DATA Data is defined as all high-speed printer copy, teletype copy, analog chart and drum recorder charts, and miscellaneous text generated during or as a result of real-time operations. Data shall be collected for two purposes: operational and scientific. Operational data shall be used to assess operation of ALSEP systems and provide a baseline for future operations. Scientific data shall be distributed to the appropriate principal investigator (PI) for his use. No hardcopy format distinction is made between operational and scientific data — the difference is only in how the data will be used. It must be stressed that any hardcopy data from ALSEP with any scientific content is privileged information to the responsible PI for a period of one year from acquisition and shall not be indiscriminately distributed even within the control center. In no case shall distribution of scientific data be made by flight control personnel to any parties not directly concerned with the actual operation of the particular instrument. #### 1.5 OPERATIONS PLANNING MEETINGS Operations planning meetings shall be held periodically to discuss ALSEP status and decide the nature of and schedule for future operations. Meetings shall be chaired by an appropriate representative of the flight director, and shall have representation from S&AD, LSPO, PI's, ALSEP flight controllers, and any other personnel concerned with conduct of the mission. #### 1.6 REFERENCE FILE A reference file shall be maintained in the control area and shall contain current information of three types: - A. MSC operational documentation (e.g., ALSEP Systems Handbook, FCOH, SODB, Mission Rules, and any other such documents generated on site which apply to ALSEP operations). - B. Appropriate vendor and contractor file material such as Bendix specifications, ATM's containing pertinent information not included in operational documents, such as calibration curves and the like. (It may be appropriate to secure the ALSEP flight systems logs from the Cape postlaunch.) - C. Data generated during ALSEP test and support periods. This category shall include but not be limited to fulfilled work schedules, high-speed printer hardcopy, teletype messages, plots, selected analog recorder charts, and selected operations log and support summary information which may be needed for future reference. It is intended that the bulk of the above mentioned items shall be controlled by console handbook procedures so that old, no-longer-useful data shall be periodically discarded in the interests of good housekeeping and efficient access to data which are pertinent. (This minimizing of the volume of stored paper shall be the responsibility of the ALSEP Data Engineer.) Inasmuch as is practicable, the reference file shall be limited to one of each type of document, and the documents in the file shall be the latest issues available. Marked-up documents in the file, based on real-time information, shall be the basic for any required future revisions to those documents. #### 1.7 ALSEP SYSTEMS FLIGHT CONTROLLERS #### 1.7.1 General There shall be three ALSEP systems flight controller positions, designated: - A. ALSEP Senior Engineer call sign "ASE" - B. ALSEP Systems Engineer call sign "SYSTEMS" - C. ALSEP Data Engineer call sign "DATA" In all cases the ASE shall be charged with the responsibility for directing the conduct of all activity in the ALSEP control area, Room 314B of the MCC. The ASE position shall be manned during all operational periods. # 1.7.2 ALSEP Senior Engineer #### 1.7.2.1 Duties of the ALSEP Senior Engineer. - The ASE shall perform the following: - A. Act as officer-in-charge of ALSEP control area - B. Act as prime voice contact with MOCR positions during Apollo missions - ${\tt C.}\,\,$ Act as prime systems voice contact with remote sites - $\ensuremath{\text{D.}}$ Be responsible for initiating all ALSEP commands - E. Act as prime voice contact with LSPO/PI's for conversations pertinent to real-time operations - F. Conduct operations in accordance with ALSEP work schedule and applicable console handbook procedures - G. Certify by signature the operations log and activity summary for the support period - H. Participate in monitoring systems health and scientific data validity - I. Perform selected duties assigned SYSTEMS and DATA in the event these positions are not manned #### 1.7.3 ALSEP Systems Engineer #### 1.7.3.1 Duties of the ALSEP Systems Engineer. - The SYSTEMS shall perform the following: - A. Be responsible for configuring data display devices in accordance with work schedule - B. Act as prime voice contact with the ALSEP Computer Controller (ACC) - C. Act as prime voice contact with the M&O - D. Act as prime monitor and analyst of ALSEP systems health and scientific data validity - E. Participate in analyzing systems data and troubleshooting in case of non-nominal indications and recommend corrective action to the ASE - F. Contribute to maintenance of the operations log - G. Make required systems checks associated with command sequences, advising ASE of status at all times - H. Perform selected duties assigned to DATA in the event this position is not manned ## 1.7.4 ALSEP Data Engineer #### 1.7.4.1 Duties of the ALSEP Data Engineer. - The DATA shall perform the following: - A. Be responsible for the maintenance of hardcopy data files (analog recorder charts and printouts) in accordance with applicable procedures - B. Maintain group display status boards in a current configuration - C. Verify data to be logged is acquired, per applicable procedures - D. Plot selected data in concise analog form for logging - E. Act as prime interface with LSPO/PI's for non-real-time status briefings and for data retrieval, discussion, explanation, and interpretation - F. Annotate recorder chart paper and printer formats as required - G. Operate P-tube system and opaque televiewer as required. - H. Assist in area housekeeping by collating, filing, and selectively discarding data, per procedures, in a timely fashion - Review recorded data for significant long-term trends and characteristics and advise ASE if these are detected - J. Assist in maintaining operations log ## 1.7.5 ALSEP Flight Controller Certification Certification of an individual as an ALSEP system flight controller will be accomplished by the Experiments Section Head of the LEEB. The actual certification criteria are based on various degrees of individual accomplishments in areas pertaining to the operations position in the staff support room (SSR). The assignment of individuals to operational positions will be accomplished by the Lunar/Earth Experiments Branch Chief based on the recommendations from the Experiments Section Head. These appointments are subject to approval by the FCD Chief and the mission flight director. In order to become certified in the various ALSEP operational positions the ALSEP flight controller should - A. Be familiar with the MSFN operations or have completed the "Introduction to Flight Control" course taught by the FCD training section - B. Have completed the ALSEP familiarization course and other courses and briefings by Bendix - C. Be familiar with the contents of the following documents: - 1. SR-502, Rev 1 (ALSEP Generic Requirements) - 2. SR-502, Addendum 1 (ALSEP MCC
Detailed Command Requirements) - 3. ALSEP Data Book, Volume V of the CSM/LM Spacecraft Operational Data Book - 4. Flight System Familiarization Manual, Revision A - 5. SR's 1070 1071 (ALSEP Remoted Site Telemetry and Command Programs) - 6. Interface Control Specification for MSFN/MCC/ALSEP Operation - 7. Network Operations Procedures - 8. ALSEP Data Pack - D. Have participated in simulations or have performed on-the-job training under the supervision of a qualified ALSEP flight controller during an actual mission. The above is included in this console handbook as a guide for ALSEP systems flight controller certification. #### 1.8 CONSOLE AREA Figure 1-1 is a layout of ALSEP operations rooms. Figure 1-2 is Console 88 which is the ALSEP/P&FS operations console. Note: Only ALSEP peculiar items will be explained in this handbook. #### 1.8.1 Communications Positions The following communications loops are provided from two comm positions, 4140 and 4141, to support ALSEP (figure 1-3): | | LOOP NAME | TALK/MONITOR CAPABILITY | |-----|----------------------------------|-------------------------| | 1. | ALSEP SYS | T/M | | 2. | ALCS CMD/NWK | T/M | | 3. | PI COORD | T/M | | 4. | ALSEP GOSS | T/M | | 5. | FD (3RD FLOOR) | T/M | | 6. | FD (2ND FLOOR) | T | | 7. | SSR CONF (3RD FLOOR) | T/M | | 8. | SSR CONF (2ND FLOOR) | T/M | | 9. | SSR VEHICLE SYSTEM 3 (3RD FLOOR) | T/M | | 10. | SSR VEHICLE SYSTEM 3 (2ND FLOOR) | T/M | | 11. | GOSS CONF (3RD FLOOR) | M | | 12. | GOSS CONF (2ND FLOOR) | M | TALK/MONITOR CAPABILITY | 13. | ALSEP DISPLAY | T | |-----|------------------|-----| | 14. | GCC · | Ŧ | | 15. | COMM CALL | T | | 16. | DISPLAY | T | | 17. | AFD CONF | T/M | | 18. | APOLLO CHIEF ENG | М | | 19. | EO CONF | M/T | | 20. | SCIENCE COORD | M/T | | 21. | GOSS 2 | М | LOOP NAME The use of each loop is as follows: - A. ALSEP system This loop is to be used for flight controller coordination with the Program Office, PI's, and EXPO. - B. ALCS COMMAND/NETWORK This loop is to be used for flight controller coordination with ALCS operator and ALSEP network. - C. PI coordination This loop is to be used by principal investigators for coordination with their support personnel. - D. ALSEP GOSS CONFERENCE This loop is to be used by flight controllers and network controller for MSFN coordination. - E. FLIGHT DIRECTOR (2ND & 3RD FLOOR) This loop is to be used by flight controllers to brief flight director on status of ALSEP. - F. SSR CONFERENCE & SSR VEHICLE SYSTEMS 3 (2ND & 3RD FLOOR) Used for coordination between ALSEP flight controllers and EMU system engineer and PLSS support personnel. - G. GOSS CONFERENCE (2ND & 3 RD FLOOR) To monitor the mission (primarily during ALSEP deployment). - H. ALSEP DISPLAY This loop is to be used for flight controller coordination with M&O. - I. GCC This loop is to be used by flight controllers to coordinate TTY messages and problems with GCC. - J. COMM CALL This loop is to be used by flight controllers for coordination of problems with VOICE and GCC. - K. DISPLAY Prime loops for TECH OPS. Used for flight controllers to report display problems. - L. GOSS 2 Backup to GOSS CONF. - M. AFD CONF Coordinate with MOCR AFD. - N. APOLLO CHIEF ENG SPAN ROOM coordination. - O. EO CONF EO conf with MOCR except FD. - P. SCIENCE COORD S&AD coord with SPAN ROOM. #### 1.8.2 ALSEP Command System A modified universal command system will be utilized for real-time commands. The system is comprised of two panels: the command control module and the digital select module. #### 1.8.2.1 Digital select module (figure 1-4).- - A. FUNCTION CODE A three-digit thumbwheel device is used to dial in the octal number of the command to be executed. (Example: Octal Command 123 dial in 1 using the left thumbwheel, 2 using the middle thumbwheel, and 3 using the right thumbwheel.) - B. COMMAND REQUEST windows A four-place readout device will display the following information: Left window is to display the ALSEP number and decoder section that has been selected using the command control module, and the next three windows will display the three octal digits that have been selected by the thumbwheels. - C. ENTER/INVAL REQUEST PBI Upon depression of this PBI the information as seen in the COMMAND REQUEST windows will appear in the COMMAND EXECUTE windows, and the top half (ENTER) of the PBI will illuminate. (Note that the same information now appears in both the COMMAND REQUEST windows and the COMMAND EXECUTE windows.) The lower half (INVAL REQUEST) will illuminate if the PBI has been depressed (to perform an enter function) if one or more of the following conditions exist: - 1. Console is not site selected. - 2. A RTC is selected without selecting a decoder address. - 3. FC/M&O indicator indicates M&O mode. - 4. Any octal number selected by FUNCTION CODE thumbwheels not identified by the ALCS as a valid ALSEP command. The INVAL REQUEST will also be illuminated if a discrepancy exists between the enter function request and the execute function request. In any event the ALCS will not output an execute request to MSFN if the INVAL REQUEST PBI is illuminated. The top half (ENTER) will be extinguished upon depression of the EXECUTE PBI at which time the ALCS outputs the request to the MSFN. The lower half (INVAL REQUEST) can be extinguished by correcting the condition which caused the INVAL REQUEST to illuminate and redepressing the ENTER PBI. D. ENABLE/DISABLE PBI - The ENABLE/DISABLE PBI is an alternate action PBI which will activate or deactivate command execute capability from the DSM. The top half of the PBI (ENABLE) is illuminated when command capability is available. Depressing the PBI when in the enable state will deactivate the command capability and illuminate the lower half (DISABLE). In the disable mode, the enter and execute functions are deactivated. However, the light indications in the COMMAND EXECUTE readout windows, ENTER PBI, and EXECUTE/VERIFY PBI (light status for these indicators established in the enable mode) are to be retained in the disable mode. The following functions are to active in both the enable and disable modes: - 1. The FUNCTION CODE select thumbwheels - 2. COMMAND REQUEST readout - 3. All functions on the command control module . - E. COMMAND EXECUTE WINDOWS The information that is contained in the COMMAND REQUEST windows will appear in the COMMAND EXECUTE windows upon depressing the ENTER PBI. NOTE The ENABLE/DISABLE PBI must be in the ENABLE position. The COMMAND EXECUTE windows will be extinguished upon depressing the EXECUTE PBI, at which time the ALCS outputs the request to the MSFN. F. EXECUTE/VERIFY PBI - Upon depressing the EXECUTE/VERIFY PBI the ALCS will output the execute request to the MSFN, illuminate the top half (EXECUTE) of the PBI, and extinguish the COMMAND EXECUTE readout and the enter indication. Upon receipt by the ALCS of a CAP indicating verification, the lower half (VERIFY) will illuminate and the top half (EXECUTE) will be extinguished. If illuminated, either half of this PBI can be extinguished by depressing the ENTER PBI. #### 1.8.2.2 Command control panel (figure 1-5).- - A. ALSEP select PBI's Four PBI's are required for selection of the ALSEP and decoder designated to receive a command. These PBI's will illuminate upon depression. They are to be interlocking such that selection of any ALSEP/decoder PBI when depressed will automatically deselect the previously selected one. These indicators can be extinguished by depressing the ADDRESS CLEAR PBI. The ALSEP/decoder PBI number selected for commanding will appear in the window of the COMMAND REQUEST readout on DSM. - B. ADDRESS CLEAR Depression of this PBI is to clear all logic associated with the ALSEP PBI's and extinguish any one that is illuminated. - C. MAP OVERRIDE This function is to allow RTC's to be transmitted without regard to command verification waiting period required in the normal mode. The MAP override function is an alternate action PBI. Depression of the PBI switches the command system to the MAP override mode and illuminates the PBI. Redepression is to extinguish the PBI and return command system to normal mode. - D. SITE SEL When the PBI is illuminated it indicates that the console is selected to a remoted site for commanding. The ALSEP Command Controller has control of this function. - E. FC/M&O indicator When the upper half is illuminated (FC) the flight controller has command capability. When the lower half (M&O) is illuminated the flight controller does not have command capability. The ALCS operator uses the M&O mode for checking his command program. The FC/M&O control function is located on the ALSEP Computer/Network Controller Console. - F. 1 KC/CVW Two of these indicators are furnished (one for each ALSEP being displayed). The upper half (1 KC) will be illuminated when measurement AB-1 indicates that the corresponding ALSEP receiver is receiving the 1-kHz subcarrier of the remoted site USB command system. This 1 kHz is used by the command decoder to phase lock a voltage control oscillator to assure command bit synchronization. The lower half (CVW) will be illuminated when the command verification word (10-bits) departs from an all zeros bit pattern. - G. SITE VAL/RSCC INVAL The upper half (SITE VAL) will be illuminated when the ALCS receives a CAP word which indicates that the remoted site accepted an execute and is going to act upon it. It will be extinguished upon ALCS receipt of a CAP word which indicates verification, S/C reject, or ground reject. It can also be extinguished by initiation of an execute, or by depressing the SITE VAL/RSCC INVAL PBI. The lower half (RSCC INVAL) will be illuminated when ALCS receives a CAP word which indicates that a good execute was received by the remoted site, but some onsite function in process prohibits processing the execute. The lower half can be extinguished by its depression or by initiation of an execute. - H. S/C REJ/GND REJ The upper half (S/C REJ) will
illuminate when the ALCS receives a CAP word that indicates that a command was transmitted to the ALSEP in response to an execute, but a verification could not be determined. The upper half can be extinguished by its depression or by initiation of an execute. The lower half (GND REF) will be illuminated when the ALCS receives a CAP word which indicates that an execute had been received, but a problem was encountered in ground equipment and could not be executed properly. The lower half can be extinguished by its depression or by initiation of an execute. #### 1.8.3 <u>High-Speed Printer Control Panels (Figures 1-6, 1-7)</u> The requirements to receive data from two ALSEP's at MCC and be able to have rapid access to hardcopy printout of either were the criteria for selecting a high-speed printer. The control panels for the high-speed printer are located on the flight controller console. The control panels with their associated software program give great flexibility in displaying data. (See figures 1-6 and 1-7). - A. The capabilities are as follows: - 1. Select the desired ALSEP - 2. Select individual data formats - 3. Stack format requests - 4. Limit sensing on key TM parameters located in central station with auto printout of central station format if out-of-limits conditions exist (two ALSEP's) - 5. Auto print on ASE when ASE mark event (DS-18) is 00100 - B. Two types of formats have been identified, they are: - 1. Hardcopy Upon selection, the formats which will be printed out one time only are PSE, C/S, and ASE. - 2. Continuous Upon selection, the other formats will be continuously printed until a stop is initiated. #### C. Format select - 1. ALSEP select PBI's FBI's ALSEP A and ALSEP B are provided for switching between ALSEP's for data monitoring. These PBI's will illuminate upon depression. They are interlocked such that selection of any ALSEP when depressed will deselect the previously selected one and the display guide. These PBI's can be extinguished by depressing the CLEAR PBI. - 2. ALSEP DISPLAY GUIDE This PBI is interlocked with the ALSEP select PBI's. Depression of this PBI will cause it to illuminate, deselect any ALSEP selected PBI, and select the display guide for printout. Like the ALSEP select PBI's it can be extinguished by depressing the CLEAR PBI. - 3. Format request PBI's The PBI's are interlocked such that selection of any format request PBI when depressed will deselect the previously selected one. These PBI's will illuminate upon depression and cause the selected format to be printed when executed. The format request PBI's can be extinguished by depressing the CLEAR PBI. - 4. EXECUTE PBI After selection of ALSEP and format (and STOP if required) depressing this PBI will enter the request into the ALCS. This is a momentary PBI. - 5. INVAL REQUEST This indicator will illuminate when the execute PBI is depressed if one of the following conditions exists: - a. ALSEP PBI not selected. #### NOTE ALSEP DISPLAY GUIDE when depressed will deselect ALSEP PBI and is a valid request. - b. ALSEP selected, but no format selected. - c. A stop request executed without having executed a printout request of a format. - d. A stop function executed and not cleared (by depressing the CLEAR PBI) and another format request executed. - e. More than two formats selected at one time. - f. The ALCS does not recognize the format selected as being a valid request for the ALSEP selected. The inval indicator can be extinguished by making a valid request and executing. - 6. STOP PBI When a continuous format is to be terminated the ALSEP PBI and the format PBI will have to be selected before depressing the STOP PBI. At this time the PBI will be illuminated and the CLEAR PBI must be depressed to deselect the STOP PBI. If the stop request is executed while the printer is printing, the format will be terminated at the end of that page. If the request is executed during data collection cycle, the format is terminated immediately. - 7. CLEAR PBI Upon depressing, all PBI's selected will be deselected and extinguished. However, there is no input to ALCS. Stacking format requests can be accomplished dur to data collection time being longer than printout time and time-sharing the printer for printout. The auto printout is printed immediately if the printer is not in use or at the end of the page being printed at that time. When an out-of-limits condition exists, a dollar sign (\$) is printed to the right of the parameter out of limits. The capability to disable the auto forced printout of the central station and ASE formats by ALCS MED exists. # 1.8.4 Analog Recorders Four (8-pen) analog recorders are provided for displaying data. The capability for the flight controller to switch between ALSEP's and data formats in real time is provided by an analog recorder control panel located on the systems console (figure 1-8). The formats that are switchable are defined premission. The DAC's that drive these recorder are 8-bit DAC's. - A. ALSEP select PBI's PBI's ALSEP A and ALSEP B are provided for switching between ALSEP's for data monitoring. These PBI's will illuminate upon depression. They are interlocked such that selection of any ALSEP when depressed will deselect the previously selected one. These PBI's can be extinguished by depressing the CLEAR PBI. - B. Recorder select PBI's Individual PBI's are provided for selection of the recorder that a format is to be displayed on. These PBI's will illuminate upon depression. They are interlocked such that selection of any recorder when depressed will deselect the previously selected one. These PBI's can be extinguished by depressing the CLEAR PBI. - C. Format select PBI's Individual PBI's are provided for selection of the format that is to be displayed on a recorder. These PBI's will illuminate upon depression. They are interlocked such that selection on any format when depressed will deselect the previously selected one. - D. EXECUTE PBI After selection of ALSEP, recorder, and format, depressing this PBI will enter the request into the ALCS. This is a momentary PBI. - E. INVAL REQUEST This indicator will illuminate when the EXECUTE PBI is depressed if one of the following conditions exists: - 1. ALSEP PBI not selected. - 2. RECORDER PBI not selected. - 3. Format not selected. - 4. The number of analog display devices that a DAC can drive (four maximum) has been exceeded. This includes meters and analog recorders. This indicator can be extinguished by making a valid request and executing. - F. CLEAR PBI Upon depressing, all PBI's selected will be deselected and extinguished. However, there is no input to ALCS. - G. To clear a recorder, select the recorder number with no format or ALSEP selected and execute. #### 1.8.5 Drum Recorders Eight drum recorders are provided with variable input filters for support of PSE. The recorders will be driven by 10-bit DAC's. The recorders are divided into two groups (Group A and Group B) and each group will contain four recorders. A group of recorders are configured at one time with a predefined format. No control panel is provided to the flight controller for configuring the drum recorders. The ALCS operator will configure the recorders by his MED device upon request from the flight controller. #### 1.8.6 D/TV Two TV monitors are provided. Provision to monitor ALSEP data by D/TV is not provided. The capability to channel-attach data being displayed in Mission Operations Control Room 1 and/or 2 is provided using a manual select keyboard (MSK). A module is provided beneath each TV monitor to indicate from which floor the data being displayed is being generated. Manual select keyboard (figure 1-9) - A. MODE PBI The capability to channel attach only requires one PBI which will be illuminated upon depressing. - B. SECOND FLOOR/THIRD FLOOR PBI's Separate PBI's are provided for selecting the desired floor that data is to be monitored from. These PBI's will illuminate upon depression. They are interlocked such that selecting one will deselect the other. - C. SELECT NUMBER A four-digit thumbwheel device is provided to dial in the TV channel that is to be monitored. The number of TV channels available only requires using the two right thumbwheels. - D. ENTER PBI's Separate PBI's are provided for selection of the TV monitor that the data are to be displayed on. These PBI's are momentary PBI's. #### 1.8.7 Limit Sensing A limit sensing routine is provided to indicate when a TM parameter exceeds predetermined limits. The limits can be changed in real time by the ALCS operator. A high-speed printer format is provided listing the TM parameters and the lower and upper limits assigned each parameter. Out-of-limits conditions are displayed several ways: - A. Separate event indicators for individual TM parameters. - B. Category (where more than one TM parameter is assigned the same event indicator). - C. Flag appears by the TM parameter on high-speed printer formats. # 1.8.8 Event Indicator Panels - 1.8.8.1 <u>18/36 event indicator panel</u>. The requirement to support more than one ALSEP simultaneously using the same console makes it necessary to drive each event indicator panel with data from a different ALSEP flight article. These four individual event panels will display the following types of data: - A. ALCS sync data - B. ALSEP status data - C. ALSEP limit-sensing data - 1.8.8.2 72 event indicator panel.— This event indicator panel is to be used to support all ALSEP flight articles. The top two rows of indicators are to be used to support ALSEP 1. The other indicators will be configured at a later date to support the other three ALSEP's. The first two rows of indicators are used for limit sensing certain TM parameters located in the central station. The only way to extinguish any of these indicators is to change the limits by MED. # 1.8.9 ALSEP Identification Panel (Module 30) This panel will tell which ALSEP is on System A or System B. The following will be used
for coordination: | ALSEP | 1 | Apollo | 12 | ALSEP | 1 | | |-------|---|--------|----|-------|------------|---| | ALSEP | 4 | Apollo | 14 | ALSEP | 4 | | | ALSEP | 2 | Apollo | 15 | ALSEP | A 2 | | | ALSEP | 3 | Apollo | 16 | ALSEP | Array | D | | ALSEP | 6 | Apollo | 17 | ALSEP | Array | E | Figure 1-1. - ALSEP/P&FS Operations Rooms. | LOC | DESCRIPTION | LOC | DESCRIPTION | |-----|--------------------------|-----|-------------------------| | 01 | VOICE COMM POSITION-4140 | 17 | TV MONITOR 14 PRECISION | | 02 | EVENT INDICATOR (72) | 19 | TV MONITOR 14 PRECISION | | 03 | EVENT INDICATOR | 20 | VOICE COMM SPEAKER | | 04 | EVENT INDICATOR | 21 | EVENT INDICATOR | | 05 | EVENT INDICATOR | 23 | SWITCH MODULE | | 06 | EVENT INDICATOR | 25 | SWITCH MODULE | | 10 | VOICE COMM POSITION-4141 | 26 | SWITCH MODULE | | 11 | COMMAND CONTROL | 27 | SWITCH MODULE | | 12 | DIGITAL SELECT | 28 | SWITCH MODULE | | 13 | TV MONITOR PRECISION | 29 | MANUAL: SELECT KEYBOARD | | 14 | TV MONITOR PRECISION | 30 | EVENT INDICATOR | | 15 | BLANK PANEL | 31 | SWITCH MODULE | | 16 | STOP CLOCK (4DIGIT) | 32 | VOICE COMM POSITION- | | | | 33 | MANUAL SELECT KEYBOARD | Figure 1-2. - Console 88, ALSEP/P&FS. | | 4
ALSEP
ISPLAY | | | l _t
COMM
CALL | 3
DISPLAY | | | | PABX | |----|--------------------------------|-------------------|---|--------------------------------|-----------------------|---------------------------|---------------------|--------------------------|------| | W | Т | W | T | w T | W T | | | | T W | | | 3
GOSS
CONF | 3
Goss
Conf | | 3
FD
CONF | 3
EO
CONF | 3
GOSS 2 | 3
AFD
CONF | 3
AFD
CONF | PABX | | G | *M | Y | M | Y M | W T | Y M | Y M | W T | W T | | | 3
FD | 3
FD | | | CONF | SSR
CONF | VEH SYS | 3
SSR
VEH SYS
3 | | | G | *M | Y | M | V I | Y M | W T | 3
Y M | W T | ` | | | SYS | SYS | | ALCS
CMD | CMD | 4
ALSEP
GOSS
Y M | ALSEP
GOSS | | - | | CE | 4
POLLO
HIEF
NGR
M | • | | 3
SCIENCE
COORD | 3
SCIENCE
COORD | 4
PI
COORD
Y M | PI
COORD | | | | | | 2
FD
W | Т | 2
SSR
CONF | 2
SSR
CONF | | 2
SSR
VEH SYS | - | | MONITOR VOLUME T = TALK (WHITE) M = MONITOR (YELLOW) M = HIGH-LEVEL MONITOR (GREEN) Figure 1-4. - Digital select module. | | Mission | ALSEP | | |---------|---------|-------|--| | Console | 88 | | | | | Module | | | | P&FS
1 | SYSTEM
A
DECODER
A | SYSTEM
B
DECODER
A | ADDRESS
CLEAR | MAP
OVERRIDE | |-----------|-----------------------------|-----------------------------|------------------|-----------------| | P&FS
2 | SYSTEM
A
DECODER
B | SYSTEM
B
DECODER
B | SITE
SEL | FC
M&O | | Ø LCK | 1 KC | 1 KC | SITE
VAL | S/C
REJ | | MAP | CVW | CVW | RSCC
INVAL | GND
REJ | Figure 1-5.- Command control panel. | | Mission | ALSEP | |---------|---------|-------| | Console | 88 | | | | Module | 25 | | PFS
1 | PFS
2 | ALSEP
A | ALSEP
B | DISPLAY
GUIDE | STOP | |--------------------|----------|------------|-------------------------|--------------------------|---------| | PSE | LSM 1 | SWS | SIDE/
CCIG 1 | ALSEP
LIMITS
TABLE | CLEAR | | CENTRAL
STATION | LSM 2 | | SIDE/
CC IG 2 | INVAL
REQUEST | EXECUTE | Figure 1-6.- High-speed printer control panel 1. Mission ALSEP Console 88 Module 26 | PFS
RT | PFS
LIMITS | | CPLEE 1 | HF 1 | |---------------------|----------------------|--|---------|------| | PFS
C1-C4
MRO | PFS
MAG #1
MRO | | CPLEE 2 | HF 2 | | PFS
TELE
MRO | PFS
MAG #2
MRO | | CCGE | ASE | Figure 1-7.- High-speed printer control panel 2. | | Mission | ALSEP | |---------|---------|-------| | Console | 88 | | | | Module | 28 | | FORMAT | FORMAT | RECORDER | RECORDER | RECORDER | RECORDER | |-------------|-------------|-------------|------------|------------|---------------------------| | 1 | 2 | 1 | 2 | 3 | 4 | | FORMAT
3 | FORMAT
4 | FORMAT
5 | ALSEP
A | ALSEP
B | CLEAR
INVAL
REQUEST | | format | FORMAT | format | PFS | PFS | EXECUTE | | 6 | 7 | 8 | 1 | 2 | | Figure 1-8.- Analog recorder control panel. Figure 1-9. - Manual select keyboard, modules 29 and 33. Module 30 1-24 | A
ALSEP 1 | B
ALSEP 1 | | | | |----------------|--------------|---|---|---| | A
ALSEP 2 | B
ALSEP 2 | , | · | · | | A
ALSEP 4 | B
ALSEP 4 | · | | | | . A
ALSEP 3 | B
ALSEP 3 | | | | | A
ALSEP 5 | B
ALSEP 5 | | | | | | | | | | - 1.9 GENERAL OPERATING PROCEDURES (GOP) - 1.9.1 GOP 1 REAL-TIME COMMANDING # PURPOSE To describe the normal constraints and techniques for real-time commanding # PROCEDURE #### A. Precommand checklist | Sequence | Function | Indication | Action | |----------|-----------------|--|---------------------| | 1 | SITE SEL | Illuminated
Extinguished | None
Call up ACC | | 2 | FC/M&O | FC illuminated M&O illuminated | None
Call up ACC | | · 3 | ENABLE/DISABLE | DISABLE illuminated ENABLE illuminated | None
Depress PBI | | 4 | MAP OVERRIDE | Extinguished Illuminated | None
Depress PBI | | 5 | ALSEP 1 KC | Illuminated
Extinguished | None
Depress PBI | | 6 | S/C REJ | Extinguished
Illuminated | None
Depress PBI | | 7 | GND REJ | Extinguished Illuminated | None
Depress PBI | | 8 | SITE VAL | Extinguished Illuminated | None
Depress PBI | | 9 | CVW | Extinguished
Illuminated | None
Call up ACC | | 10 | RSCC INVAL | Extinguished Illuminated | None
Depress PBI | | 11 | 90 FRAME SYNC | Illuminated
Extinguished | None
Call up ACC | | 12 | MAIN FRAME SYNC | Illuminated
Extinguished | None
Call up ACC | B. The ALSEP GOSS CONF loop must be monitored so as not to command during command handover. #### ALSEPCH BASIC #### C. Command checklist - 1. Depress ALSEP address PBI. Verify that PBI illuminates. Verify that ALSEP address appears in left window of COMMAND REQUEST display. - 2. Enter octal command on thumbwheels. Verify that command appears in the three right windows of the COMMAND REQUEST display. - 3. Depress ENABLE/DISABLE PBI. Verify that ENABLE is illuminated. - 4. Depress ENTER/INVAL REQUEST PBI. Verify that ENTER is illuminated. Verify that ALSEP address and octal command displayed in the COMMAND REQUEST windows now also appears in the COMMAND EXECUTE windows. - 5. Depress EXECUTE/VERIFY PBI. Verify that EXECUTE is illuminated. - D. Command verification Verify the following sequence: | ı. | SITE VAL PBI | Illuminated | |----|--------------|-------------------------| | 2. | CVW PBI | Illuminated momentarily | | 3. | VERIFY PBI | Illuminated | | 4. | EXECUTE PBI | Extinguished | | 5. | SITE VAL PBI | Extinguished | E. Depress ENABLE/DISABLE PBI. Verify that DISABLE is illuminated. #### 1.9.2 GOP 2 HIGH-SPEED PRINTER FORMAT SELECTION #### PURPOSE To establish a procedure for using high-speed printer (and high-speed printer control panels) for monitoring ALSEP data in predetermined formats - A. Selecting a hardcopy format - 1. Select ALSEP data to be monitored by depressing appropriate ALSEP PBI. - 2. Select data display format by depressing appropriate format PBI. - 3. Enter the request into the LACS by depressing the EXECUTE PBI. - NOTE: The ALSEP display guide supports all ALSEP's and can be initiated by - 1. Depressing ALSEP DISPLAY GUIDE PBI - 2. Depressing the EXECUTE PBI. - B. Selecting continuous format - 1. Select the ALSEP that data is to be monitored from by depressing the proper ALSEP PBI. - 2. Select the format that the data is to be displayed in by depressing the proper format PBI. - 2. Enter the request into the ALCS by depressing the EXECUTE PBI. - NOTE: A continuous format can be terminated by executing the stop procedure. - C. Stacking format requests - 1. Selecting the first format - a. Select the ALSEP that data is to be monitored from by depressing the proper ALSEP PBI. - b. Select the format that the data is to be displayed in by depressing the proper format PBI. - c. Enter the request into the ALCS by depressing the EXECUTE PBI. - 2. Selecting the second format - a. Select the ALSEP that data is to be monitored from by depressing the proper ALSEP PBI. - b. Select the format that the data is to be displayed in by depressing the proper format PBI. - c. Enter the request into the ALCS by depressing the EXECUTE PBI. - NOTE: If one or both are continuous format they can be terminated by executing the stop procedure for each format. - D. INVAL REQUEST indication - The INVAL indicator can be extinguished by making a valid request and reexecuting. - E. Stopping a continuous format - 1. Select the ALSEP that data is being printed from by depressing the proper $\Delta LSEP$ PRI - 2. Select the format that is to be terminated by depressing the proper format PBI. - 3. Depress the STOP PBI. - 4. Depress the EXECUTE PBI. - 5. Depress the CLEAR PBI to deselect the STOP PBI. #### 1.9.3 GOP 3 ANALOG RECORDER FORMAT SELECTION #### PURPOSE To establish a procedure to configure the analog chart recorders by using the analog recorder control panel #### PROCEDURE Predefined analog formats and the recorders they can be displayed on will be selected by the following: - A. Select the ALSEP that data is to be monitored from by depressing the proper ALSEP PBI. - B. Select the recorder that the data is to be displayed on by depressing the proper recorder format PBI. - C. Select the format that the data is to be displayed in by depressing the proper format PBI. - D. Depress the EXECUTE PBI. #### NOTE INVAL REQUEST/EXECUTE indication - the INVAL REQUEST indicator can be extinguished by making a valid request and reexecuting. #### 1.9.4 GOP 4 DRUM RECORDER FORMAT SELECTION # PURPOSE To establish a procedure for configuring the drum recorders # PROCEDURE Two groups of drum recorders are provided (four per group). The two groups are identified as Group A and Group B. Group A and/or Group B will be configured by the following:
- A. Contact the ALCS operation on the ALCS CMD NETWORK comm loop, and identify the ALSEP format to be assigned each group. (The ALCS operator will do this by MED.) - B. Verify the input filters adjustments as per work schedule or PI request. #### 1.9.5 GOP 5 ALSEP DATA AND DISPLAY PROBLEMS #### PURPOSE To define the procedure to be followed by ALSEP flight controllers in reporting equipment malfunctions, loss of command capability, loss of data, and potential loss of data #### PARTICIPATION ASE DISPLAY SYSTEMS INTERFACE DATA VOICE NETWORK GCC ACC - A. High-speed printer (HSP) paper supply is low If DATA notices that the paper supply is one-fourth or less he will call ACC on the ALCS CMD NWK loop and report that the HSP paper supply is low and give ACC an estimated time (ET) when the HSP will require more paper. DATA will use the work schedule and the known and anticipated usage rate to arrive at the ET of paper depletion. ACC will dispatch a HSP tech to the room by the ET of paper depletion. - B. Removal of Brush recorder record is required All requests for removal of any of the analog recorder records from the recorders will be made to ASE. Upon verbal request from the PI or ALSEP flight controller for a recorder record, ASE will call INTERFACE on ALSEP DISPLAY and advise him that Brush recorder paper removal is required and give a time. INTERFACE will provide a technician in the ops room at the time estimated by ASE to remove the Brush record. ASE will advise ACC on ALCS CMD NWK that Brush no. _____paper is being changed or removed and will require recalibration at ET. After removal of the record paper, ASE will request from the INTERFACE TECH that the recorder be recalibrated. When INTERFACE TECH is ready to recalibrate the recorder, ASE will call ACC on ALCS CMD NWK and advise ACC to meet INTERFACE on the DISPLAY MAINTENANCE loop for recorder no. _____calibration. - C. Unscheduled calibration of an analog recorder is required If for some reason (i.e., flight controller or PI think that the paper has slipped or an amplifier has driften or a new test phase is to be run) an unscheduled calibration of the analog recorders is required, ASE will call INTERFACE on ALSEP DISPLAY and request a calibration or recorder no. ___at __ET. ASE will then call ACC on ALCS CMD NWK and advise him that a recalibration of recorder no. ___will be required at __ET. INTERFACE will call ACC on DISPLAY MAINTENANCE loop to coordinate the calibration. - D. Gain change or any adjustments are required No one but the display techs are allowed to adjust or turn on or off the display equipment (this includes the Brush recorders, drum recorders, event lights, and other equipment). When a gain change or adjustment is required of any of the display equipment (other than the HSP), the flight controller will call INTERFACE on DISPLAY and tell him what is required and when. During active periods such as initial setup of an experiment, a display tech will be stationed in the room. (This is especially true for the drum recorders.) - E. High-speed printer problems Flight controllers are allowed to remove copies from the HSP paper and to advance the paper in the printer to remove copies. If any other adjustments or changes are required the flight controller will call ACC on ALCS CMD NWK and obtain the required support. The original copy of HSP will go to the flight controller for the central station format and to the PI from any experiment data. The second copy will be distributed as necessary by DATA, and the third copy will be retained as record copy. - F. Problems with key sets, headsets, or communication equipment All problems with communication equipment will be reported by the flight controller to VOICE on the COMM CALL loop. - G. Teletype problems The flight controller will call GCC on the GCC loop for any problems pertaining to teletype traffic. - H. Command problems All commanding problems will be coordinated with ALSEP NETWORK. Whenever any commanding is performed ASE will monitor the ALSEP GOSS to hear any R/S reports of failures. Anytime a command anomaly occurs the ASE will call NET-WORK on ALCS CMD NWK and advise him of the problem and request that he determine the cause. The ASE will take the best corrective action based on the cause. Normally the R/S M&O will report any anomaly on ALSEP GOSS as they occur. # 1.9.6 GOP 6 P-TUBE ROUTING # PURPOSE To establish a procedure for routing P-tube messages to ACC and ALSEP NETWORK - A. Send the message to P-Tube Station 31. - B. Notify ACC or NTWK on ALCS CMD NWK comm loop that a message is being sent. #### 1.9.7 GOP 7 DIGITAL HISTORY DELOG REQUEST #### PURPOSE To establish a procedure for requesting a digital history delog #### PROCEDURE The digital history delog form (figure 1-10) will be filled out in the following manner and sent to ALSEP Computer Controller (ACC). - A. Approved by: Signed by ASE - B. Requested by: To indicate the experiment and PI or flight controller who made the request. - C. Date/time: The data and time the request is initiated. - D. Number of copies: Number of copies required of the digital history. - E. Format name: Name of the format or formats requested. - F. ALSEP number: This is the number of the ALSEP from which the above format data is to be delogged. - G. Start time: This is the GMT in days, hours, minutes, and seconds of the data where the delog is to begin. - H. Stop time: This is the GMT in days, hours, minutes, and seconds of the data where the delog is to terminate. - I. Delog intervals: (Applicable to hardcopy formats only) if all data is to be deloged between the start and stop times or selected cycles use example on form for appropriate number. #### NOTE Central station and PSE are the only hardcopy formats available for delog. #### NOTE At the bottom of form any information can be added to help in completion and delivery of delog [i.e., person and telephone number to be called when job is complete; if more than one format is to be delogged, specify if they can be run simultaneously (which will interleave the two formats) or if they are to be run separately]. | Reprinter | aliferius, | | |-------------|------------|-------------| | APPROVED BY | | | | REQUESTED B | Υ | | | FORMAT | ALSEP | | | DATE/TIME | |-----------| |-----------| | REQUESTED : | BY | DATE/TIM | E | NUMBER OF COPIES | |------------------------------------|-----------------|-----------------------------------|----------------------------------|--| | FORMAT
NAME
EXAMPIE:
LSML | ALSEP
NUMBER | START TIME
CMT
DDD/HH/MM/SS | STOP TIME
GMT
DDD/HH/MM/SS | DELOG INTERVAL (01-99) - APPLICABLE TO HARDCOPY FORMATS ONLY EXAMPLES: 01 - ALL CYCLES 02 - EVERY OTHER CYCLE 05 - EVERY FIFTH CYCLE | | | | | | • | | 1-35 | | | | | | | | | V | | Figure 1-10. - Digital history delog request. #### 1.9.8 GOP 8 CALIBRATION CURVE CHANGES IN REAL TIME #### PURPOSE To establish a procedure for changing calibration curves in real time # PROCEDURE Determine from the following list the appropriate curve for each parameter. Call ACC on ALCS CMD NWK loop and have the computer controller make a manual entry for each parameter. The computer will initialize with the highest number curve for each parameter. | | * | | | A second | | |-----------------|--|----------------------
--|----------|-----------------------| | Measurement no. | A STATE OF THE STA | Determining | factor | | Cal curve | | Central station | | | | | | | AE-4 | * | PCU-1 ON
PCU-2 ON | A STATE OF THE STA | | 6
7 | | AE-11 | and the second s | · | 8.5 Vdc
9.0 Vdc
9.5 Vdc | | 6
7
8 | | AE-12 | | | 8.5 Vdc
9.0 Vdc
9.5 Vdc | | 6
7
8 | | AE-13 | | AT-7 reads | -10° F
+10° F
+78° F
+100° F | | 1
2
3
4 | | AE-14 | | AT-21 indica | | | 5 | | | | | -10° F
+10° F
+78° F
+100° F
+140° F | | 1
2
3
4
5 | | | | AT-22 indica | | | | | | | | -10° F
+10° F
+78° F
+100° F
+140° F | | 6
7
8
9
0 | | AE-17 | | AT-24 reads | -10° F
+10° F
+78° F
+100° F
+140° F | | 1
2
3
4
5 | 1.9.8 GOF 8 CALIBRATION CURVE CHANGES IN REAL TIME #### PURPOSE To establish a procedure for changing calibration curves in real time # PROCEDURE Determine from the following list the appropriate curve for each parameter. Call ACC on ALCS CMD NWK loop and have the computer controller make a manual entry for each parameter. The computer will initialize with the highest number curve for each parameter. | Measurement no. | Determining factor | <u>A5</u> | Cal curve | |---|--|-----------------------------------|-----------------------| | Central station | | | | | AE-l | PCU-1 ON
PCU-2 ON | | 6
7 | | AE-11 | AE-7 reads 28.5 Vdc
29.0 Vdc
29.5 Vdc | | 6
7
8 | | AE-12 | AE-7 reads 28.5 Vdc
29.0 Vdc
29.5 Vdc | | 6
7
8 | | AE-13 | AT-7 reads -10° F
+10° F
+78° F
+100° F
+140° F | | 1
2
3
4 | | AE-14 | AT-21 indicates OSC "A" on and AT-7 reads | | · · · · | | | -10° F
+10° F
+78° F
+100° F
+140° F | | 1
2
3
4 | | | AT-22 indicates OSC "E"
on and AT-7 reads | | | | | -10° F
+10° F
+78° F
+100° F
+140° F | | 6
7
8
9 | | AB-15
A The Section Colors American and the Laboratory of the Color | AT-24 reads -22° F
+14° F
+86° F
+100° F
+122° F | AT-24 -10
+10
+100
+1400 |) F 1
OF 2
OF 3 | | Commence of the th | | 140 | | # NOV 201972 BASIC, PCN-1 | Measurement no. | Determini | ng factor | <u>A5</u> | | Cal curve | |-----------------|-------------|--|---|---------------|----------------------------| | AE-16 | AT-26 reads | -22° F
+14° F
+86° F
+100° F
+122° F | AT-26 -10
+10
+77
+100
+140 |) F
P
P | 1
2
3 P-1
4
5 | | AE-17 | AT-24 reads | -10° F
+10° F
+78° F
+100° F
+140° F | | | 1
2
3
4
5 | | AE-18 | AT-26 reads | -10° F
+10° F
+78° F
+100° F
+140° F | | | 1
2
3
4
5 | | AE-19 | AT-40 reads | -10° F
+10° F
+75° F
+100° F
+140° F | | | 1
2
3
4
5 | | AE-20 | AT-04 reads | _ | | | 1
2
3
4
5 | | CPLEE | | | | | | | AC-2 | AC-6 reads | -38° C
-5° C
+25° C
+48° C
+72° C | | | 1
2
3
4
5 | | AC-3 | AC-6 reads | -38° C
-5° C
+25° C
+48° C
+72° C | .** | | 1
2
3
4
5 | | HFE | | | | | | | AH-2 | AH-3 reads | +14 dc
+15 dc
+16 dc
+14 dc
+15 dc
+16 dc | | | 7
8
9
7
8
9 | # NOV 20 1972 | Measurement no. | Determinin | ng factor | <u>A5</u> | <u>0</u> | al curve | |-----------------|-------------|---|-----------|----------|-----------------------| | CCGE
DG-12 | DG-11 reads | +12 volts
+13 volts
+14 volts
+15 volts
+16 volts | | | 1
2
3
4
5 | | ASE | | | | | | | DS-6, DS-7 | AS-3 reads | -20° C
0° C
+25° C
+55° C
+82° C | *. | | 1
2
3
4
5 | | IMS | | | | | | | <u>AM</u> -11 | AM-41 reads | -13° F
-5° F
+77° F
+112° F
+149° F | | | 1
2
3
4
5 | | AM-14 | AM-41 reads | ^ | | | 1
2
3
4
5 | | AM-44 | AM-41 | -13° F
-5° F
+77° F
+112° F
+149° F | | | 1
2
3
4
5 | स्थान के किया करते हैं के किया के किया किया किया कर किया है के अपना करते हैं के समस्यक के किया के किया के अधिक किया के क | Measurement no. | | Determining | g factor | Cal curve | |-------------------|----------|-------------|---|-----------------------| | AE-18 | · | AT-26 reads | -10° F
+10° F
+78° F
+100° F
+140° F | 1
2
3
4
5 | | CPLEE | | | | | | AC-2 | | AC-6 reads | -38° C
-5° C
+25° C
+48° C
+72° C | 1
2
3
4
5 | | AC+3 | | AC-6 reads | -38° C
-5° C
+25° C
+48° C
+72° C | 1
2
3
4
5 | | HFE | | | | | | AH-2 | | AH-3 reads | +14 dc
+15 dc
\ +16 dc | 7
8
9 | | AH-4 | | AH-3 reads | +14 dc
+15 dc
+16 dc | 7
8
9 | | CCGE | / | | | | | DG-12 | | DG-11 reads | +12 volts
+13 volts
+14 volts
+15 volts
+16 volts | 1
2
3
4
5 | | ASE
DS-6, DS-7 | <u> </u> | AS-3 reads | -20° C
0° C
+25° C
+55° C
+82° C | 1
2
3
4
5 | #### 1.9.9 GOP 9 SHIFT CHANGE #### PURPOSE This GOP defines the ALSEP system shift change procedures and contents of the briefing and associated documentation #### PROCEDURE - A. Reporting time - 1. Deployment T-4 hours 00 min - 2. Routine The relieving team will be at their respective consoles approximately 1 hour prior to the shift change. #### B. Documentation - 1. ALSEP log book - 2. Latest HSP copy of display guide - 3. Latest HSP copy of limits printout - 4. Work schedule - 5. Status sheet - 6. Console handbook - 7. Systems handbook - 8. Flight Controllers Operations Handbook - 9. Flight Mission Rules - 10. Flight Plan - 11. Calibration curves - C. Retiring ALCO will summarize activities, completed and planned, and give the brief on the vehicle
status and anomalies. - D. Relieving team members will review documentation. - E. Retiring team members will brief their counterparts in detail. - F. Relieving team will review together the work schedule and the anomalies before assuming responsibility of the console. #### 1.9.10 GOP 10 PRESUPPORT #### PURPOSE To establish the tasks to be performed prior to real-time support - A. Notify NETWORK and ACC that ALSEP team at the console. - B. Monitor Network and Remote Suit Interface Checkout. - C. Select analog recorder formats and speed required. - D. Verify on command panel - 1. FC mode - 2. CMD panel disabled - 3. All zeros selected in COMMAND REQUEST window - 4. ALSEP select is clear. - E. Verify RTC command inventory. - F. Verify limits table. - G. Call ALSEP DISPLAY to start analog and drum recorder. - H. Call ACC to send up ALSEP messages. - I. Annotate console log ALSEP team ready to support. # 1.9.11 GOP 11 CLEAN DOWN PROCEDURE FOR TERMINATION OF SUPPORT #### PURPOSE Tasks to be performed prior to terminating ALSEP operations - A. Notify NETWORK and ACC of time of termination. - B. Obtain final HSP formats of ALSEP C/S and experiments data for two data books. - C. Check data for abnormal values. - D. Call GCC to hold ALSEP messages. - E. Call ALSEP DISPLAY to turn off the analog and drum recorders. - F. Notify NETWORK and ACC to terminate support. - G. Update data log. - H. Sign off in console log. - I. Police the area. #### 1.9,12 GOP 12 CONTINGENCY SUPPORT #### PURPOSE To define the action necessary to collect data when the contingency occurs during ${\tt non-real-time}$ support - A. Determine from the NETWORK CONTROLLER the GMT of the contingency. - B. Have NETWORK inform the remote site to cue the recorder to 10 minutes prior to the contingency GMT. - C. With the start of the playback data being displayed at the ALSEP operations room, start the contingency subsystem formats on both an analog recorder and high-speed printer. Continually collect the contingency data and any other pertinent data until determined sufficient by the ASE. - D. The original analog recording and high-speed printer formats will be given to the flight controller responsible for the subsystem for permanent record. 2 MISSION SPECIFICS # SECTION 2 # MISSION SPECIFIC 2.1 APOLLO 12 ALSEP 1 2.1.1 EVENT LIGHT PANEL (FIGURE 2.1) | LIGHT | | COLOR | NAME | ILLUMINATE | |------------|------------|--------------------|----------------------------------|---| | 1U
1L | | G
G | MAIN FRAME SYNC
90 FRAME SYNC | DA-1 SYNC PATTERN
DA-2 TWO CONSECUTIVE
FRAME COUNTS | | 20 | | G | NORM BIT RATE | DA-2 = CNT OF 1 | | 2L | | G | LOW BIT RATE | DA-3 = 1
DA-2 = CNT OF 2
DA-3 = 1 | | 3U
3L | | G
G | REALTIME DATA
PLAYBACK DATA | CAP WORD
CAP WORD | | 4U
4L | | G
G | XMTR A
XMTR B | AE-15 > 2 PCM
AE-16 > 2 PCM | | 5U
5L | | R
(BLANK) | C/S CRITICAL | CMPB ⁽¹⁾ | | 6U
6L | | A
(BLANK) | C/S WARNING | CMPA ⁽¹⁾ | | 7U
7L | | G
R | PCU 1
RES PWR 1 | AE-5 > 2 PCM | | 8U
8L | | A
A | EXP 1 STBY
EXP 2 STBY | λ AB-4 \langle 72±10, 192±10 131±10, 192±10 | | 9 U | | R | SIDE CRITICAL | CMP D ⁽¹⁾ | | 9L | | R | PSE CRITICAL | CMP F ⁽¹⁾ | | 10U
10L | | (BLANK)
(BLANK) | | | | 110 | | Α | SIDE WARNING | CMP C(1) | | 11L | | Α | PSE WARNING | CMP E ⁽¹⁾ | | 12U
12L | | (BLANK)
(BLANK) | · | | | 13U
13L | | G
R | PCU 2
RES PWR 2 | AE-6 > 2 PCM
RES PWR < 6.4 W | | 140 | | Α | EXP 3 STBY | /131±10, 160±10, | | 14L | | A | EXP 4 STBY | $AB-5 \begin{pmatrix} 131\pm10 & 160\pm10 & 188\pm10 & 214\pm10 \\ 69\pm10 & 100\pm10 & 188\pm10 & 214\pm10 \\ \end{pmatrix}$ | | 150 | | R | LSM CRITICAL | CMP G(1) | | 15L | | R | SWS CRITICAL | CMP J(1) | | /1\ ccc n/ | ADACDADU O | 3 A LIMIT CENCINO | | | | LIGHT | COLOR | NAME | ILLUMINATE | |------------|--------------------|-------------|------------| | 16U
16L | (BLANK)
(BLANK) | | | | 17U | Α | LSM WARNING | CMP H(1) | | 17L | A | SWS WARNING | CMP I(1) | | 18U
18L | (BLANK)
(BLANK) | | | ⁽¹⁾ SEE PARAGRAPH 2.1.4 LIMIT SENSING Mission Apollo 12 ALSEP 1 Console 88 Module 6 | G | MAIN FRME
SYNC
DA-1 | NORMAL BIT RATE G CW-1 | REAL TIME
DATA
G ST-3 | XMTR A
G CS-10 | CS
CRITICAL
R :CMP-B | CS
WARNING
G CMP-A | |---|----------------------------------|---------------------------------|------------------------------------|-------------------|-----------------------------------|--------------------------| | G | 90 FRAME
SYNC
D A-2 | LOW BIT
RATE | PLAYBACK
DATA | XMTR B | | | | G | PCU 1
CS-8 | EXP 1 STBY STATUS A CS-13 | SIDE LIMS
CRITICAL 1
R CMP-D | | SIDE LIMS
WARNING 2
A CMP-C | | | R | RES PWR 1 | EXP 2 STBY
STATUS
A CS-14 | PSE LIMS
CRITICAL 3
R CMP-F | | PSE LIMS
WARNING 4
A CMP-D | | | G | PCU 2
CS-9 | EXP 3 STBY
STATUS
A CS-15 | LSM LIMS
CRITICAL 5
R CMP-G | | LSM LIMS
WARNING 6
A CMP-H | | | R | RES PWR 2
CS-7 | EXP 4 STBY
STATUS | SWS LIMS
CRITICAL 7
R CMP-J | | SWS LIMS
WARNING 8
A CMP-I | | Figure 2-1.- Apollo 12 ALSEP 1 event light panel. #### 2.1.2 HIGH SPEED PRINTER FORMATS - 1. CENTRAL STATION - 2. PASSIVE SEISMIC EXPERIMENT - 3. SOLAR WIND SPECTROMETER EXPERIMENT - 4. SIDE/CCIG FMT 1 - 5. SIDE/CCIG FMT 2 - 6. LSM FMT 1 - 7. LSM FMT 2 - 8. LIMITS TABLE - 9. DISPLAY GUIDE #### 2.1.3 ANALOG RECORDER FORMATS | PEN | PARAMETER | NUMBER | COMMENT | |---------------------------------|--|--|--| | FORMAT 1 (PSE) | · | | | | 1
2
3
4
5
6
7 | LONG PERIOD X SEISMIC LONG PERIOD Y SEISMIC LONG PERIOD Z SEISMIC SHORT PERIOD Z SEISMIC LONG PERIOD X TIDAL LONG PERIOD Y TIDAL LONG PERIOD Z TIDAL PSE INST TEMP | DL-1
DL-2
DL-3
DL-8
DL-4
DL-5
DL-6
DL-7 | 8MSB
8MSB
8MSB
8MSB
8MSB
8MSB
8MSB
8MSB | | FORMAT 2 (PSE) | | | | | 1
2
3
4
5
6
7 | LONG PERIOD X SEISMIC LONG PERIOD Y SEISMIC LONG PERIOD Z SEISMIC SHORT PERIOD Z SEISMIC LONG PERIOD X TIDAL LONG PERIOD Y TIDAL LONG PERIOD L TIDAL PSE INST TEMP | DL-1
DL-2
DL-3
DL-8
DL-4
DL-5
DL-6
DL-7 | 8LSB
8LSB
8LSB
8LSB
8LSB
8LSB
8LSB
8LSB | | FORMAT 3 (SIDE/CCIG | 3) | | | | 1
2
3
4
5
6
7 | HECPA STEPPER VOLTAGE HE DATA (MSD) HE DATA (LSD) CCIG VELOCITY FILTER VOLTAGE LECPA STEPPER VOLTAGE LE DATA (MSD) LE DATA (LSD) | WD47 ENVFR
DI-61
DI-62
DI-3
WD31 ODDFR
WD47 ODDFR
DF-5
DF-6 | 8LSB
8MSB
8LSB
8MSB | | PEN | PARAMETER | NUMBER | COMMENT | | |--------------------------------------|--|---|------------------------------|--| | FORMAT 4 (SIDE/CCIG) | | | | | | 1
2
3
4
5
6
7
8 | HE DATA (MSD) HE DATA (LSD) LE DATA (MSD) LE DATA (LSD) CCIG RANGE 4.5 KV TEMP NO. 1 CCIG | DI-61
DI-62
DF-5
DF-6
DI-8
DI-7
DI-4
DI-3 | 8LSB
8MSB
8LSB
8MSB | | | FORMAT 5 (LSM) | | | | | | 1
2
3
4
5
6
7
8 | X AXIS SCI Y AXIS SCI Z AXIS SCI X SNSR TEMP Y SNSR TEMP Z SNSR TEMP LSM INSTR TEMP SPECIAL PROCESSING | LM-35
LM-36
LM-37
DM-1
DM-2
DM-3
DM-5 | | | | FORMAT 6 (LSM) | | | | | | 1
2
3
4
5
6
7
8 | X AXIS SCI Y AXIS SCI Z AXIS SCI BASE TEMP C 5 V SUPPLY LVL 1 DEG LVL 2 DEG SPECIAL PROCESSING | LM-35
LM-36
LM-37
DM-5
DM-8
DM-6
DM-7 | | | | FORMAT 7 (CENTRAL : | STATION PCU 1) | | | | | 1
2
3
4
5
6
7
8 | RES PWR 1 INPUT WATTS +12 VDC +5 VDC THERM PLT 1 TEMP THERM PLT 2 TEMP PCU 1 REG TEMP PCU 1 OSC TEMP | CS-2
CS-1
AE-9
AE-10
AT-3
AT-4
AT-38
AT-36 | (AE-3)(AE-5)
(AE-3)(AE-4) | | | FORMAT 8 (CENTRAL STATION PCU 2) | | | | | | 1
2
3
4
5
6
7
8 | RES PWR 2 INPUT WATTS +12 VDC +5 VDC THERM PLT 1 TEMP THERM PLT 2 TEMP PCU 2 REG TEMP PCU 2 OSC TEMP | CS-4
CS-1
AE-9
AE-10
AT-3
AT-4
AT-39
AT-37 | (AE-3)(AE-6)
(AE-3)(AE-4) | | # 2.1.4 LIMIT SENSING EVENT LIGHTS PARAMETER NUMBER CENTRAL STATION CRITICAL PCU +29V AE-7 PCU +12V AE-9 PCU +5V AE-10 XMTR A AGC V AE-15 XMTR B AGC V AE-16 THERM PLT 5 TEMP AT-7 PCU 1 REG TEMP AT-38 PCU 2 REG TEMP AT-39 RTG OUTPUT WATTS CS-1 RES PWR 1 CS-2 RES PWR 2 CS-4 # CENTRAL STATION WARNING 0.25 CAL VOLT AE-1 4.75 CAL VOLT AE-2 PCU VOLTS AE-3 PCU AMPS AE-4 PCU 1 SHUNT AMPS AE-5 PCU 2 SHUNT AMPS AE-6 PCU +15V AE-8 PCU -12V AE-11 PCU -6V AE-12 RCVR DBM AE-13 RCVR L/O DBM AE-14 HOT FRAME 1 T AR-1 HOT FRAME 2 T AR-2 HOT FRAME 3 T AR-3 CLD FRAME 1 T AR-4 | PARAMETER | NUMBER | |---------------------|--------| | CLD FRAME 2 T | AR-5 | | CLD FRAME 3 T | AR-6 | | SUNSHIELD 1 T | AT-1 | | SUNSHIELD 2 T | AT-2 | | THERM PLT 3 T | AT-5 | | THERM PLT 4 T | AT-6 | | PRI/ST W1 T | AT-8 | | PRI/ST W2 T | AT-9 | | PRI/ST B1 T | AT-10 | | RCVR XTAL A T | AT-21 | | RCVR XTAL B T | AT-22 | | DSS/A BASE T | AT-27 | | DSS/D BASE T | AT-29 | | CMD DEC BASE T | AT-31 | | PDU BASE T | AT-34 | | DUST CELL 1T | AX-1 | | DUST CELL 2T | AX-2 | | DUST CELL 3T | AX-3 | | INT REG DISIP WATTS | CS-3 | | INT REG DISIP WATTS | CS-5 | | PSE CRITICAL | | | PSE INT T | DL-7 | | PSE WARNING | | | TIDAL X | DL-4 | | TIDAL Y | DL-5 | | TIDAL Z | DL-6 | | LSM CRITICAL | | | SNSR X TEMP | DM-1 | | SNSR Y TEMP | DM-2 | | SNSR Z TEMP | DM-3 | | | | | PARAMETER | NUMBER | |----------------|----------------| | BASE TEMP | DM-4 | | INT TEMP | DM-5 | | LSM
WARNING | | | LVL 1 TILT | DM-6 | | LVL 2 TILT | DM-7 | | +5V SUPPLY | DM-8 | | SWS CRITICAL | | | MOD 100 T | DW-11 | | MOD 200 T | DW-12 | | MOD 300 T | DW-13 | | SNSR TEMP | DW-14 | | PROG VOLT | DW-16 | | STEP GEN VOLT | DW-17 | | MOD OK/NOK PCM | DW-18 | | SWS WARNING | | | ADC MVOLT | DW-3 | | ADC 90 MV | DW-4 | | ADC 900 MV | DW-5 | | ADC 3000 MV | DW-6 | | ADC 9000 MV | DW-7 | | SUN REF VOLT | DW-15 | | SIDE CRITICAL | | | TEMP 2 | DI-5 | | TEMP 3 | DI-6 | | CCIG 4.5 KV | DI-7 | | TEMP 4 | DI-9 | | | | | TEMP 5 | DI-10 | | TEMP 6 | DI-10
DI-19 | | | | | PARAMETER | NUMBER | | |--------------------|---|------------------------------| | SIDE WARNING | | | | +5 V ANALOG | DI-2 | | | CCIG TEMP | DI-4 | | | +60 VOLT | DI-13 | | | +30 VOLT | DI-14 | | | +5 V DIGITAL | DI-15 | | | GND VOLTS | DI-16 | | | -5 VOLTS | DI-17 | | | -30 VOLTS | DI-18 | | | +1 VOLT CAL | DI-21 | | | +30 MV CAL | DI-22 | | | ADC POS REF | DI-23 | | | ADC NEG REF | DI-25 | | | -1 VOLT CAL | DI-26 | | | -12 VOLT CAL | DI-27 | | | +12 VOLT CAL | DI-28 | | | PRE/REG PCT | DI-29 | | | -30 MV CAL | DI-30 | | | 2.1.5 DRUM RECORDE | RS | | | PEN | PARAMETER | NUMBER | | 1
2
3
4 | LONG PERIOD X SEISMIC
LONG PERIOD Y SEISMIC
LONG PERIOD Z SEISMIC
SHORT PERIOD Z SEISMIC | DL-1
DL-2
DL-3
DL-8 | # 2.2 APOLLO 14 ALSEP 4 # 2.2.1 EVENT LIGHT PANEL (FIGURE 2.2) | LIGHT | COLOR | NAME | ILLUMINATE | |------------|-----------------------|----------------------------------|--| | 1U
1L | G
G | MAIN FRAME SYNC
90 FRAME SYNC | DA-1 SYNC PATTERN
DA-2 TWO CONSECUTIVE
FRAME COUNTS | | 2U | G | NORM BIT RATE | DA-2 = CNT OF 1
DA-3 = 1
DA-2 - CNT OF 2 | | 2L | G | LOW BIT RATE | DA-3 = 1 | | 3U
3L | G
G | REALTIME DATA
PLAYBACK DATA | CAP WORD | | 4U
4L | G
G | XMTR A
XMTR B | AE-15 > 2 PCM
AE-16 > 2 PCM | | 5U
5L | R
R | CS CRITICAL
ARM THUMPER | $CMP B^{(1)}$
DS-13 = 2 PCM | | 6U
6L | A
R | CS WARNING
ARM GRENADE | CMP A ⁽¹⁾
DS-13 = 1 PCM | | 7U
7L | G
R | PCU 1
RES PWR 1 | AE-5 > 2 PCM
RES PWR < 6.4 W | | 8U
8L | A
A | EXP 1 STBY
EXP 2 STBY | \Rightarrow AB-4 $\left\langle \begin{array}{c} 72\pm10, & 192\pm10 \\ 131\pm10, & 192\pm10 \end{array} \right\rangle$ | | 9U
9L | R
R | SIDE CRITICAL
PSE CRITICAL | CMP D ⁽¹⁾ CMP F ⁽¹⁾ | | 100 | (BLANK) | FUL CRITICAL | GHI T | | 10L | (BLANK) | | . (1) | | 110 | A | SIDE WARNING | CMP C ⁽¹⁾
CMP E ⁽¹⁾ | | 11L | Α | PSE WARNING | CMP E. | | 12U
12L | (BLANK)
(BLANK) | | | | 13U
13L | G
R | PCU 2
RES PWR 2 | AE-6 > 2 PCM
RES PWR < 6.4 W | | 140 | A | EXP 3 STBY | /131±10, 160±10, | | 14L | Α | EXP 4 STBY | AB-5 188±10, 214±10
69±10, 100±10,
188±10, 214±10 | | 15U
15L | R
(BLANK) | CPLEE CRITICAL | _{CMP J} (1) | | 16U
16L | (BLANK)
G | HBR SYNC | CAP WORD | | 170 | Α | CPLEE WARNING | CMP I ⁽¹⁾ | | 17L | Α | HBR LIM | CMP G ⁽¹⁾ | | /- \ | DIL O O A LIMIT CENCE | NO. | | LIGHT COLOR NAME ILLUMINATE 18U 18L (BLANK) (BLANK) Console 88 Module $\frac{3}{2}$ | G | MAIN FRME
SYNC
DA-1 | NORM BIT
RATE
G CW-1 | REAL-TIME
DATA
G ST-3 | XMTR A
G CS-10 | CS
CRITICAL
R CMP-B | CS
WARNING
A CMP-A | |---|---------------------------|---------------------------------|----------------------------------|------------------------|---------------------------------|---------------------------| | G | 90 FRAME
SYNC
DA-2 | LOW BIT RATE G CW-2 | PLAYBACK
DATA
G ST-3 | XMTR B
G CS-11 | ARM
THUMPER
R DS-13 | ARM
GRENADE
R DS-13 | | G | PCU 1
CS-8 | EXP 1 STBY STATUS A CS-13 | SIDE LIMS
CRITICAL
R CMP-D | | SIDE LIMS
WARNING
A CMP-C | | | R | RES PWR 1
CS-6 | EXP 2 STBY STATUS A CS-14 | PSE LIMS
CRITICAL
R CMP-F | | PSE LIMS
WARNING
A CMP-C | | | G | PCU 2
CS-9 | EXP 3 STBY STATUS A CS-15 | CPLEE LIMS CRITICAL R CMP-J | | CPLEE LIMS WARNING A CMP-I | | | R | RES PWR 2
CS-7 | EXP 4 STBY
STATUS
A CS-16 | | HBR
SYNC
G AS-39 | HBR
LIMS
A CMP-G | | Figure 2-2.- Apollo 14 ALSEP 4 event light panel. # 2.2.2 HIGH SPEED PRINTER FORMATS - 1. CENTRAL STATION - 2. PSE - 3. CPLEE FMT 1 - 4. CPLEE FMT 2 - 5. SIDE/CCIG FMT 1 - 6. SIDE/CCIG FMT 2 - 7. ACTIVE SEISMIC - 8. LIMITS TABLE - 9. DISPLAY GUIDE # 2.2.3 ANALOG RECORDER FORMATS | PEN | PARAMETER | NUMBER | COMMENT | |--------------------------------------|---|--|--| | FORMAT 1 (PSE) | | | | | 1
2
3
4
5
6
7
8 | LONG PERIOD X SEISMIC LONG PERIOD Y SEISMIC LONG PERIOD Z SEISMIC SHORT PERIOD Z SEISMIC LONG PERIOD X TIDAL LONG PERIOD Y TIDAL LONG PERIOD Z TIDAL INSTR TEMP | DL-1
DL-2
DL-3
DL-8
DL-4
DL-5
DL-6
DL-7 | 8MSD
8MSD
8MSD
8MSD
8MSD
8MSD
8MSD
8MSD | | FORMAT 2 (PSE) | | | | | 1
2
3
4
5
6
7
8 | LONG PERIOD X SEISMIC LONG PERIOD Y SEISMIC LONG PERIOD Z SEISMIC SHORT PERIOD Z SEISMIC LONG PERIOD X TIDAL LONG PERIOD Y TIDAL LONG PERIOD Z TIDAL INSTR TEMP | DL-1
DL-2
DL-3
DL-8
DL-4
DL-5
DL-6
DL-7 | 8LSB
8LSB
8LSB
8LSB
8LSB
8LSB
8LSB
8LSB | | FORMAT 3 (SIDE/CCIG | ·) | • | | | 1
2
3
4
5
6
7 | HECPA STEPPER VOLTAGE HE DATA (MSD) HE DATA (LSD) CCIG VELOCITY FILTER VOLTAGE LECPA STEPPER VOLTAGE | WD47 EVNFR
DI-61
DI-62
DI-3
WD31 ODDFR
WD47 ODDFR | 8LSB
8MSB | | 8 | LE DATA (MSD)
LE DATA (LSD) | DF-5
DF-6 | 8LSB
8MSB | | PEN | PARAMETER | NUMBER | COMMENT | |--------------------------------------|--|--|------------------------------| | FORMAT 4 (SIDE/CCIG | 5) : | | | | 1
2
3
4
5
6
7 | HE DATA (MSD) HE DATA (LSD) LE DATA (MSD) LE DATA (LSD) CCIG RANGE 4.5 KV TEMP NO. 1 CCIG | DI-61
DI-62
DF-5
DF-6
DI-8
DI-7
DI-4 | 8LSB
8MSB
8LSB
8MSB | | FORMAT 5 (ASE) | | • | | | 1
2
3
4
5
6
7
8 | GEOPHONE 1 GEOPHONE 2 GEOPHONE 3 MODE ID MARK EVENT WORD COUNT EVEN BIT COUNT CAL SIG V | DS-1
DS-2
DS-3
DS-13
DS-18
DS-19
DS-20
DS-8 | | | FORMAT 6 (ASE) | | | | | 1
2
3
4
5
6
7
8 | PITCH ANGLE ROLL ANGLE GLA TEMP INT PKG TEMP HOT FRAME 1 TEMP CLD FRAME 1 TEMP RTG VOLTAGE RTG CURRENT | DS-7
DS-6
AS-3
AS-1
AR-1
AR-4
AE-3
AE-4 | | | FORMAT 7 (CENTRAL S | STATION PCU 1) | | | | 1
2
3
4
5
6
7 | RES PWR 1 INPUT WATTS +12 VDC +5 VDC THERM PLT 1 TEMP THERM PLT 2 TEMP PCU 1 REG TEMP PCU 1 OSC TEMP | CS-2
CS-1
AE-9
AE-10
AT-3
AT-4
AT-38
AT-36 | (AE-3)(AE-5)
(AE-3)(AE-4) | | FORMAT 8 (CENTRAL STATION PCU 2) | | | | | 1
2
3
4
5
6
7
8 | RES PWR 2 INPUT WATTS +12 VDC +5 VDC THERM PLT 1 TEMP THERM PLT 2 TEMP PCU 2 REG TEMP PCU 2 OSC TEMP | CS-4
CS-1
AE-9
AE-10
AT-3
AT-4
AT-39
AT-37 | (AE-3)(AE-6)
(AE-3)(AE-4) | #### 2.2.4 LIMIT SENSING EVENT LIGHTS PARAMETER NUMBER CENTRAL STATION CRITICAL PCU +29V AE-7 PCU +12V AE-9 PCU +5V AE-10 XMTR A AGC V AE-15 XMTR B AGC V AE-16 THERM PLT 5 TEMP AT-7 PCU 1 REG TEMP AT-38 PCU 2 REG TEMP AT-39 RTG OUTPUT WATTS CS-1 RESERVE POWER 1 CS-2 RESERVE POWER 2 CS-4 CENTRAL STATION WARNING .25 VOLT CAL AE-1 4.75 VOLT CAL AE-2 PCU IN VOLTS AE-3 PCU IN AMPS AE-4 PCU 1 SHUNT AMPS AE-5 PCU 2 SHUNT AMPS AE-6 PCU +15V AE-8 PCU -12V AE-11 PCU -6V AE-12 RCVR DBM AE-13 RCVR L/O DBM AE-14 HOT FRAME 1 T AR-1 HOT FRAME 2 T AR-2 HOT FRAME 3 T AR-3 CLD FRAME 1 T AR-4 CLD FRAME 2 T AR-5 | PARAMETER | NUMBER | |---------------------|--------| | CLD FRAME 3 T | AR-6 | | ASE INT TEMP | AS-1 | | MOTOR BOX T | AS-2 | | GLA TEMP | AS-3 | | GEOPHONE T | AS-4 | | SUNSHIELD 1 T | AT-1 | | SUNSHIELD 2 T | AT-2 | | THERM PLT 3 T | AT-5 | | THERM PLT 4 T | AT-6 | | PRI/ST W1 T | AT-8 | | PRI/ST W2 T | AT-9 | | PRI/ST B1 T | AT-10 | | RCVR XTAL A T | AT-21 | | RCVR XTAL B T | AT-22 | | DSS/A BASE T | AT-27 | | DSS/D BASE T | AT-29 | | CMD DEC BASE T | AT-31 | | PDU BASE T | AT-34 | | DUST CELL 1 T | AX-1 | | DUST CELL 2 T | AX-2 | | DUST CELL 3 T | AX-3 | | INT REG DISIP WATTS | CS-3 | | INT REG DISIP WATTS | CS-5 | | | | | PSE CRITICAL | | | PSE INT T | DL-7 | | PSE WARNING | | | TIDAL X | DL-4 | | TIDAL Y | DL-5 | | TIDAL Z | DL-6 | | PARAMETER | NUMBER | |---------------|--------| | SIDE CRITICAL | | | TEMP 2 | DI-5 | | TEMP 3 | DI-6 | | CCIG 4.5 KV | DI-7 | | TEMP 4 | DI-9 | | TEMP 5 | DI-10 | | TEMP 6 | DI-19 | | -3.5 KV | DI-20 | | SIDE WARNING | | | +5V ANALOG | DI-2 | | CCIG T | DI-4 | | +60V | DI-13 | | +30V | DI-14 | | +5V DIGITAĻ | DI-15 | | GND VOLTS | DI-16 | | -5 V | DI-17 | | -30 V | DI-18 | | +1.0 VOLT CAL | DI-21 | | +30 MV CAL | DI-22 | | ADC POS REF | DI-23 | | ADC NEG REF | DI-25 | | -1.0 V CAL | DI-26 | | -12 V CAL | DI-27 | | +12 V CAL | DI-28 | | PRE/REG PCT | DI-29 | | -30 MV CAL | DI-30, | | ASE (HBR LIM) | | | PCU IN VOLTS | AE-3 | | PCU IN AMPS | AE-4 | | HOT FR 1 T | AR-1 | # ALSEPCH BASIC | PARAMETER | NUMBER | |---------------------|---| | CLD FR 1 T | AR-4 | | INT PKG T | AS-1 | | GLA T | AS-3 | | RTG OUTPUT WATTS | CS-1 | | MOTOR BOX GND | DS-5 | | ROLL ANGLE | DS-6 | | PITCH ANGLE | DS-7 | | ADC 1.25 V | DS-10 | | ADC 3.75 V | DS-11 | | CPLEE CRITICAL | | | CPE CHAN/1 VOLTS | AC-2 | | CPE CHAN/2 VOLTS | AC-3 | | CPE CONV VOLTS | AC-4 | | CPLEE WARNING | | |
PHY/AN | AC-5 | | DEF P/S | AC-6 | | 2.2.5 DRUM RECORDER | 25 | | PEN | PARAMETER | | - - | | | 1
2 | LONG PERIOD X SEISMIC
LONG PERIOD Y SEISMIC | | 2
3
4 | LONG PERIOD Z SEISMIC
SHORT PERIOD Z SEISMIC | | • | • | NUMBER DL-1 DL-2 DL-3 DL-8 2.3 APOLLO 15 ALSEP A-2 2.3.1 EVENT LIGHT PANEL (FIGURE 2.3) | LIGH | ŧΤ | COLOR | NAME | ILLUMINATE | |------------|-----------------|-------------------|----------------------------------|---| | 10
1L | | G
G | MAIN FRAME SYNC
90 FRAME SYNC | DA-1 SYNC PATTERN
DA-2 TWO CONSECUTIVE
FRAME COUNTS | | 2U | | G | NORM BIT RATE | DA-2 = CNT OF 1
DA-3 = 1 | | 2L | | G | LOW BIT RATE | DA-2 = CNT OF 2
DA-3 = 1 | | 3U
3L | | G
G | REALTIME DATA
PLAYBACK DATA | CAP WORD
CAP WORD | | 4U
4L | | G
G | XMTR A | AE-15 > 2 PCM
AE-16 > 2 PCM | | 5U
5L | | G
G | PROCESSOR X
PROCESSOR Y | AB-6 > 112 PCM
AB-6 < 112 PCM | | 6U
6L | | R
A | CS CRITICAL
CS WARNING | CMP B ⁽¹⁾ CMP A ⁽¹⁾ | | 7U
7L | | G
R | PCU 1
RES PWR 1 | AE-5 > 2 PCM
RES PWR < 6.4 W | | 8U
8L | | A
A | EXP 1 STBY
EXP 2 STBY | AB-4 72±10, 192±10 | | 9U | | R | PSE CRITICAL | CMP F(1) | | 9L | | R | LSM CRITICAL | CMP G(1) | | 100 | | A | PSE WARNING | CMP E (1) | | 10L | | Α | LSM WARNING | CMP H(1) | | 110 | | Α | EXP 5 STBY | $AB-5 < 35\pm10, 100\pm10 \\ 160\pm10, 214\pm10$ | | 11L | | (BLANK) | | (100210, 214210 | | 12U
12L | | R
(BLANK) | HFE LIMITS | CMP K ⁽¹⁾ | | 13U
13L | | G
R | PCU 2
RES PWR 2 | AE-6 > 2 PCM
RES PWR < 6.4 W | | 14U | | A | EXP 3 STBY | /131±10, 160±10, | | 14L | | A | EXP 4 STBY | $\begin{array}{c} AB-5 \\ \begin{array}{c} 131\pm10 , \ 160\pm10 , \\ 188\pm10 , \ 214\pm10 \\ 69\pm10 , \ 100\pm10 , \\ 188\pm10 , \ 214\pm10 \end{array} \end{array}$ | | 150 | | R | SWS CRITICAL | CMP J(1) | | 15L | | R | SIDE CRITICAL | CMP D(1) | | 160 | | A | SWS WARNING | CMP I (1) | | 16L | | A | SIDE WARNING | CMP C(1) | | (1) | SEE DADACDADH 2 | 3 A LIMIT SENSING | | | ALSEPCH BASIC | LIGHT | COLOR | NAME | ILLUMINATE | |------------|--------------|--------------|-----------------| | 17U
17L | (BLANK)
R | TIMER CNTR 1 | AZ-2 = >120 PCM | | 18Ú
18L | (BLANK)
R | TIMER CNTR 2 | AZ-3 = >120 PCM | Mission Apollo 15 ALSEP A2 Console 88 Module — 4 | G | MAIN FRME
SYNC
DA-1 | NORM BIT
RATE
G | REAL-TIME
DATA
G | XMTR A | PROCESSOR
X
G | CS
CRITICAL
R | |---|---------------------------|------------------------------------|----------------------------|---------------------------|---------------------------|-------------------------| | G | 90 FRAME
SYNC
DA-2 | LOW BIT
RATE
G | PLAYBACK
DATA
G | XMTR B
G | PROCESSOR
Y
G | CS
WARNING
A | | G | PCU 1 | EXP 1 STBY
STATUS
A | PSE LIMS
CRITICAL
R | PSE LIMS
WARNING
A | EXP 5 STBY
STATUS
A | HFE
LIMITS
R | | R | RES PWR 1 | EXP 2 STBY
STATUS
A | LSM LIMS
CRITICAL
R | LSM LIMS
WARNING
A | | | | G | PCU 2 | EXP 3 STBY
S TATU S
A | SWS LIMS
CRITICAL
R | SWS LIMS
WARNING
A | | | | R | RES PWR 2 | EXP 4 STBY
STATUS
A | SIDE LIMS
CRITICAL
R | SIDE LIMS
WARNING
A | TIMER
COUNTER 1
R | TIMER
COUNTER 2
R | Figure 2-3.- Apollo 15 ALSEP A2 event light panel. #### 2.3.2 HIGH SPEED PRINTER FORMATS - 1. CENTRAL STATION - 2. PASSIVE SEISMIC EXPERIMENT - 3. SOLAR WIND EXPERIMENT - 4. SIDE/CCGE FMT 1 - 5. SIDE/CCGE FMT 2 - 6. LSM FMT 1 - 7. LSM FMT 2 - 8. HEAT FLOW FMT 1 - 9. HEAT FLOW FMT 2 - 10. LIMITS TABLE - 11. DISPLAY GUIDE #### 2.3.3 ANALOG RECORDER FORMATS | PEN | PARAMETER | NUMBER | COMMENT | |--------------------------------------|--|--|--| | FORMAT 1 (PSE) | | | | | 1
2
3
4
5
6
7
8 | LONG PERIOD X SEISMIC LONG PERIOD Y SEISMIC LONG PERIOD Z SEISMIC SHORT PERIOD Z SEISMIC LONG PERIOD X TIDAL LONG PERIOD Y TIDAL LONG PERIOD Z TIDAL PSE INST TEMP | DL-1
DL-2
DL-3
DL-8
DL-4
DL-5
DL-6
DL-7 | 8MSB
8MSB
8MSB
8MSB
8MSB
8MSB
8MSB
8MSB | | FORMAT 2 (PSE) | • | | | | 1
2
3
4
5
6
7
8 | LONG PERIOD X SEISMIC LONG PERIOD Y SEISMIC LONG PERIOD Z SEISMIC SHORT PERIOD Z SEISMIC LONG PERIOD X TIDAL LONG PERIOD Y TIDAL LONG PERIOD Z TIDAL PSE INST TEMP | DL-1
DL-2
DL-3
DL-8
DL-4
DL-5
DL-6
DL-7 | 8LSB
8LSB
8LSB
8LSB
8LSB
8LSB
8LSB
8LSB | | FORMAT 3 (SIDE/CCGE | Ξ) | | | | 1
2
3
4 | HECPA STEPPER VOLTAGE
HE DATA (MSD)
HE DATA (LSD)
CCGE | WD47 EVNFR
DI-61
DI-62
DI-3 | 8LSB
8MSB | | PEN | PARAMETER | NUMBER | COMMENT | |--------------------------------------|---|---|------------------------------| | 5
6
7
8 | VELOCITY FILTER VOLTAGE
LECPA STEPPER VOLTAGE
LE DATA (MSD)
LE DATA (LSD) | WD31 ODDFR
WD47 ODDFR
DF-5
DF-6 | 8LSB
8MSB | | FORMAT 4 (SIDE/CCG | Ε) | | | | 1
2
3
4
5
6
7
8 | HE DATA (MSD) HE DATA (LSD) LE DATA (MSD) LE DATA (LSD) CCGE RANGE 4.5 KV TEMP NO. 1 CCGE | DI-61
DI-62
DF-5
DF-6
DI-8
DI-7
DI-4
DI-3 | 8LSB
8MSB
8LSB
8MSB | | FORMAT 5 (LSM) | | | | | 1
2
3
4
5
6
7
8 | X AXIS SCI Y AXIS SCI Z AXIS SCI Z SNSR TEMP Y SNSR TEMP Z SNSR TEMP LSM INST TEMP SPECIAL PROCESSING | LM-35
LM-36
LM-37
DM-1
DM-2
DM-3
DM-5 | | | FORMAT 6 (LSM) | | | | | 1
2
3
4
5
6
7
8 | X AXIS SCI Y AXIS SCI Z AXIS SCI BASE TEMP 5V SUPPLY LVL 1 DEG LVL 2 DEG SPECIAL PROCESSING | LM-35
LM-36
LM-37
DM-5
DM-8
DM-6
DM-7 | | | FORMAT 7 (CENTRAL | STATION PCU 1) | | | | 1
2
3
4
5
6
7
8 | RES PWR 1 INPUT WATTS +12 VDC +5 VDC THERM PLT 1 TEMP THERM PLT 2 TEMP PCU 1 REG PCU 1 OSC | CS-2
CS-1
AE-9
AE-10
AT-3
AT-4
AT-38
AT-36 | (AE-3)(AE-5)
(AE-3)(AE-4) | | FORMAT 8 (CENTRAL S | STATION PCU 2) | | | | 1
2
3
4
5 | RES PWR 2
INPUT WATTS
+12 VDC
+5 VDC
THERM PLT 1 TEMP | CS-4
CS-1
AE-9
AE-10
AT-3 | (AE-3)(AE-6)
(AE-3)(AE-4) | ## ALSEPCH BASIC | | PARAMETER | NUMBER | COMMENT | |----------------------|----------------------------|---------------|---------| | 7 | THERM PLT 2 TEMP PCU 2 REG | AT-4
AT-39 | | | 8 | PCU 2 OSC | AT-37 | | | 2.3.4 LIMIT SENS | ING EVENT LIGHTS | | | | PARAMETER | NUMBER | | | | CENTRAL STATION CRIT | ICAL | • | | | PCU +29V | AE-7 | | | | PCU +12V | AE-9 | | | | PCU +5V | AE-10 | | | | XMTR A AGC V | AE-15 | | | | XMTR B AGC V | AE-16 | | | | THERM PLT 5 T | AT-7 | | | | PCU 1 REG T | AT-38 | | | | PCU 2 REG T | AT-39 . | | | | RTG OUTPUT WATTS | CS1 | | | | RES PWR 1 | CS2 | | | | RES PWR 2 | CS4 | | | | CENTRAL STATION WARN | ING | | | | .25 VOLT CAL | AE-1 | | | | 4.75 VOLT CAL | AE-2 | | | | PCU IN VOLTS | AE-3 | | | | PCU IN AMPS | AE-4 | • | | | PCU 1 SHUNT AMPS | AE-5 | | | | PCU 2 SHUNT AMPS | AE-6 | | | | PCU +15V | AE-8 | | | | PCU -12V | AE-11 | | | | PCU -6V | AE-12 | | | | RCVR DBM | AE-13 | , | | | RCVR L/O DBM | AE-14 | | | AR-1 HOT FRAME 1 T | PARAMETER | NUMBER | |-------------------|--------| | HOT FRAME 2 T | AR-2 | | HOT FRAME 3 T | AR-3 | | CLD FRAME 1 T | AR-4 | | CLD FRAME 2 T | AR-5 | | CLD FRAME 3 T | AR-6 | | SUNSHIELD 1 T | AT-1 | | SUNSHIELD 2 T | AT-2 | | THERM PLT 3 T | AT-5 | | THERM PLT 4 T | AT-6 | | PRI/ST W1 | AT-8 | | PRI/ST W2 | AT-9 | | PRI/ST B1 | AT-10 | | RCVR XTAL A T | AT-21 | | RCVR XTAL B T | AT-22 | | DSS/A BASE T | AT-27 | | DSS/D BASE T | AT-29 | | CMD DEC BASE T | AT-31 | | PDU BASE T | AT-34 | | DUST CELL 1 T | AX-1 | | DUST CELL 2 T | AX-2 | | DUST CELL 3 T | AX-3 | | INT REG DIS WATTS | CS-3 | | INT REG DIS WATTS | CS-5 | | PSE CRITICAL | | | PSE INT T | DL-7 | | | | | PSE WARNING | | | TIDAL X | DL-4 | | TIDAL Y | DL-5 | | TIDAL Z | DL-6 | | PARAMETER | NUMBER | |----------------|--------| | LSM CRITICAL | | | SENSOR X TEMP | DM-1 | | SENSOR Y TEMP | DM-2 | | SENSOR Z TEMP | DM-3 | | BASE TEMP | DM-4 | | INT TEMP | DM-5 | | LSM WARNING | | | LVL 1 TILT | DM-6 | | LVL 2 TILT | DM-7 | | +5 VOLT SUPPLY | DM-8 | | SWS CRITICAL | | | MOD 100 TEMP | DW-11 | | MOD 200 TEMP | DW-12 | | MOD 300 TEMP | DW-13 | | SNSR TEMP | DW-14 | | PROG VOLTS | DW-16 | | STEP GEN VOLTS | DW-17 | | MOD OK/NOK PCM | DW-18 | | SWS WARNING | | | ADC MV | DW-3 | | ADC 90 MV | DW-4 | | ADC 900 MV | DW-5 | | ADC 3000 MV | DW-6 | | ADC 9000 MV | DW-7 | | SUN REF VOLTS | DW-15 | | SIDE CRITICAL | | | TEMP 2 | DI-5 | | TEMP 3 | DI-6 | | CCGE 4.5 KV | DI-7 | | PARAMETER | NUMBER | |--------------|--------| | TEMP 4 | DI-9 | | TEMP 5 | DI-10 | | TEMP 6 | DI-19 | | -3.5 KV | DI-20 | | SIDE WARNING | | | +5V ANALOG | DI-2 | | CCIG T | DI -4 | | +60 VOLTS | DI-13 | | +30 VOLTS | DI-14 | | +5V DIGITAL | DI-15 | | GND VOLTS | DI-16 | | -5 VOLTS | DI-17 | | -30 VOLTS | DI-18 | | +1 VOLT CAL | DI-21 | | +30 MV CAL | DI-22 | | ADC POS REF | DI-23 | | ADC NEG REF | DI-25 | | -1 VOLT CAL | DI-26 | | -12 VOLT CAL | DI-27 | | +12 VOLT CAL | DI-28 | | PRE/REG PCT | DI-29 | | -30 MV CAL | DI-30 | | HFE LIMITS | | | +5V SUPPLY | AH-1 | | -5V SUPPLY | AH-2 | | +15V SUPPLY | AH-3 | | -15V SUPPLY | AH-4 | | | | ## 2.3.5 DRUM RECORDERS | PEN | PARAMETER | NUMBER | |---------------|---|------------------------------| | 1 · 2 · 3 · 4
| LONG PERIOD X SEISMIC
LONG PERIOD Y SEISMIC
LONG PERIOD Z SEISMIC
SHORT PERIOD Z SEISMIC | DL-1
DL-2
DL-3
DL-8 | 2.4 APOLLO 16 ALSEP ARRAY D TO BE SUPPLIED ## 2.5 APOLLO 17 ALSEP ARRAY E TO BE SUPPLIED ## 2.6 72 EVENT LIGHT PANEL | LIGHT NO. | TITLE | MEAS NO. | E.U. VALUE
TO ILLUMINATE | |---------------|-------------------|----------|-----------------------------| | 1*,19,37,55 | PCU 1 OSC T | AT-36 | <-20/<+160 | | 2,20,38,56 | XMTR A XTAL T | AT-23 | <-15/>+160 | | 3,21,39,57 | XMTR A HT/ST | AT-24 . | <-15/>+160 | | 4,22,40,58 | XMTR A DBLR MA | AE-17 | <158/>190 | | 5,23,41,59 | PDU INT T | AT-35 | <0/>+160 | | 6,24,42,60 | CMD DEC VCO T | AT-33 | <-20/>+140 | | 7,25,43,61 | CMD DEC INT T | AT-32 | <-20/>+140 | | 8,26,44,62 | DSS/A INT T | AT-28 | <-20/>+140 | | 9,27,45,63 | DSS/D INT T | AT-30 | <-20/>+140 | | 10,28,46,64 | PCU 2 OSC T | AT-37 | <-20/>+160 | | 11,29,47,65 | XMTR B XTAL T | AT-25 | <-15/>+160 | | 12,30,48,66 | XMTR B HT/ST | AT-26 | <-15/>+160 | | 13,31,49,67 | XMTR B DBLR MA | AE-18 | <158/>190 | | 14,32,50,68 | THRM PLT ONE T | AT-3 | <-20/>+140 | | 15,33,51,69 | THRM PLT TWO T | AT-4 | <-20/>+140 | | 16,34,52,70 | INSUL EXT T | AT-13 | <-135/>+210 | | 17,35,53,71 | INSUL INT T | AT-12 | <-20/>+157 | | 18,36,54,72 | PRI/ST WALL T 3 | AT-11 | <-210/>+236 | | * NO. 1 TO 18 | APOLLO 12 ALSED 1 | | | * NO. 1 TO 18 APOLLO 12 ALSEP 1 NO. 19 TO 36 APOLLO 15 ALSEP A-2 NO. 37 TO 54 APOLLO 16 ALSEP ARRAY D (ALSEP 5). NO. 55 TO 72 APOLLO 14 ALSEP 4 3 OPERATIONAL PROCEDURES #### SECTION 3 ## STANDARD OPERATING PROCEDURES Due to the individuality of each ALSEP, it is necessary to have two sets of SOP's for each ALSEP. The first set of SOP's will be distributed prior to each mission. These will, in the main, concern deployment, activation, and normal operations. The second set of SOP's will be distributed after the 45-day support and will replace the first set in their entirety. These will be the standard procedures that have evolved due to non-normal operation of the ALSEP package. Bluntly, the first set is written about what is hoped will happen and the second set is written about what really happened. The operational sequence numbering is as follows: | ALSEP | <u>Apollo</u> | First Set | Second Set | |---------|---------------|-----------|------------| | 1 | 12 | Discard | 1-NX | | 4 | 14 | 3-N* | 4-NX | | A2 | 15 | 2-N | 2-NX | | Array D | 16 | 3-N | 3-NX | | Array E | 17 | 6-N | 6-NX | *N is SOP number. | Step
No. | ASE | SYSTEMS | DATA | Comments | |-------------|---|--|------|--| | 1 | PICK UP DATA BOOK
FROM OFFICE | | | | | 2 | CALL GCC TO SEND
ALSEP MESSAGES | | | | | 3 | READ MESSAGES AND
LOG SPURIOUS CVW'S
WITH MAP BIT SET | | | | | 4 | HAVE REAL-TIME DATA
DURING CMD INTERFACE | SELECT ANALOG
RECORDERS AS RE-
QUIRED. ANNOTATE
RECORDERS. | | · | | 5 | CALL DISPLAY TO
START DRUM RECORDERS
AND MULTIPEN | SELECT FOLLOWING HSP
FORMATS FOR BOTH
DATA BOOKS 4 C/S (1 FOR BXA) 3 PSE 3 LSM NO. 2 3 SWS 3 SIDE NO. 1 (IF SIDE IS ON) | | | | 6 | COMPARE DATA WITH
PREVIOUS DAY | CHECK SETTINGS ON
DRUM RECORDERS.
ANNOTATE MULTIPEN. | | | | 7 | CMD SIDE ON IF SIDE
IS OFF CMD 052 | OBTAIN HSP FORMATS
SIDE NO. 1 FOR DATA
BOOKS AND SIDE NO. 2
FOR PI | | | | 8 | | FILL IN DATA LOG | | | | 9 | LEVEL PSE AXIS AS
REQUIRED | OBTAIN PSE HSP FORMATS
FOR DATA BOOKS BEFORE
AND AFTER LEVELING
SEQUENCE | | TURN DRUM RECORDER
GAIN TO INFINITY | | 10 | CMD PSE LP CAL ON AND OFF PER SUMMARY SUPPORT SCHEDULE. CMD 066. | ANNOTATE DRUM
RECORDERS | | | | 17 | CMD LSM FLIP CAL PER
SUMMARY SUPPORT
SCHEDULE. CMD 131.
NOTE: TWO FLIP CALS
MUST BE CMDED
TO MAINTAIN
HEADS AT 180° | | | | | Step
No. | ASE | SYSTEMS | DATA | Comments | |-------------|--|---|-------------------------|--| | 12 | IF SIDE IS TO BE
CMDED OFF (SEE
SUMMARY SUPPORT
SCHEDULE)
SEND CMD 053
THEN CMD 054 | OBTAIN HSP FORMAT
SIDE NO. 1 PRIOR
TO CMD 053 | | | | 13 | IF REQUIRED, CMD
DSS NO. 1 HEATER ON
CMD 055 | VERIFY 10 W DECREASE
IN RESERVE POWER | | DSS NO. 1 HEATER
WILL BE CMDED "ON"
DURING 2-HOUR SUPPORT
PERIOD PRIOR TO
SUNSET | | 14 | | GET FINAL HSP FORMATS
FOR DATA BOOKS (SEE
STEP NO. 5). COMPARE
DATA WITH FIRST CUT
OF DATA. | · | | | 15 | NOTIFY NETWORK TO
TERMINATE REAL-TIME
SUPPORT AND OF PLAY-
BACK REQUIREMENTS | CALL DISPLAY TO TURN
DRUM RECORDERS AND
MULTIPEN OFF. TURN
OFF ANALOG RECORDERS
AND ANNOTATE. | | | | 16 | CALL GCC TO HOLD
ALSEP MESSAGES | ANNOTATE MULTIPEN | | | | 17 | WRITE DAILY
REPORT AND SMEARS
AS REQUIRED | FILL IN DATA LOG | | | | 18 | VERIFY ALL TASKS
COMPLETED | PLACE CONSOLE LOG IN CABINET AND LOCK | | | | 19 | RETURN DATA BOOK TO OFFICE | | | | | | NOTE: REMOVE MULTIPE
SUN ANGLE OF 2 | | NG SUPPORT PERIOD CLOSE | ST TO | | Step
No. | ASE | SYSTEMS | DATA | Comments | |-------------|---|---|------|--| | 1 | START NEW ALSEP 1
DATA BOOKS | | · | | | 2 | CALL GCC TO SEND
ALSEP MESSAGES | | | | | 3 | READ MESSAGES AND LOG
SPURIOUS CVW'S WITH
MAP BIT SET | | | | | 4 | DURING CMD INTERFACE | SELECT THE ANALOG
RECORDERS AS REQUIRED.
ANNOTATE RECORDERS. | | | | 5 | CALL DISPLAY TO START
DRUM RECORDERS AND
MULTIPEN | SELECT FOLLOWING HSP
FORMATS FOR BOTH DATA
BOOKS
4 C/S (1 FOR BXA)
3 PSE
3 LSM NO. 2
3 SWS
3 SIDE NO. 1
(IF SIDE IS ON) | | THESE FORMATS WILL BE
OBTAINED EVERY EVEN
GMT HOUR FOR BOTH
DATA BOOKS AND UPDATE
DATA LOG | | 6 | COMPARE DATA WITH
PREVIOUS DAY | CHECK SETTINGS ON DRUM
RECORDERS. ANNOTATE
MULTIPEN | | | | 7 | | FILL-IN DATA LOG | | ALSO EVERY EVEN GMT
HOUR (SEE COMMENT
STEP 5) | | 8 | OBTAIN SUNRISE TIME
FROM NETWORK | | · | SUNRISE IS WHEN AX-06 CHANGES FROM OFF-SCALI LOW TO SOME INITIAL VALUE. NOTE: REMOTE SITES WILL BE RE- QUESTED TO MONITOR BY AN ISI | | 9 | LEVEL PSE AS REQUIRED | OBTAIN PSE HSP FORMATS
FOR BOTH DATA BOOKS
BEFORE AND AFTER
LEVELING SEQUENCE | | TURN Z MOTOR OFF PRIOR TO LEVELING IF IT IS "ON" FOR THERMAL CONTROL. TURN DRUM RECORDER GAINS TO INFINITY. | | 10 | TURN DSS NO. 1 HEATER
OFF 8-HOURS AFTER
SUNRISE. CMD 056
THEN CMD 057. | VERIFY 10 W INCREASE
IN RESERVE POWER | | | | Step
No. | ASE | SYSTEMS | DATA | Comments | |-------------|---|---|------|--| | 11 | TURN PSE Z MOTOR OFF
12 HOURS AFTER
SUNRISE | VERIFY 3 W INCREASE IN
RESERVE POWER. GET
PSE HSP FORMAT FOR
EACH DATA BOOK | | | | 12 | CMD LSM DOUBLE FLIP
CALS EVERY 6 HOURS
BEGINNING APPROXI-
MATELY 24 HOURS
AFTER SUNRISE IF
THERE IS LSM DATA | | | USE CLOSEST 0000,
0600, 1200, OR
1800 GMT TO 24 HOURS
AFTER SUNRISE. LSM
DATA WILL RE-APPEAR
ABOUT 30 HOURS AFTER
SUNRISE. | | 13 | LEVEL PSE X AND Y
AXIS AS REQUIRED | OBTAIN PSE HSP FORMATS
BEFORE AND AFTER
LEVELING FOR DATA
BOOKS | | Z MOTOR IS ON. TURN
DRUM RECORDER GAINS
TO INFINITY. | | 14 | | GET FINAL HSP FORMATS
FOR DATA BOOKS (SEE
STEP 5) | | | | 15 | TERMINATE REAL-TIME | CALL DISPLAY TO TURN DRUM RECORDERS AND MULTIPEN OFF. TURN OFF ANALOG RECORDERS AND ANNOTATE. | | | | 16 | CALL GCC TO HOLD
ALSEP MESSAGES | ANNOTATE MULTIPEN | | | | 17 | WRITE DAILY REPORT
AND SMEARS AS REQUIRED | FILL-IN DATA LOG | | | | 18 | VERIFY ALL TASKS
COMPLETED | PLACE CONSOLE LOG IN CABINET AND LOCK | · | | | 19 | RETURN DATA BOOK TO
OFFICE | Step
No. | ASE | SYSTEMS | DATA | Comments | |-------------|---|---|------|--| | 1 | PICK UP DATA BOOK
FROM OFFICE | | | | | 2 | CALL GCC TO SEND
ALSEP MESSAGES | | | | | 3 | READ MESSAGES AND LOG
SPURIOUS CVW'S WITH
MAP BIT SET | | | | | 4 | HAVE REAL-TIME DATA
DURING CMD INTERFACE | SELECT THE ANALOG
RECORDERS AS REQUIRED.
ANNOTATE RECORDERS. | | | | 5 | CALL DISPLAY TO START
DRUM RECORDERS AND
MULTIPEN | SELECT FOLLOWING HSP
FORMATS FOR BOTH
DATA BOOKS
4 C/S (1 FOR BXA)
3 PSE
3 LSM NO. 2
3 SWS
3 SIDE NO. 1
(IF SIDE IS ON) | | THESE FORMATS WILL BE
OBTAINED EVERY EVEN
GMT HOUR FOR BOTH
DATA BOOKS AND UPDATE
DATA LOG | | 6 | COMPARE DATA WITH
PREVIOUS DAY | CHECK SETTINGS ON
DRUM RECORDERS.
ANNOTATE MULTIPEN. | | | | 7 | | FILL IN DATA LOG | | ALSO EVERY EVEN
GMT
HOUR (SEE COMMENT
STEP 5) | | 8 | LEVEL PSE AS RE-
QUIRED | OBTAIN PSE HSP FORMAT
FOR DATA BOOKS BEFORE
AND AFTER LEVELING | | TURN DRUM RECORDER GAINS TO INFINITY | | 9 | OBTAIN SUNSET TIME | | | HAVE NETWORK NOTIFY
REMOTE SITE TO
MONITOR WHEN AX-04
GOES TO OFF-SCALE LO | | 10 | CMD PSE Z MOTOR ON
CMD 072 7 HOURS AFTER
SUNSET | VERIFY 3 W DROP IN
RESERVE POWER | · | Z MOTOR LEFT ON FOR
PSE THERMAL CONTROL | | 11 | | GET FINAL HSP FORMATS
FOR DATA BOOKS (SEE
STEP 5) | | | | 12 | NOTIFY NETWORK TO
TERMINATE REAL-TIME
SUPPORT AND OF PLAY-
BACK REQUIREMENTS | CALL DISPLAY TO TURN
DRUM RECORDERS AND
MULTIPEN OFF. TURN
OFF ANALOG RECORDERS
AND ANNOTATE. | | | | Step
No. | ASE | SYSTEMS | DATA | Comments | |-------------|---|---------------------------------------|------|----------| | 13 | CALL GCC TO HOLD
ALSEP MESSAGES | ANNOTATE MULTIPEN | | | | 14 | WRITE DAILY REPORT
AND SMEARS AS
REQUIRED | FILL IN DATA LOG | | | | 15 | VERIFY ALL TASKS
COMPLETED | PLACE CONSOLE LOG IN CABINET AND LOCK | | | | 16 | RETURN DATA BOOK TO
OFFICE | | · | · | · | | | | | | | | | Step
No. | ASE | SYSTEMS | DATA | Comments | |-------------|---|--|------|---| | 1 | | TURN DRUM RECORDER
GAINS TO INFINITY | | | | 2 | | OBTAIN PSE HSP FORMAT
FOR EACH DATA BOOK.
VERIFY AUTO MODE. | • | | | 3 | CMD Z MOTOR OFF (CMD
072) IF REQUIRED | ANNOTATE PSE ANALOG
RECORDER | | Z MOTOR ON DURING
LUNAR NIGHT FOR
THERMAL CONTROL | | 4 | IF REQUIRED CMD X
MOTOR ON (CMD 070) | ANNOTATE PSE ANALOG
RECORDER | | | | 5 | WHEN X TIDAL ON PSE
ANALOG RECORDER IS
50%, TURN X MOTOR
OFF (CMD 070) | | | | | 6 | IF REQUIRED CMD Y
MOTOR ON (CMD 071) | ANNOTATE PSE ANALOG
RECORDER | | | | 7 | WHEN Y TIDAL ON PSE
ANALOG RECORDER IS
50%, TURN Y MOTOR
OFF (CMD 071) | | | | | 8 | IF REQUIRED CMD Z
MOTOR ON (CMD 072) | ANNOTATE PSE ANALOG
RECORDER | | SEE COMMENT STEP 3 | | 9 | WHEN Z TIDAL ON PSE
ANALOG RECORDER IS
50%, TURN Z MOTOR
OFF (CMD 072) | | | THIS STEP VALID ONLY
DURING LUNAR DAY FOR
LEVELING Z AXIS | | 10 | | OBTAIN PSE HSP
FORMATS FOR EACH
DATA BOOK | · | | | 11 | | TURN DRUM RECORDER
GAIN BACK TO -30 DB.
ANNOTATE MULTIPOINT
RECORDER. | | | | 12 | RECORD ACTIVITY IN
CONSOLE LOG AND
COMMAND LOG | | | | | Step
No. | ASE | SYSTEMS | DATA | Comments | |-------------|--|---|------|---| | 1 | | TURN DRUM RECORDER GAINS TO INFINITY | ٠ | | | 2 | | OBTAIN PSE HSP
FORMATS FOR EACH
DATA BOOK. VERIFY
SPEED LO AND AUTO
MODE. | | | | 3 | CMD Z MOTOR OFF (CMD
072) IF REQUIRED | ANNOTATE PSE ANALOG
RECORDER | | Z MOTOR ON DURING
LUNAR NIGHT FOR
THERMAL CONTROL | | 4 | DETERMINE DIRECTION
TO DRIVE X AXIS AND
SEND CMD 074 IF
REQUIRED | VERIFY DIRECTION | | | | 5 | SEND CMD 103
(FORCED MODE) | VERIFY FORCED MODE | | | | 6 | ENABLE MAP OVERRIDE | | | | | 7 | GUESSTIMATE TIME X
MOTOR TO BE ON | VERIFY GUESSTIMATE | | BAND EDGE TO BAND
EDGE IS APPROX 4 SEC | | 8 | NOTIFY NETWORK OF
MAP OVERRIDE AND
DURATION OF X MOTOR
ON | | | | | 9 | SEND CMD 070 (X MOTOR ON) | | | | | 10 | SEND CMD 070 (X MOTOR
OFF) AFTER APPROPRIATE
TIME INTERVAL | | | | | 11 | INITIATE CMD 103
(AUTO MODE) IMMEDI-
ATELY AFTER CMD 070
(X MOTOR OFF). TURN
MAP OVERRIDE OFF. | ANNOTATE ANALOG
RECORDER | | | | 12 | DETERMINE DIRECTION
TO DRIVE Y AXIS AND
SEND CMD 074 IF
REQUIRED | VERIFY DIRECTION | | | | 13 | SEND CMD 103 (FORCED MODE) | VERIFY FORCED MODE | | | | 14 | GUESSTIMATE TIME Y
MOTOR TO BE ON. TURN
MAP OVERRIDE ON. | VERIFY GUESSTIMATE | | BAND EDGE TO BAND
EDGE IS APPROX 4 SEC | | Step
No. | ASE | SYSTEMS | DATA | Comments | |-------------|---|---|------|--| | 15 | NOTIFY NETWORK OF
MAP OVERRIDE AND
DURATION OF Y MOTOR
ON | | | | | 16 | SEND CMD 071 (Y MOTOR ON) | | | | | 17 | SEND CMD 071 (Y MOTOR
OFF) AFTER APPROPRI-
ATE TIME INTERVAL | | | | | 18 | INITIATE CMD 103 (AUTO
MODE) IMMEDIATELY
AFTER CMD 071 (Y
MOTOR OFF) | ANNOTATE ANALOG
RECORDER | | | | 19 | DISABLE MAP OVERRIDE | VERIFY AUTO MODE | | | | 20 | CMD Z MOTOR ON (CMD
072) IF REQUIRED | | | Z AXIS WILL BE
LEVELED IN AUTO MODE
ONLY BECAUSE OF LOW
DRIFT RATES | | 21 | | OBTAIN PSE HSP FORMAT
FOR EACH DATA BOOK | | | | 22 | | RETURN DRUM RECORDER GAINS TO -30 DB. ANNOTATE MULTIPOINT RECORDER. | | | | 23 | RECORD ACTIVITY IN
CONSOLE LOG AND
COMMAND LOG | | | | | | | | | | | Step
No. | ASE | SYSTEMS | DATA | Comments | |-------------|--|---|------|--| | 1 | | VERIFY THAT CUP 14
SUM IS EQUAL TO OR
GREATER THAN 40 FOR
ONE COMPLETE SOLAR
WIND CYCLE | | | | 2 | ENABLE MAP OVERRIDE | | | | | 3 | SEND CMD 122 THREE
TIMES WITHIN 10 SEC
(SWS HI GAIN) | | | CUP 14 SUM WILL GO TO
SOME NUMBER DIFFERENT
FROM LO GAIN | | | | | | | | | | | | : | - | Step
No. | ASE | SYSTEMS | DATA | Comments | |-------------|----------------------------|--|------|--| | 1 | | VERIFY THAT CUP 14
SUM IS 5 OR MORE LESS
THAN WHEN COMMANDED
TO HI GAIN | | | | 2 | SEND CMD 046 (SWS
STBY) | VERIFY EXP 3 STBY
STATUS LIGHT ON | | | | 3 | SEND CMD 045 (SWS ON) | VERIFY EXP 3 STBY
STATUS LIGHT OFF | | | | | · | | | ************************************** | | : | • | NASA --- MSC | Step
No. | ASE | SYSTEMS | DATA | Comments | |-------------|---|---|------|--| | I | PICK UP DATA BOOK
FROM OFFICE | | - | | | 2 | CALL GCC TO SEND
ALSEP MESSAGES | | | | | 3 | READ MESSAGES AND
LOG SPURIOUS CVW'S
WITH MAP BIT SET | | | | | 4 | HAVE REAL-TIME DATA
DURING CMD INTERFACE | SELECT THE ANALOG
RECORDERS AS REQUIRED.
ANNOTATE RECORDERS. | _ | | | 5 | CALL DISPLAY TO START
DRUM RECORDERS AND
MULTIPEN | SELECT FOLLOWING HSP
FORMATS FOR BOTH
DATA BOOKS
4 C/S (1 FOR BXA)
3 PSE
3 CPLEE
3 SIDE NO. 1 | | | | 6 | COMPARE DATA WITH
PREVIOUS DAY | CHECK SETTINGS ON DRUM RECORDERS. ANNOTATE MULTIPEN. | | | | 7 | | FILL IN DATA LOG | | | | 8 | LEVEL PSE AXIS AS
REQUIRED | OBTAIN PSE HSP
FORMATS FOR DATA
BOOKS BEFORE AND
AFTER LEVELING
SEQUENCE | | TURN DRUM RECORDER
GAIN TO INFINITY | | 9 | CMD PSE LP CAL ON
AND OFF PER SUMMARY
SUPPORT SCHEDULE.
CMD 066. | ANNOTATE DRUM
RECORDERS | · | | | 10 | IF REQUIRED, CMD DSS
NO. 1 HEATER ON.
CMD 055. | VERIFY 10 W DECREASE
IN RESERVE POWER | | DSS NO. 1 HEATER WILL
BE CMDED "ON" DURING
2-HOUR SUPPORT
PERIOD PRIOR TO
SUNSET | | 11 | | GET FINAL HSP FORMATS FOR DATA BOOKS (SEE STEP NO. 5). COMPARE DATA WITH FIRST CUT OF DATA. | | | | C+ | | | | | |-------------|---|---|------|----------| | Step
No. | ASE | SYSTEMS | DATA | Comments | | 12 | NOTIFY NETWORK TO
TERMINATE REAL-TIME
SUPPORT AND OF
PLAYBACK REQUIREMENTS | CALL DISPLAY TO TURN
DRUM RECORDERS AND
MULTIPEN OFF. TURN
OFF ANALOG RECORDERS
AND ANNOTATE. | · | | | 13 | CALL GCC TO HOLD
ALSEP MESSAGES | ANNOTATE MULTIPEN | | | | 14 | WRITE DAILY REPORT
AND SMEARS AS
REQUIRED | FILL IN DATA LOG | | | | 15 | VERIFY ALL TASKS
COMPLETED | PLACE CONSOLE LOG IN CABINET AND LOCK | | | | 16 | RETURN DATA BOOK TO OFFICE | | | | | | | | | | 1 | Step
No. | ASE | SYSTEMS | DATA | Comments | |-------------|---|---|------|--| | 1 | | START NEW DATA BOOKS | , | | | 2 | CALL GCC TO SEND
ALSEP MESSAGES | | | | | 3 | READ MESSAGES AND
LOG SPURIOUS CVW'S
WITH MAP BIT SET | | | | | 4 | HAVE REAL-TIME DATA
DURING CMD INTER-
FACE | SELECT THE ANALOG
RECORDERS AS
REQUIRED. ANNOTATE
RECORDERS. | | | | 5 | CALL DISPLAY TO
START DRUM RECORDERS
AND MULTIPEN | SELECT FOLLOWING HSP FORMATS FOR BOTH DATA BOOKS 4 C/S
(1 FOR BXA) 3 PSE 3 CPLEE 3 SIDE NO. 1 | | THESE FORMATS WILL
BE OBTAINED EVERY
EVEN GMT HOUR FOR
BOTH DATA BOOKS
AND UPDATE DATA LOG | | 6 | COMPARE DATA WITH
PREVIOUS DAY | CHECK SETTINGS ON
DRUM RECORDERS.
ANNOTATE MULTIPEN. | | | | 7 | | FILL IN DATA LOG | | ALSO EVERY EVEN GMT
HOUR (SEE COMMENT
STEP 5) | | 8 | OBTAIN SUNRISE TIME | | | | | 9 | TURN DSS NO. 1 HEATER OFF AT START OF SUPPORT PERIOD. CMD 056 THEN CMD 057. | VERIFY 10 W INCREASE
IN RESERVE POWER | | | | 10 | LEVEL PSE AS
REQUIRED | OBTAIN PSE HSP
FORMATS FOR BOTH
DATA BOOKS BEFORE
AND AFTER LEVELING
SEQUENCE | | | | 11 | | GET FINAL HSP
FORMATS FOR DATA
BOOKS (SEE STEP 5) | | | | Step
No. | ASE | SYSTEMS | DATA | Comments | |-------------|---|---|------|----------| | 12 | NOTIFY NETWORK TO
TERMINATE REAL-TIME
SUPPORT AND OF PLAY-
BACK REQUIREMENTS | CALL DISPLAY TO TURN
DRUM RECORDERS AND
MULTIPEN OFF. TURN
OFF ANALOG RECORDERS
AND ANNOTATE. | | | | 13 | CALL GCC TO HOLD
ALSEP MESSAGES | ANNOTATE MULTIPEN | | | | 14 | WRITE DAILY REPORT
AND SMEARS AS
REQUIRED | FILL IN DATA LOG | | | | 15 | VERIFY ALL TASKS
COMPLETED | PLACE CONSOLE LOG IN CABINET AND LOCK | | | | 16 | RETURN DATA BOOK TO
OFFICE | | | | | | | | | | | Step
No. | ASE | SYSTEMS | DATA | Comments | |-------------|---|--|------|--| | 1 | | TURN DRUM RECORDER
GAINS TO INFINITY | · | | | 2 | | OBTAIN PSE HSP FORMAT
FOR EACH DATA BOOK.
VERIFY AUTO MODE. | | | | 3 | CMD THERMAL CONTROL
MODE TO "OFF" (CMD
076) | | | | | 4 | IF REQUIRED, CMD X
MOTOR ON (CMD 070) | ANNOTATE PSE ANALOG
RECORDER | | | | 5 | WHEN X TIDAL ON PSE
ANALOG RECORDER IS
50%, TURN X MOTOR
OFF (CMD 070) | | | | | 6 | IF REQUIRED, CMD Y
MOTOR ON (CMD 071) | ANNOTATE PSE ANALOG
RECORDER | | | | 7 | WHEN Y TIDAL ON PSE
ANALOG RECORDER IS
50%, TURN Y MOTOR
OFF (CMD 071) | | | Y MOTOR SOMETIME
STICKS, LEAVE MOTOR
ON FOR 5 MINUTES.
IF IT DOESN'T LEVEL
AFTER 5 MINUTES,
TURN MOTOR OFF THEN
ON FOR ANOTHER 5
MINUTES. REPEAT
UNTIL Y LEVELS. | | 8 | IF REQUIRED, CMD Z
MOTOR ON (CMD 072) | ANNOTATE PSE ANALOG
RECORDER | | | | 9 | WHEN Z TIDAL ON PSE
ANALOG RECORDER IS
50%, TURN Z MOTOR
OFF (CMD 072) | | · | | | 10 | CMD THERMAL CONTROL
MODE TO "AUTO ON"
(CMD 076 THREE TIMES) | | | | | 11 | | OBTAIN PSE HSP
FORMATS FOR EACH
DATA BOOK | | | | 12 | | TURN DRUM RECORDER
GAIN BACK TO -30 DB.
ANNOTATE MULTIPOINT
RECORDER. | | | | 13 | RECORD ACTIVITY IN
CONSOLE LOG AND
COMMAND LOG | | | | | Step
No. | ASE | SYSTEMS | DAȚA | Comments | |-------------|---|---|------|--| | 1 | | TURN DRUM RECORDER GAINS TO INFINITY | | | | 2 | | OBTAIN PSE HSP
FORMATS FOR EACH
DATA BOOK. VERIFY
SPEED LO AND AUTO
MODE. | | | | 3 | CMD THERMAL CONTROL
MODE TO "OFF" (CMD
076) | | | | | 4 | DETERMINE DIRECTION
TO DRIVE X AXIS AND
SEND CMD 074 IF
REQUIRED | VERIFY DIRECTION | | | | 5 | SEND CMD 103 (FORCED MODE) | VERIFY FORCED MODE | | | | 6 | ENABLE MAP OVERRIDE | | | | | 7 | GUESSTIMATE TIME X
MOTOR TO BE ON | VERIFY GUESSTIMATE | | BAND EDGE TO BAND
EDGE IS APPROX 4
SEC | | 8 | NOTIFY NETWORK OF
MAP OVERRIDE AND
DURATION OF X MOTOR
ON | | | | | 9 | SEND CMD 070 (X
MOTOR ON) | | | | | 10 | SEND CMD 070 (X
MOTOR OFF) AFTER
APPROPRIATE TIME
INTERVAL | | | | | 11 | INITIATE CMD 103
(AUTO MODE) IMMEDI-
ATELY AFTER CMD 070
(X MOTOR OFF) | ANNOTATE ANALOG
RECORDER | | | | 12 | | | | Y AXIS WILL BE
LEVELED IN AUTO MODE
ONLY | | 13 | DISABLE MAP OVERRIDE | VERIFY AUTO MODE | | | | 14 | | | | Z AXIS WILL BE
LEVELED IN AUTO MODE
ONLY BECAUSE OF LOW
DRIFT RATES | | Step
No. | ASE | SYSTEMS | DATA | Comments | |-------------|--|--|------|----------| | 15 | CMD THERMAL CONTROL
MODE TO "AUTO ON"
(CMD 076 THREE
TIMES) | | | | | 16 | | OBTAIN PSE HSP
FORMAT FOR EACH DATA
BOOK | | | | 17 | | RETURN DRUM RECORDER
GAINS TO -30 DB.
ANNOTATE MULTIPOINT
RECORDER. | | | | 18 | RECORD ACTIVITY IN
CONSOLE LOG AND
COMMAND LOG | · | ITIATE CMD 042
SE OPER SEL) | INITIATE C/S HSP. ASSURE THAT AS-1 IS ABOVE +35° C. ANNOTATE CMD ACTION | | | |---|---|--|---| | | ANNOTATE CMD ACTION | | | | | ON C/S ANALOG
RECORDER | | | | TIFY NETWORK TIME
INTENDED HBR CMD | VERIFY NOTHING UNUSUAL OR OF SPECIAL INTEREST IS GOING ON WITH THE OTHER EXPERI- MENTS | | ALLOW 15 MINUTES MINIMUM BETWEEN ASE OPER SEL AND HBR ON CMD TO ALLOW GEO- PHONE AMPS TO WARM UP | | BR ON) AFTER 15
N WARM-UP AND
W ACTIVITY ON | SELECT ASE FORMAT 5 ON RECORDER NO. 2 AND FORMAT 6 ON RECORDER NO. 3 AT HBR SYNC LOCK-UP. CONFIRM "ARM GRENADE" EVENT LIGHT EXTINGUISHED. | | RECORDER SPEED IS
10 MM/SEC | | | ANNOTATE CMD ACTION
OF RECORDER NO. 2 | | DO NOT SEND GEO CAL
IF AS-4 (GEO TEMP)
IS LESS THAN -20° C | | INTENDED NBR | | | HBR ON TIME WILL BE
APPROXIMATELY 30
MINUTES | | | ANNOTATE CMD ACTION
OF RECORDERS 2 AND
3 | | | | | VERIFY NBR LOCK-UP
AND ALL RECORDERS
AND DRUMS TO PRE-
HBR FORMATS | · | | | | ANNOTATE ACTION ON C/S ANALOG RECORDER | | | | WORK SCHEDULE | | | | | | | | | | | | | | | | INTENDED HBR CMD | INTENDED HBR CMD UNUSUAL OR OF SPECIAL INTEREST IS GOING ON WITH THE OTHER EXPERI- MENTS ITIATE CMD 003 BR ON) AFTER 15 N WARM-UP AND W ACTIVITY ON HER EXP ITIATE CMD 156 EO CAL GO) ITIATE CMD 156 EO CAL GO) ITIFY NETWORK TIME INTENDED NBR D ITIATE CMD 005 IBR OFF) ANNOTATE CMD ACTION OF RECORDER NO. 2 ANNOTATE CMD ACTION OF RECORDERS 2 AND 3 VERIFY NBR LOCK-UP AND ALL RECORDERS AND DRUMS TO PRE- HBR FORMATS ITIATE CMD 043 ISE STAY) ANNOTATE ACTION ON C/S ANALOG RECORDER ANNOTATE ACTION ON C/S ANALOG RECORDER | INTENDED HBR CMD UNUSUAL OR OF SPECIAL INTEREST IS GOING ON WITH THE OTHER EXPERI- MENTS ITIATE CMD 003 BR ON) AFTER 15 N WARM-UP AND W ACTIVITY ON HER EXP HER EXP ON RECORDER NO. 2 AND FORMAT 6 ON RECORDER NO. 3 AT HBR SYNC LOCK-UP. CONFIRM "ARM GRENADE" EVENT LIGHT EXTINGUISHED. ITIATE CMD 156 EO CAL GO) ANNOTATE CMD ACTION OF RECORDER NO. 2 TIFY NETWORK TIME INTENDED NBR ID ITIATE CMD 005 BR OFF) ANNOTATE CMD ACTION OF RECORDERS 2 AND 3 VERIFY NBR LOCK-UP AND ALL RECORDERS AND DRUMS TO PRE- HBR FORMATS ITIATE CMD 043 SE STAY) ANNOTATE ACTION ON C/S ANALOG RECORDER IECK TEST COMPLETE WORK SCHEDULE | SOP 4-6X ASE MORTAR MODE PREREQUISITES: 1. VERIFY COMMAND GROUP 4 ENABLED 2. VERIFY THAT ALL ANALOG RECORDERS HAVE NEW ROLL OF PAPER AND INK 3. AS-1, AS-2, AND AS-3 ABOVE -20°C | Step
No. | ASE | SYSTEMS | DATA | Comments | |-------------|--|--|---|--| | 1 | | INITIATE C/S HSP,
ASSURE THAT AS-2 AND
AS-3 ARE ABOVE -20°C | READ AS-2 AND AS-3
TEMPS | | | 2 | | CALCULATE THE NECES-
SARY TIME FOR WARMUP | ANNOTATE CMD ACTION
ANALOG RECORDER | | | 3 | | SELECT ASE FORMAT ON
THE ANALOG RECORDERS | ANNOTATE FORMAT
CHANGE ON ANALOG
RECORDER | RECORDER 2 - FORMAT 5
RECORDER 3 - FORMAT 6 | | 4 | AFTER WARMUP TIME,
INITIATE CMD 003
(HBR 0N) | WATCH FOR REMOTE
SITE LOCK UP ON HBR
SIGNAL AND MARK TIME | ANNOTATE CMD ON ALL
ANALOG AND DRUM
RECORDERS | DBTAIN HSP EVERY 2 MIN
DURING PASSIVE LISTEN-
ING MODE | | 5 | INITIATE CMD 156
(GEO CAL GO) | SELECT SPEED ON
ANALOG RECORDERS | ANNOTATE CMD ACTION
ON ASE ANALOG
RECORDER | | | 6 | INITIATE
CMD 170
(GRENADES ARM) | ASSURE THAT AT LEAST
A 60 SEC INTERVAL
EXISTS BETWEEN ARM
AND FIRE COMMANDS | ANNOTATE CMD ACTION
ON ASE ANALOG
RECORDER | | | 7 | | GIVE "GO" FOR GRENADE
FIRE | GIVE "GO" FOR GRENADE
FIRE | | | 8 | INITIATE CMD 164
(GRENADE #2) | | ANNOTATE CMD ACTION
ON ASE ANALOG
RECORDER | | | 9 | | GIVE "GO" FOR GRENADE
FIRE | GIVE "GO" FOR GRENADE
FIRE | | | 10 | INITIATE CMD 170
(GRENADES ARM) | ASSURE THAT AT LEAST
A 60 SEC INTERVAL
EXISTS BETWEEN ARM
AND FIRE COMMANDS | ANNOTATE CMD ACTION
ON ASE ANALOG
RECORDER | | | 11 | INITIATE CMD 166
(GRENADE #4) | | ANNOTATE CMD ACTION
ON ASE ANALOG
RECORDER | | | 12 | | GIVE "GO" FOR GRENADE
FIRE | GIVE "GO" FOR GRENADE
FIRE | | | 13 | INITIATE CMD 170
(GRENADES ARM) | ASSURE THAT AT LEAST
A 60 SEC INTERVAL
EXISTS BETWEEN ARM
AND FIRE COMMANDS | ANNOTATE CMD ACTION
ON ASE ANALOG
RECORDER | | | | | | | | | L | | | <u> </u> | <u> </u> | | Step
No. | ASE | SYSTEMS | DATA | Comments | |-------------|---|--|---|----------| | 14 | INITIATE CMD 165
(GRENADE #3) | | ANNOTATE CMD ACTION
ON ASE ANALOG
RECORDER | | | 15 | | GIVE "GO" FOR GRENADE
FIRE | GIVE "GO" FOR GRENADE
FIRE | | | 16 | (GRENADES ARM) | ASSURE THAT AT LEAST
A 60 SEC INTERVAL
EXISTS BETWEEN ARM
AND FIRE COMMANDS | ANNOTATE CMD ACTION
ON ASE ANALOG
RECORDER | | | 17 | INITIATE CMD 163
(GRENADE #1) | | ANNOTATE CMD ACTION
ON ASE ANALOG
RECORDER | | | 18 | AFTER SUFFICIENT DATA
HAS BEEN GATHERED,
NOTIFY NTWK OF TIME
TO RETURN TO NORMAL
BIT RATE AND GET GO
FROM NTWK | | | | | 19 | (HBR OFF) | RESELECT ANALOG FOR-
MATS, AND WATCH FOR
REMOTE SITE LOCK UP
ON THE NORMAL BIT
RATE DATA | ANNOTATE CMD ACTION
ON ALL ANALOG
RECORDERS | | | 20 | INITIATE CMD 043
(EXP #2 STBY SEL) | | ANNOTATE CMD ACTION
ON C/S ANALOG
RECORDER | | | 21 | CHECK TASK COMPLETE
ON WORK SCHEDULE AND
LOG ANOMALIES | Step
No. | ASE | SYSTEMS | DATA | Comments | |-------------|---|--------------------|--------------------|---| | 1 | CMD 111 (CPE OPR HTR
ON) TO TURN THERMAL
CONTROL MODE TO MANUAL
ON | | | | | 2 | CMD 112 (CPE OPR HTR
OFF) TO TURN THERMAL
CONTROL MODE TO MAN-
UAL OFF | | | | | 3 | TO TURN THERMAL CON-
TROL MODE TO AUTO CMD | VERIFY 4 W RES PWR | | NOTE 1: THIS LEAVES
THE EXPERI-
MENT IN
STANBY | | 4 | INITIATE CMD 052 (EXP
4 OPER SEL) TO TURN
EXPERIMENT TO OPERATE
(NOTE 2) | VERIFY 5 W RES PWR | | NOTE 2: WHEN THE CPLEE
GOES TO OPER-
ATE THE THER-
MAL CONTROL
INITIALITES
IN THE AUTO
MODE | | 5 | | INITIATE CPLEE HSP | CHECK CPLEE STATUS | | | 6 | RECORD ACTION AND
ANOMALIES IN CONSOLE
LOG | | | | | | | | | | NASA - MSC | Step
No. | ASE | SYSTEMS | DATA | Comments | |-------------|---|------------------------------|---|--| | 1 | INITIATE CMD 117
(CPE DEF SEQ OFF)
TO STOP AUTOMATIC
SEQUENCE | INITIATE CPLEE HSP
FORMAT | OBTAIN CPLEE HSP
FORMAT AND DETERMINE
WHERE THE SEQUENCE
STOPPED (USE CPLEE
HSP FORMAT 2) | | | 2 | INITIATE CMD 115
(CPE DEF STEP) TO
ADVANCE THE VOLTAGE
ONE STEP (NOTE 1) | VERIFY ADVANCE OF
VOLTAGE | | NOTE 1: REPEAT THE STEP AS MANY TIMES AS IS NECESSARY TO REACH THE DESIRED DEFLECTION VOLTAGES | | 3 | INITIATE CMD 114
(CPE DEF SEQ ON) TO
AUTOMATIC SEQUENCE | INITIATE CPLEE HSP
FORMAT | OBTAIN CPLEE HSP
FORMAT AND DETERMINE
CPLEE STATUS | | | 4 | RECORD ACTION AND
ANOMALIES IN CONSOLE
LOG | NASA -- MSC | Step
No. | ASE | SYSTEMS | DATA | Con | ments | |-------------|--|--|---|---------|--| | 1 | ALSEP BRIEFING ON
WORK SCHEDULE IN SSR | | | | | | 2 | CHECK COMM LOOPS | CHECK COMM LOOPS | CHECK COMM LOOPS . | | | | 3 | VERIFY WITH NETWORK
CONTROLLER R/S CMD
AND TM PROGRAMS
LOADED AND READY FOR
R/T SUPPORT | VERIFY WITH ALCS
OPERATOR CAPABILITY
OF R/T SUPPORT | | | | | 4 | VERIFY WITH NETWORK
CONTROLLER THAT ALL
CRITICAL CMD GROUPS
ARE DISABLED | INITIATE HSP LIMIT
SENSE TABLE FORMAT | OBTAIN HSP LIMITS TABLE PRINTOUT AND COMPARE WITH PRE- DEFINED LIMITS TABLE | | | | 5 | REQUEST RTC INVENTORY
FROM ALSEP NETWORK
CONTROLLER | IF NECESSARY, UPDATE
THE LIMITS | OBTAIN RTC INVENTORY
FROM TTY PRINTER AND
VERIFY ALL CRITICAL
CMD DISABLED | | | | 6 | | | COORDINATE DISPLAY EQUIPMENT CALIBRATION WITH ALCS OPERATOR AND DISPLAY PERSONNEL 1. CAL DRUM RECORDER 2. CAL ANALOG METERS 3. CAL ANALOG RECORDER | | | | 7 | | | START DRUM AND ANALOG
RECORDERS AS DEFINED
IN WORK SCHEDULE | | | | 8 | | CONTACT ALCS OPERATOR
TO CONFIGURE DRUM
RECORDERS AS DEFINED
IN WORK SCHEDULE | · | | | | 9 | CHECK STATUS OF RE-
MOTE ANALOG RECORDERS
AND TV | CONFIGURE ANALOG
CHART RECORDERS AS
DEFINED IN WORK
SCHEDULE | THE ANALOG RECORDER EVENT INDICATOR SELECT SWITCHES SHOULD BE SET AS DEFINED IN WORK SCHEDULE | | | | 10 | | INITIATE HSP DISPLAY
GUIDE FORMAT | | | | | 11 | VERIFY ON CMD PANEL 1. FC MODE (NOTE 1) 2. CMD PANEL DISABLE 3. ALL ZEROS SELECTED IN THE CMD REQUEST WINDOW 4. ALSEP SELECT CLEAR | | OBTAIN HSP DISPLAY
GUIDE AND VERIFY
EQUIPMENT CONFIGURED
AS PER WORK SCHEDULE | NOTE 1: | IF IN M&O MODE RE- QUEST NETWORK OPERATOR TO GO TO FC MODE | | Step
No. | ASE | SYSTEMS | DATA | Comments | |-------------|---|---|--|----------| | 1 | REQUEST ALSEP NET-
WORK OPERATOR TO
SITE SELECT THE
CONSOLE | | · | | | 2 | LOG: 1. TIME OF RTG FUEL INSERTION. 2. TIME OF RTG PLUGIN. 3. AMP METER READING. 4. SIDE LEVEL AND ORIENTATION COMMENT. 5. LSM ORIENTATION. 6. PSE GNOMON READING. 7. PSE ORIENTATION COMMENT. 8. SWS ORIENTATION. 9. TIME OF RTG SHORT REMOVAL. 10. HFE ORIENTATION. | VERIFY ON EVENT INDICATOR. | | | | 3 | LOG CLOSURE OF SWITCH
NO. 1 | CHECK STATUS OF C/S
AND VERIFY RESERVE
POWER EQUAL TO OR
GREATER THAN 38 W | OBTAIN C/S HSP FORMAT AND VERIFY THE FOLLOWING: CS-2 RES PWR EQUAL TO OR GREATER THAN 38 W. AE-9 +12 VDC AE-7 +29 VDC AE-7 +29 VDC AE-10 +5 VDC AE-10 +5 VDC AE-11 -12 VDC AE-12 -6 VDC AE-12 -6 VDC AE-1 0.25 CAL AE-2 4.75 CAL | | | Step
No. | ASE | SYSTEMS | DATA | Comments | |-------------|---|--|--|----------| | 7 | REQUEST ALSEP NETWORK
OPERATOR TO SITE SE-
LECT CONSOLE | | | | | 2 | | CHECK FOR RES PWR ON
C/S ANALOG RECORDER
INITIATE C/S HSP | OBTAIN C/S HSP FOR- MAT AND CHECK THE FOLLOWING: CS-2 RES PWR EQUAL TO OR GREATER THAN 7.0 W AE-9 BUS VOLT +12 VDC AE-7 BUS VOLT +29 VDC AE-8 BUS VOLT +15 VDC AE-10 BUS VOLT +5 VDC AE-11 BUS VOLT -12 VDC AE-12 BUS VOLT -6 VDC AE-12 BUS VOLT -6 AE-1 DSS ADC 0.25 V AE-2 DSS ADC 4.75 V | | | 3 | | GIVE GO/NO-GO FOR PSE
TURN-ON | GIVE GO/NO-GO FOR
PSE TURN-ON | | | 4 | | INITIATE PSE HSP FOR-
MAT | ANNOTATE CMD ACTION
ON PSE & C/S ANALOG
RECORDER | | | 5 | rm 101 (April 70) | VERIFY EXP 1 STBY STATUS EVENT INDICA- TOR IS EXTINGUISHED CHECK RES PWR ON C/S ANALOG RECORDER FOR A DECREASE OF APPROX 5 W | OBTAIN PSE HSP FORMAT AND READ STATUS OF THE FOLLOWING: AL-1 -30 DB AL-2 -30 DB AL-3 POS AL-3 LO AL-4 -30 DB AL-5 AUTO AL-5 COARSE LVL OUT AL-6 AUTO ON AL-7 BOTH OFF AL-8 CAGED AT-5 -20 DEG F TO +40 DEG F CS-2 RESERVE PWR DL-7 SNSR TEMP | | | Step
No. | ASE | SYSTEMS | DATA | Comments | |-------------|---|--
--|--| | 6 | | NOTIFY ASE THAT PSE
IS OPERATING AND IS
READY FOR UNCAGING | · | | | 7 | UNCAGE ARM/FIRE) TO | ASSURE THAT THE UNCAGE
ARM IS ALLOWED 30
SECONDS TO CHARGE UP,
PRIOR TO FIRING CMD | ANNOTATE CMD ACTION
ON PSE ANALOG
RECORDER | | | 8 | INITIATE CMD 073 (PSE
UNCAGE ARM/FIRE) TO
FIRE THE PSE UNCAGING
MECHANISM | INITIATE PSE HSP FOR-
MAT | ANNOTATE CMD ACTION
ON PSE ANALOG
RECORDER | | | 9 | | ON LATEST C/S HSP FOR-
MAT CHECK THE FOLLOW-
ING C/S PARAMETERS:
CAL VOLTAGES CHECK
AE-01 0.25 CAL
AE-02 4.75 CAL
RTG OUTPUT CHECK
AE-03 VDC
AE-04 AMPS
CS-01 WATTS | OBTAIN PSE HSP FORMAT
AND READ AL-8
INDICATIONS | | | 10 | IF NECESSARY, INI-
TIATE CMD 067 (SP Z
GAIN CHANGE) TO
OBTAIN DESIRED GAIN | PCU VDC OUTPUT CHECK AE-09 +12 VDC AE-07 +29 VDC AE-08 +15 VDC AE-10 +5 VDC AE-11 -12 VDC AE-12 -6 VDC | ANNOTATE CMD ACTION
ON PSE ANALOG | | | 11 | MONITOR PSE ANALOG
RECORDER FOR GAIN
CHANGE ON SP Z CHAN-
NEL | INTERNAL TEMPS CHECK AT-03 TEMP 1 F AT-04 TEMP 2 F AT-05 TEMP 3 F AT-06 TEMP 4 F AT-07 TEMP 5 F AT-12 INSUL F | MONITOR PSE ANALOG
RECORDER FOR GAIN
CHANGE ON SP Z
CHANNEL | | | 12 | SPEED UP RECORDER TO
50 MM/SEC FOR SP CAL | PCU 1 CHECK (NOTE 1) CS-2 RES PWR 1 CS-3 INT REG DISSIP AE-05 SHUNT 1 AMPS AT-36 OSC TEMP F AT-38 REG TEMP F | | NOTE 1: PCU 2 CHECK
CS-04 RES PWR 2
CS-05 INT REG DISSIP
AE-06 SHUNT 2 AMPS
AT-37 OSC TEMP F
AT-39 REG TEMP F | | 13 | INITIATE CMD 065 (SP
CAL) TO TURN CAL
PULSE ON | DISCRETES CHECK AB-04 EXP 1 STBY STA AB-05 DSS HTR 2 | ANNOTATE CMD ACTION
ON PSE ANALOG
RECORDER | | | Step
No. | ASE | SYSTEMS | DATA | Comments | |-------------|--|---|--|--| | 14 | MONITOR PSE ANALOG
RECORDER FOR INDICA-
TION OF CAL PULSE | AT-02 PNL RIGHT 2 F | RECORDER FOR INDI-
CATION OF CAL PULSE. | | | 15 | INITIATE CMD 065 (SP
CAL) TO TURN CAL
PULSE OFF | | ANNOTATE CMD ACTION
ON PSE ANALOG
RECORDER | | | 16 | MONITOR PSE ANALOG RE-
CORDER FOR INDICATION
OF CAL PULSE IN OP-
POSITE DIRECTION FROM
FIRST | PDU CHECK AT-34 BASE F AT-35 INT F | MONITOR PSE ANALOG
RECORDER FOR INDI-
CATION OF CAL PULSE
IN OPPOSITE DIRECTION
FROM FIRST | | | 17 | RETURN ANALOG RECORDER
TO 0.5 MM/SEC | RECEIVER CHECK AB-01 RCVR 1 KHZ PCM AE-13 PRE/LIM DEM AE-14 L/O LVL DEM AT-21 XTAL A F AT-22 XTAL B F AT-07 TEMP 5 F | READ SP CAL STATUS
FROM PSE HSP | | | 18 | | DECODER CHECK AT-31 BASE F AT-32 INT F AT-33 VCO F | | | | 19 | | ANALOG MUX CHECK
AT-27 BASE F
AT-28 INT F | | | | 20 | | DIGITAL PROCESSOR
CHECK
AT-29 BASE F
AT-30 INT F | | | | 21 | | XMTR A CHECK (NOTE 2) AT-23 XTAL F AT-24 HT/S F AE-15 AGC VDC AE-17 DOUBLER MA | | NOTE 2: XMTR B CHEC
AT-25 XTAL F
AT-26 HT/S F
AE-16 AGC VDC
AE-18 DOUBLER MA | NASA --- MSC | Step
No. | ASE | | | SYSTEMS | DATA | Comments | |-------------|------------------|--|---------------------|---|---|--| | 1 | 1 | | | INITIATE PSE HSP FOR-
MAT | READ PSE STATUS | | | 2 | TURN T | TE CMD O
HERMAL C
TO AUTO | NTL | INITIATE PSE HSP FOR-
MAT | OBTAIN PSE HSP FORMAT
AND GIVE COPY TO ASE | | | 3 | FOLLOW: | TION REQ | ETERMINE
UIRED | MONITOR X, Y, & Z
TIDAL DATA OF PSE
ANALOG RECORDER | VERIFY SPEED OF PSE
ANALOG RECORDER AT
O.5 MM/SEC OR
GREATER | NOTE 1: THERE ARE NO STATUS PAPAM ETERS FOR TH PSE FILTER O THE THREE AXIS LEVELIN MOTORS. AT PSE TURN ON- | | | SYMBOL | NAME | STATUS
REQ FOR | | | , 52 , 51,00 | | | AL-1 | X&Y
GAIN | AS REQU | | | PSE FILTER INITIALIZE
TO OUT | | | AL-2 | Z GAIN | AS REQD | | | LVL X MTR INITIALIZES | | | AL-3 | LVL
DIR | N/A | | | LVL Y MTR INITIALIZES | | | AL-3 | LVL
SPEED | N/A | | | LVL Z MTR INITIALIZES
TO OFF | | | AL-4 | SP
GAIN | AS REQD | | | | | | AL-5 | LVL
MDE | AUT0 | | | | | | AL-5 | LVL
SNSR | IN | | | | | | AL-6 | T CTL | AUTO
OFF | | | | | | AL-7 | LP/SP
CAL | BOTH
OFF | | | | | | AL-8 | UNCAGE | UNCAGED | | | | | 4 | CMD 06
TO OBT | ESSARY I
7 (SP GA
AIN GAIN
FOR LEVE | IN CH)
 DESIRED | | ANNOTATE CMD ACTION
ON PSE ANALOG
RECORDER | | | 5 | CMD 10
TO PLA | ESSARY I
3 (LVL M
CE PSE I
VL MDE | IDE A/F) | | ANNOTATE CMD ACTION
ON PSE ANALOG
RECORDER | | | 6 | | TE CMD 1
N/OUT) T
ISR IN | | | ANNOTATE CMD ACTION
ON PSE ANALOG RECORDER
VERIFY ON HSP | | | Step | 1 | SVCTENS | | | |------|--|---|---|---| | No. | ASE | SYSTEMS | DATA | Comments | | 7 | | INITIATE PSE HSP
FORMAT | OBTAIN PSE HSP FORMAT
AND GIVE COPY TO ASE | | | 8 | VERIFY STATUS OF THE FOLLOWING: SYMBOL NAME STATUS AL-1 XY GAIN AS REQD AL-2 Z GAIN AS REQD AL-3 LVL DIR N/A SPEED AL-4 SP AS REQD GAIN AL-5 LVL MDE AUTO AL-5 LVL IN SNSR AL-6 T CTL AUTO STA OFF AL-7 LP/SP BOTH CAL OFF AL-8 UNCAGED STA | | TURN DRUM RECORDER
ATTENTUATION TO
INFINITY | | | 9 | INITIATE CMD 070 (LVL
MTR X ON/OFF) TO TURN
X LVL MTR ON | | ANNOTATE CMD ACTION
ON PSE ANALOG
RECORDER | | | 10 | | VERIFY ON C/S ANALOG
RECORDER AND ON THE
HSP A DECREASE IN
RES PWR OF APPROX
3 W. LOG CHANGE. | · | NOTE 2: NOTE THAT COARSE SENSOR HAS AUTOMAT- ICALLY CUT OUT BY NOTING CHANGE OF MOTOR DRIVE RATE FROM APPROX 40 PPS TO APPROX 1 PPS | | | | | | | | Step
No. | AS | E | SYSTEMS | DATA | Comments | |-------------|---|-------------------------|------------------------------|---|---| | 1 | | | INITIATE PSE HSP FOR-
MAT | READ PSE STATUS | _ | | 2 | INITIATE CMI
TURN THERMAL
STATUS TO AL | . CNTL | INITIATE PSE HSP FOR-
MAT | OBTAIN PSE HSP FORMAT
AND GIVE COPY TO ASE | | | 3 | FOLLOWING TO DETERMINE | | ANALOG RECORDER | VERIFY SPEED OF PSE
ANALOG RECORDER AT
O.5 MM/SEC OR
GREATER | NOTE 1: THERE ARE NO
STATUS PAPAM-
ETERS FOR THE
PSE FILTER OR
THE THREE
AXIS LEVELING
MOTORS. AT
PSE TURN ON- | | | AL-1 X&Y
GAIN
AL-2 Z GA | AS REQD
IN AS REQD | | | PSE FILTER INITIALIZES
TO OUT
LVL X MTR INITIALIZES | | | AL-3 LVL | N/A | | | TO OFF LVL Y MTR INITIALIZES | | | AL-3 LVL
SPEEL | N/A | | | TO OFF LVL Z MTR INITIALIZES TO OFF | | | AL-4 SP
GAIN | AS REQD | | | | | | AL-5 LVL
MDE | AUTO | | | | | | AL-5 LVL
SNSR | IN | | | | | | AL-6 T CTI
AL-7 LP/SI | 0FF | | | | | | CAL CAL AL-8 UNCA | OFF | | | | | 4 | IF NECESSAR
CMD 067 (SP
TO OBTAIN G
BY PI FOR LI | GAIN CH)
AIN DESIRED | | ANNOTATE CMD ACTION
ON PSE ANALOG
RECORDER | | | 5 | IF NECESSARY INITIATE
CMD 103 (LVL MDE A/F)
TO PLACE PSE IN THE
AUTO LVL MDE | | | ANNOTATE CMD ACTION
ON PSE ANALOG
RECORDER | | | 6 | INITIATE CM
SNSR IN/OUT
LVL SNSR IN |) TO PUT | | ANNOTATE CMD ACTION
ON PSE ANALOG RECORDER
VERIFY ON HSP | | | | | | | | | | Step
No. | ASE | SYSTEMS | DATA | Comments | |-------------|---|---|---|---| | 7 | | INITIATE PSE HSP
FORMAT | OBTAIN PSE HSP FORMAT
AND GIVE COPY TO ASE | | | 8 | VERIFY STATUS OF THE FOLLOWING: SYMBOL NAME STATUS AL-1 XY GAIN AS REQD AL-2 Z GAIN AS REQD AL-3 LVL DIR N/A SPEED AL-4 SP AS REQD GAIN AL-5 LVL MDE AUTO AL-5 LVL IN SNSR AL-6 T CTL AUTO STA OFF AL-7 LP/SP BOTH CAL OFF AL-8 UNCAGE UNCAGED STA | VERIFY RESERVE POWER
FROM C/S ANALOG
RECORDER GREATER
THAN 5.0 W | TURN DRUM RECORDER
ATTENTUATION TO
INFINITY | | | 9 | INITIATE CMD 070 (LVL
MTR X ON/OFF) TO TURN
X LVL MTR ON | | ANNOTATE CMD ACTION
ON PSE ANALOG
RECORDER | | | 10 | VERIFY THAT X MOTOR IS DRIVING VIA COARSE SENSOR BY NOTING HIGH PULSE RATE ON SP Z CHANNEL APPROX 40 PPS (NOTE 2) | VERIFY ON C/S ANALOG
RECORDER AND ON THE
HSP A DECREASE IN
RES PWR OF APPROX
3 W. LOG CHANGE. | · | NOTE 2: NOTE THAT COARSE SENSOR HAS AUTOMAT- ICALLY CUT OUT BY NOTING CHANGE OF MOTOR DRIVE RATE
FROM APPROX 40 PPS TO APPROX 1 PPS | | | | | | | | Step
No. | ASE | SYSTEMS | DATA | Co | omments | |-------------|--|---|--|---------|--| | 11 | MONITOR X AXIS TIDAL DATA ON PSE ANALOG RECORDER. IF X TIDAL DATA DOESN'T REACH APPROX +/- 12 URAD WITHIN 7.5 MIN INITIATE CMD 102 (LVL SNSR IN/OUT) TO COMMAND COARSE SENSOR OUT. WHEN X TIDAL DATA INDICATES WITHIN APPROX +/- 12 URAD, OR WHEN THE MOTOR HAS DRIVEN FOR 35 MIN, INITIATE CMD 070 (LVL MTR X ON/OFF) TO TURN X MTR OFF. (NOTES 3 AND 4). | | ANNOTATE ALL CMD
ACTION ON PSE
ANALOG RECORDER | | TIME REQD TO COARSE LEVEL X AXIS IS APPROX 20-25 MINUTES. DO NOT RUN X MOTOR ANY LONGER THAN NECESSARY. TIDAL DATA IS TEMPERATURE SENSITIVE. IF THE X MOTOR IS COMMANDED OFF WITHOUT BEING LEVELING THI OTHER AXES AND REFER TO MISSION RULIFOR ACTION BE TAKEN ON X AXIS. | | 12 | IF NECESSARY, INITI-
ATE CMD 102 (LVL SNSR
IN/OUT) TO PUT LEVEL
SENSOR IN | INITIATE PSE HSP | ANNOTATE CMD ACTION
ON PSE ANALOG
RECORDER AND READ
SENSOR STATUS FROM
PSE HSP | | | | 13 | INITIATE CMD 071 (LVL
MTR Y ON/OFF) TO TURN
Y MTR ON | | ANNOTATE CMD ACTION
ON PSE ANALOG
RECORDER | | | | 14 | VERIFY THAT Y MOTOR IS DRIVING VIA COARSE SENSOR BY MONITORING HIGH PULSE RATE ON SP Z CHANNEL (NOTE 5) | VERIFY C/S ANALOG
RECORDER AND THE HSP
THAT THE RES PWR
DECREASE APPROX 3 W.
LOG CHANGE IN RES
POWER | | NOTE 5: | NOTE THAT COARSE SEN- SOR HAS AUTOMATIC- ALLY CUT OU BY NOTING CHANGE OF MOTOR RATE FROM APPROX 40 PPS TO APPROX 1 PP | | Step
No. | ASE | SYSTEMS | DATA | C | omments | |-------------|---|--|---|---------|--| | 15 | MONITOR Y AXIS TIDAL DATA ON PSE ANALOG RECORDER. IF THE Y TIDAL DATA DOES NOT REACH APPROX +/- 12 URAD WITHIN 7.5 MIN, INITIATE CMD 102 (LVL SENSOR IN/OUT) TO COMMAND COURSE SENSOR OUT. WHEN Y TIDAL DATA INDICATES +/- 12 URAD, OR WHEN THE MOTOR HAS DRIVEN FOR 35 MIN, INITIATE CMD 071 (LVL MTR ON/OFF) TO TURN Y MTR OFF. (NOTE 6 AND 7). | VERIFY ON C/S ANALOG
RECORDER AND THE HSP
THAT THE RES PWR
INCREASES APPROX 3 W | ANNOTATE ALL CMD
ACTIONS ON PSE
ANALOG RECORDER | NOTE 7: | TIME REQD TO COARSE LEVEL Y AXIS IS APPROX 20-25 MINUTES. DO NOT RUN Y MOTOR ANY LONGER THAN NECESSARY. TIDAL DATA IS TEMPERATURE SENSITIVE. IF THE Y MTR IS COMMANDED OFF WITHOUT BEING LEVELED COMPLETE LEVELING OF OTHER AXES AND REFER TO MISSION RULES FOR ACTION TO BE TAKEN ON Y AXIS. | | 16 | INITIATE CMD 102 (LVL
SENSOR IN/OUT) TO PUT
LVL SENSOR OUT | | ANNOTATE CMD ACTION
ON PSE ANALOG
RECORDER | | | | 17 | MONITOR X AND Y TIDAL DATA ON PSE ANALOG RECORDER. IF NO ADDITIONAL LEVELING IS REQUIRED, GO TO STEP 24. | | VERIFY ON PSE HSP
FORMAT THAT THE
LVL SENSOR IS OUT | | | | 18 | IF NECESSARY INITIATE
CMD 070 (LVL MTR X
ON/OFF) TO TURN X LVL
MTR ON | | ANNOTATE CMD ACTION OF
PSE ANALOG RECORDER | | | | 19 | VERIFY ON PSE ANALOG
RECORDER SP Z CHANNEL
THAT X LEVELING MOTOR
IS DRIVING AT LOW
RATE (APPROX 1 PPS)
CAUSED BY X TIDAL
SIGNAL DRIVE | RECORDER AND THE HSP | | NOTE 8: | IF THE CMDS FOR ON AND OFF ARE CLOSE, THE C/S ANALOG MAY NOT CATCH THE CHANGE IN RES PWR | | | om 101 (April 70) | | | | | | Step
No. | ASE | SYSTEMS | DATA | Comments | |-------------|--|----------------------------|---|--| | 20 | | | ANNOTATE CMD ACTION
ON PSE ANALOG
RECORDER | | | 21 | IF NECESSARY, INITIATO
CMD 071 (LVL MTR Y
ON/OFF) TO TURN Y MTR
ON | | ANNOTATE CMD ACTION
TO PSE ANALOG
RECORDER | | | 22 | VERIFY ON PSE ANALOG
RECORDER SP Z CHANNEL
THAT Y LEVELING MOTOR
IS DRIVING AT LOW
RATE (APPROX 1 PPS)
CAUSED BY Y TIDAL
SIGNAL DRIVE | | | NOTE 9: IF THE CMDS FOR ON AND OFF ARE CLOSE, THE C/S ANALOG MAY NOT CATCH THE CHANGE IN RES PWR | | 23 | MONITOR Y AXIS TIDAL DATA ON PSE ANALOG RECORDER. WHEN Y TIDAL DATA INDICATES LESS THAN +/- 5 MURAD INITIATE CMD 071 (LVL MTR Y ON/OFF) TO TURN Y MTR OFF. | 1 | ANNOTATE CMD ACTION
ON PSE ANALOG
RECORDER | | | 24 | INITIATE CMD 103 (LVL
MDE A/F) TO PLACE THE
PSE IN THE FORCE LVL
MDE | | ANNOTATE CMD ACTION
ON PSE ANALOG
RECORDER | | | 25 | | | VERIFY ON PSE HSP
FORMAT THE STATUS OF
THE LVL SPEED AND LVL
DIR | | | 26 | IF NECESSARY, INITIAT
CMD 075 (LVL SPEED
HI/LO) TO PLACE PSE
IN HI LVL SPEED | | ANNOTATE CMD ACTION
ON PSE ANALOG
RECORDER | | | 27 | INITIATE CMD 074 (LVL
DIR POS/NEG) TO POS | INITIATE PSE HSP
FORMAT | ANNOTATE CMD ACTION
ON PSE ANALOG
RECORDER | | | 28 | | | OBTAIN PSE HSP FOR-
MAT AND GIVE COPY TO
ASE | | | Step
No. | ASE | SYSTEMS | DATA | Comments | |-------------|---|--|--|----------| | 29 | VERIFY THE FOLLOWING STATUS- SYMBOL NAME STATUS AL-1 X&Y AS REQD GAIN AL-2 Z AS REQD GAIN AL-3 LVL POS DIR AL-3 LVL HI SPEED AL-4 SP AS REQD GAIN AL-5 LVL FORCED MDE AL-5 LVL OUT SNSR AL-6 T CTL AUTO OFF AL-7 LP/SP BOTH OFF CAL AL-8 UNCAGE UNCAGED | | | | | 30 | INITIATE CMD 072 (LVL
MTR Z ON/OFF) TO TURN
Z MTR ON | | ANNOTATE CMD ACTION
ON PSE ANALOG
RECORDER | | | 31 | VERIFY Z MTR HI SPEED
OPERATION BY NOTING
HIGH PULSE RATE ON SP
Z CHANNEL | VERIFY ON C/S ANALOG
RECORDER AND HSP A
DECREASE IN RES PWR
OF APPROX 3 W | | | | 32 | MONITOR Z AXIS TIDAL DATA ON PSE ANALOG RECORDER. WHEN Z TIDAL DATA GOES THRU ZERO, INITIATE CMD 103 (LVL MDE A/F) TO PLACE PSE IN AUTO LVL MODE | | ANNOTATE CMD ACTION
ON PSE ANALOG
RECORDER | | | 33 | MONITOR Z AXIS TIDAL DATA ON PSE ANALOG RECORDER. WHEN Z TIDAL DATA INDICATES +/- 1 MGAL, INITIATE CMD 072 (LVL MTR Z ON/OFF) TO TURN Z MTR OFF | VERIFY ON C/S ANALOG
RECORDER THAT THE RES
PWR INCREASES APPROX
3 W | ANNOTATE CMD ACTION
ON PSE ANALOG
RECORDER | | | 34 | INITIATE CMD 101 (PSE
FILTER IN/OUT) TO PUT
THE PSE FILTER IN | | ANNOTATE CMD ACTION
DN PSE ANALOG
RECORDER | | | Step | 105 | 0.40===== | T | | |------|--|---|--|----------| | No. | ASE | SYSTEMS | DATA | Comments | | 35 | MONITOR CHANGE IN LP
DATA ON PSE ANALOG
RECORDER TO VERIFY THE
PSE FILTER IS IN | INITIATE PSE HSP
FORMAT | READ RES PWR. RE-
TURN DRUM RECORDER
ATTENUATION TO NORMAL
SETTINGS | | | 36 | INITIATE CMD 076 THREE TIMES (PSE TCTL CH) TO RETURN TO THERMAL CONTROL MODE AUTO ON | INITIATE PSE HSP
FORMAT AFTER EACH
076 STEP | ANNOTATE CMD ACTION
ON PSE ANALOG RE-
CORDER. READ RES
PWR AFTER EACH 076
STEP | | | 37 | INITIATE CMD 075 (LVL
SPEED HI/LO) TO TURN
THE LVL SPEED TO LO | | ANNOTATE CMD ACTION
ON PSE ANALOG
RECORDER | | | 38 | | INITIATE HSP FORMAT | OBTAIN PSE HSP FORMAT AND VERIFY STATUS OF THE FOLLOWING- SYMBOL NAME STATUS AL-1 X&Y AS REQD GAIN AL-2 Z AS REQD GAIN AL-3 LVL AS REQD DIR AL-3 LVL LO SPEED AL-4 SP AS REQD GAIN AL-5 LVL AUTO MUE AL-5 LVL OUT SNSR AL-6 T CTL AUTO ON AL-7 LP/SP BOTH OFF CAL AL-8 UN- CAGE CAGED | | | 39 | CHECK TASK COMPLETE
ON WORK SCHEDULE AND
LOG ANY ANOMALIES IN
CONSOLE LOG BOOK | | | | | Step
No. | ASE | SYSTEMS | DATA | Comments | |-------------
---|---|--|---| | 1 | INITIATE 076 THERMAL
CNTL AUTO OFF | INITIATE PSE HSP FOR-
MAT | OBTAIN PSE HSP
FORMAT AND GIVE
COPY TO ASE | | | 2 | NOTE STATUS OF THE FOLLOWING TO DETER- NINE CMD ACTION RE- QUIRED (NOTE 1) STATUS REQ FOR SYMBOL NAME RELVL AL-1 X&Y AS REQUE GAIN AL-2 Z AS REQUE GAIN AL-3 LVL N/A DIR AL-3 LVL LO SPEED AL-4 SP AS REQUE GAIN AL-5 LVL AUTO MDE AL-5 LVL OUT SNSR AL-6 T CTL AUTO OFF AL-7 LP/SP BOTH CAL OFF AL-8 UN- CAGE CAGED | | VERIFY SPEED OF PSE ANALOG RECORDER AT 0.5 MM/SEC OR GREATER | NOTE 1: THERE ARE NO STATUS PA- RAMETERS FOR THE PSE FIL- TER OR THE THREE AXIS LFVFLING MO- TORS. AT PSE TURN ON- PSE FILTER INITIALIZES TO OUT LVL X MTR INITIALIZES TO OFF LVL Y MTR INITIALIZES TO OFF LVL Z MTR INITIALIZES TO OFF | | 3 | IF NECESSARY, INITIATE
CMD 067 (SP GAIN CH)
TO OBTAIN GAIN DESIRED
FOR RELEVELING | | ANNOTATE CMD ACTION
ON PSE ANALOG
RECORDER | | | 4 | IF NECESSARY, INITIATE CMD 101 (PSE FILTER IN/OUT) TO PUT THE PSE FILTER OUT | | ANNOTATE CMD ACTION
ON PSE ANALOG
RECORDER | | | 5 | OBTAIN PSE HSP FORMAT
AND VERIFY STATUS OF
THE FOLLOWING: | VERIFY 5 W RES RWR
FROM C/S ANALOG
RECORDER | | | | Step
No. | ASE | SYSTEMS | DATA | Comments | |-------------|--|--|--|----------| | | SYMBOL NAME STATUS AL-1 X&Y AS REQD GAIN AL-2 Z GAIN AS REQD AL-3 LVL DIR N/A AL-3 LVL LO SPEED AL-4 SP AS REQD GAIN AL-5 LVL AUTO MDE AL-5 LVL OUT SNSR AL-6 T CTL AUTO STA OFF AL-7 LP/SP BOTH CAL OFF AL-8 UN- CAGE CAGED STA | | | | | 6 | INITIATE CMD 070 (LVL
MTR X ON/OFF) TO TURN
X LVL MTR ON | | ANNOTATE CMD ACTION
ON PSE ANALOG RE-
CORDER | | | 7 | VERIFY THAT X MOTOR
IS DRIVING | VERIFY ON C/S ANALOG
RECORDER A DECREASE
IN RES PWR OF APPROX
3 W | | | | 8 | MONITOR X AXIS TIDAL DATA ON PSE ANALOG RECORDER. WHEN X TIDAL DATA INDICATES WITHIN APPROX +/- 5 URAD, INITIATE CMD 070 (LVL MTR X ON/OFF) TO TURN X MTR OFF | | ANNOTATE CMD ACTION
ON PSE ANALOG RECORDER | | | 9 | | VERIFY ON C/S ANALOG
RECORDER THAT THE RES
PWR INCREASES APPROX
3 W | | | | 10 | INITIATE CMD 071 (LVL
MTR Y ON/OFF) TO TURN
Y MTR ON | | ANNOTATE CMD ACTION
ON PSE ANALOG RE-
CORDER | _ | | 11 | VERIFY THAT Y MOTOR
IS DRIVING | VERIFY ON C/S ANALOG
RECORDER THAT THE RES
PWR DECREASES APPROX
3 W | | | | Step
No. | ASE | SYSTEMS | DATA | Comments | |-------------|--|--|---|----------| | 12 | MONITOR Y AXIS TIDAL DATA ON PSE ANALOG RECORDER. WHEN Y TIDAL DATA INDICATES +/- 5 MURAD, INITIATE CMD 071 (LVL MTR Y ON/OFF) TO TURN Y MTR OFF | | ANNOTATE CMD ACTION
ON PSE ANALOG RECORDER | | | 13 | | VERIFY ON C/S ANALOG
RECORDER THAT THE RES
PWR INCREASES APPROX
3 W | | | | 14 | INITIATE CMD 072 (LVL
MTR Z ON/OFF) TO TURN
Z MTR ON | | ANNOTATE CMD ACTION
ON PSE ANALOG RECORDER | | | 15 | MONITOR Z AXIS TIDAL DATA ON PSE ANALOG RECORDER. WHEN Z TIDAL DATA INDICATES LESS THAN 0.67 MGAL, INITIATE CMD 072 (LVL MTR Z ON/OFF) TO TURN Z MTR OFF | | ANNOTATE CMD ACTION
ON PSE ANALOG RECORDER | | | 10 | | VERIFY ON C/S ANALOG
RECORDER THAT THE RES
PWR INCREASES APPROX
3 W | | | | 17 | INITIATE CMD 101 (PSE
FILTER IN/OUT) TO PUT
THE PSE FILTER IN | | ANNOTATE CMD ACTION
ON PSE ANALOG RECORDER | | | 18 | MONITOR CHANGE IN LP
DATA ON PSE ANALOG
RECORDER TO VERIFY
THE PSE FILTER IS IN | | RETURN DRUM RECORDER
ATTENUATION TO NORMAL
SETTING | | | 19 | INITIATE CMD 076
THREE TIMES TO OBTAIN
THERMAL CNTL MODE TO
AUTO ON | | | | | 20 | | INITIATE PSE HSP
FORMAT | OBTAIN PSE HSP FORMAT
AND VERIFY STATUS OF
THE FOLLOWING: | | | Step
No. | ASE | SYSTEMS | DATA | Comments | |-------------|--|---------|---|----------| | | | | SYMBOL NAME STATUS AL-1 X&Y AS GAIN REQD AL-2 Z AS GAIN REQD AL-3 LVL AS DIR REQD AL-3 LVL LO SPEED AL-4 SP AS GAIN REOD AL-5 LVL AUTO MDE AL-5 LVL OUT SNSR AL-6 T CTL AUTO ON AL-7 LP/SP BOTH CAL OFF AL-8 UN- CAGE CAGED | | | 21 | CHECK TASK COMPLETE ON WORK SCHEDULE AND LOG ANY ANONALIES IN CONSULE LOG BOOK | | | | | Step
No. | ASE | SYSTEMS | DATA | Comments | |-------------|--|---|--|---| | 1 | INITIATE CMD 076 TO
THERMAL CNTL MODE
AUTO OFF | INITIATE PSE HSP | OBTAIN PSE HSP
FORMAT AND GIVE
COPY TO ASE | | | 2 | NOTE STATUS OF THE FOLLOWING TO DETER- MINE CMD ACTION REQUIRED (NOTE 1) STATUS REQ FOR SYMBOL NAME LVL AL-1 X&Y GAIN AL-1 X&Y GAIN AL-2 Z AS REQD GAIN AL-2 J AS REQD GAIN AL-3 LVL NOTE 2 DIR AL-3 LVL LO SPEED AL-4 SP AS REQD GAIN AL-5 LVL AUTO MDE AL-5 LVL AUTO MDE AL-5 LVL OUT SNSR AL-6 T CTL AUTO AL-7 LP/SP BOTH CAL OFF AL-8 UN- UN- CAGE CAGED | MONITOR X, Y, & Z
TIDAL DATA ON PSE
ANALOG RECORDER | VERIFY SPEED OF PSE ANALOG RECORDER AT 0.5 | NOTE 1: THERE ARE NO STATUS PA-RAMETERS FOR THE PSE FILTER OR THE THREE AXIS LEVELING MOTORS. AT PSE TURN ON: PSE FILTER INITIALIZES TO OUT LVL X MTR INITIALIZES TO OFF LVL Y MOTOR INITIALIZES TO OFF LVL Z MTR INITIALIZES TO OFF LVL Z MTR INITIALIZES TO OFF LVL Z MTR INITIALIZES TO DETERMINE LEVELING DIRECTION. IF X TIDAL IS POS, NEG DIRECTION REQUIRED. IF X TIDAL IS NEG, POS DIRECTION REQUIRED UIRED. | | 3 | IF NECESSARY, INITIATE CMD 067 (SP GAIN CH) TO OBTAIN GAIN DESIRED | VERIFY 5 W RESERVE
POWER FROM CS ANALOG
RECORDER | ANNOTATE CMD
ACTION ON PSE
ANALOG RECORDER | | | | | TURN DRUM RECORDER
ATTENUATION TO
INFINITY | | |---|---|--|---| | INITIATE CMD 101
(PSE FILTER IN/OUT)
TO PUT THE PSE
FILTER OUT | | ANNOTATE CMD
ACTION ON PSE
ANALOG RECORDER | | | MONITOR X AXIS TIDAL DATA ON PSE ANALOG RECORDER. DETERMINE DIRECTION FOR LEVELING. IF X TIDAL DATA IS POS, USE NEG DIR. IF X TIDAL DATA IS NEG, USE POS DIR. | | | | | INITIATE CMD 074
(LVL DIR POS/NEG)
TO PLACE LVL DIR AS
REQUIRED | | ANNOTATE CMD
ACTION ON PSE
ANALOG RECORDER | | | INITIATE CMD 075
(LVL SPEED HI/LO)
TO PLACE PSE IN HI
LVL SPEED | | ANNOTATE CMD
ACTION ON PSE
ANALOG RECORDER | | | INITIATE CMD 103
(LVL MDE A/F) TO
PLACE PSE IN THE
FORCED LVL MDE | | ANNOTATE CMD
ACTION ON PSE
ANALOG RECORDER | | | | INITIATE PSE HSP
FORMAT | OBTAIN PSE HSP
FORMAT AND GIVE
COPY TO ASE | | | | MONITOR X AXIS TIDAL DATA ON PSE ANALOG RECORDER. DETERMINE DIRECTION FOR LEVELING. IF X TIDAL
DATA IS POS, USE NEG DIR. IF X TIDAL DATA IS NEG, USE POS DIR. INITIATE CMD 074 (LVL DIR POS/NEG) TO PLACE LVL DIR AS REQUIRED INITIATE CMD 075 (LVL SPEED HI/LO) TO PLACE PSE IN HI LVL SPEED INITIATE CMD 103 (LVL MDE A/F) TO PLACE PSE IN THE | MONITOR X AXIS TIDAL DATA ON PSE ANALOG RECORDER. DETERMINE DIRECTION FOR LEVELING. IF X TIDAL DATA IS POS, USE NEG DIR. IF X TIDAL DATA IS NEG, USE POS DIR. INITIATE CMD 074 (LVL DIR POS/NEG) TO PLACE LVL DIR AS REQUIRED INITIATE CMD 075 (LVL SPEED HI/LO) TO PLACE PSE IN HI LVL SPEED INITIATE CMD 103 (LVL MDE A/F) TO PLACE PSE IN THE FORCED LVL MDE INITIATE PSE HSP | MONITOR X AXIS TIDAL DATA ON PSE ANALOG RECORDER. DETERMINE DIRECTION FOR LEVELING. IF X TIDAL DATA IS POS, USE NEG DIR. IF X TIDAL DATA IS NEG, USE POS DIR. INITIATE CMD 074 (LVL DIR POS/NEG) TO PLACE LVL DIR AS REQUIRED INITIATE CMD 075 (LVL SPEED HI/LO) TO PLACE PSE IN HI LVL SPEED INITIATE CMD 103 (LVL MDE A/F) TO PLACE PSE IN THE FORCED LVL MDE INITIATE PSE HSP FORMAT OBTAIN PSE HSP FORMAT AND GIVE | | Step
No. | ASE | SYSTEMS | DATA | Comments | |-------------|---|---|--|----------| | 11 | VERIFY STATUS OF THE FOLLOWING: SYMBOL NAME STATUS AL-1 XY AS REQUINGAIN AL-2 Z AS REQUINGAIN AL-3 LVL NOTE DIR 4 AL-3 LVL HI SPEED AL-4 SP AS REQUINGAIN AL-5 LVL FORCED MDE AL-5 LVL FORCED MDE AL-5 LVL OUT SNSR AL-6 T CTL AUTO STA OFF AL-7 LP/SP BOTH CAL OFF AL-8 UN- UN- CAGE CAGED STA | | | | | 12 | ENTER MAP OVERRIDE
ON | | | | | 13 | INITIATE CMD 070
(LVL MTR X ON/OFF)
TO TURN X LVL MTR
ON | | ANNOTATE CMD
ACTION ON PSE
ANALOG RECORDER | | | 14 | rm 101 (April 70) | VERIFY ON CS ANALOG
RECORDER A DECREASE
IN RES PWR OF APPROX
3 W | | | | Step
No. | ASE | SYSTEMS | DATA | Comments | |-------------|---|--|---|----------| | 15 | MONITOR X AXIS TIDAL DATA ON PSE ANALOG RECORDER. WHEN X TIDAL DATA GOES THRU ZERO, INITIATE CMD 075 (LVL SPEED HI/LO) TO PLACE PSE IN LO LVL SPEED AND CMD 074 (LVL DIR POS/NEG) TO RE-VERSE LVL DIR | | ANNOTATE ALL CMD
ACTION ON PSE ·
ANALOG RECORDER | | | 16 | INITIATE PSE HSP | VERIFY SPEED LO
AND LEVEL DIRECTION | | | | 17 | MONITOR X AXIS TIDAL DATA ON PSE ANALOG RECORDER. WHEN X TIDAL DATA GOES THRU +/- 15 MURAD, INITIATE CMD 103 (PSE AUTO MODE) | | ANNOTATE CMD
ACTION ON PSE
ANALOG RECORDER | | | 18 | TURN MAP OVERRIDE
"OFF" | | | | | 19 | INITIATE CMD 070
X MOTOR OFF WHEN
TIDAL DATA ± 5
MRAD | RECORDER THAT THE RES | ANNOTATE CMD
ACTION ON PSE
ANALOG RECORDER | | | 20 | MONITOR Y AXIS TIDAL DATA ON PSE ANALOG RECORDER. DETERMINE DIRECTION FOR LEVELING IF Y TIDAL DATA IS POS USE NEG DIR. IF Y TIDAL DATA IS NEG, USE POS DIR. | | | | | 21 | IF NECESSARY,
INITIATE CMD 074 (LVL
DIR POS/NEG) TO PLACE
LVL DIR AS REQUIRED | | ANNOTATE CMD
ACTION ON PSE
ANALOG RECORDER | | | 22 | INITIATE CMD 075
(LVL SPEED HI/LO)
TO PLACE PSE IN HI
LVL SPEED | | ANNOTATE CMD ACTION
ACTION ON PSE ANALOG
RECORDER | | | Step
No. | ASE | SYSTEMS | DATA | Comments | |-------------|--|---|--|----------| | 23 | INITIATE CMD 103
(LVL MDE A/F) TO
PLACE PSE IN FORCED
LVL MODE | | ANNOTATE CMD
ACTION ON PSE
ANALOG RECORDER | | | 24 | INITIATE MAP
OVERRIDE | | | | | 25 | INITIATE CMD 071
(LVL MTR Y ON/OFF)
TO TURN Y MTR ON | | ANNOTATE CMD ACTION
ON PSE ANALOG
RECORDER | | | 26 | | VERIFY ON CS ANALOG
RECORDER THAT THE
RES PWR DECREASES
APPROX 3 W | | | | 27 | MONITOR Y AXIS TIDAL DATA ON PSE ANALOG RECORDER. WHEN Y TIDAL DATA GOES THRU ZERO, INITIATE CMD 075 (LVL SPEED HI/LO) TO PLACE PSE IN LO LVL SPEED AND CMD 074 (LVL DIR POS/NEG) TO PLACE LVL DIR AS REQUIRED | | ANNOTATE ALL CMD
ACTION ON PSE
ANALOG RECORDER | | | 28 | INITIATE PSE HSP | VERIFY SPEED LO
AND DIR AS REQUIRED | | | | 29 | MONITOR Y AXIS TIDAL DATA ON PSE ANALOG RECORDER. WHEN Y TIDAL DATA GOES THRU +/- 15 MURAD, INITIATE CMD 103 (AUTO MODE) | | ANNOTATE CMD ACTION
ON PSE ANALOG RECORDER | | | 30 | RELEASE MAP OVERRIDE | | | | | 31 | INITIATE CMD 071
WHEN TIDAL ± 5
MRAD | VERIFY ON CS ANALOG
RECORDER THAT THE
RES PWR INCREASES
APPROX 3 W | ANNOTATE CMD
ACTION ON PSE
ANALOG RECORDER | | | 32 | INITIATE CMD 074
(LVL DIR POS/NEG)
TO PLACE LVL DIR
POS | | ANNOTATE CMD
ACTION ON PSE
ANALOG RECORDER | | | <u> </u> | 1 | | T | | |-------------|--|---|--|----------| | Step
No. | ASE | SYSTEMS | DATA | Comments | | 33 | INITIATE CMD 075
(LVL SPEED HI/LO)
TO PLACE PSE IN HI
LVL SPEED | | ANNOTATE CMD
ACTION ON PSE
ANALOG RECORDER | | | 34 | INITIATE CMD 103
(LVL MDE A/F) TO
PLACE PSE IN FORCED
LVL MODE | | ANNOTATE CMD
ACTION ON PSE ANALOG
RECORDER | | | 35 | INITIATE CMD 072
(LVL MTR 2 ON/OFF)
TO TURN Z MTR ON | | ANNOTATE CMD
ACTION ON PSE ANALOG
RECORDER | | | 36 | INITIATE MAP
OVERRIDE | VERIFY ON CS ANALOG
RECORDER A DECREASE
IN RES PWR OF APPROX
3 W | | | | 37 | MONITOR Z AXIS TIDAL DATA ON PSE ANALOG RECORDER. WHEN Z TIDAL DATA GOES THRU ZERO, INITIATE CMD 075 (LVL SPEED HI-LO) TO PLACE PSE IN LO LVL SPEED AND CMD 074 (LVL DIR POS/NEG) TO PLACE LVL DIR NEG | | ANNOTATE ALL CMD
ACTION ON PSE ANALOG
RECORDER | | | 38 | INITIATE PSE HSP | | VERIFY SPEED LO
DIRECTION NEG | | | 39 | MONITOR Z AXIS TIDAL DATA ON PSE ANALOG RECORDER. WHEN Z TIDAL DATA GOES THRU +/- 2 MGAL, INITIATE CMD 103 (PSE AUTO MODE) | | ANNOTATE CMD
ACTION ON PSE ANALOG
RECORDER | | | Step
No. | ASE | SYSTEMS | DATA | Comments | |-------------|--|----------------------------|--|---------------------------------------| | 40 | RELEASE MAP OVERRIDE | | | · · · · · · · · · · · · · · · · · · · | | 41 | INITIATE CMD 072 (Z
MOTOR OFF) WHEN TIDAL
DATA + 0.67 MGAL | | · | | | 42 | INITIATE 076 THREE
TIMES FOR THERM
MODE AUTO ON | | | | | 43 | INITIATE CMD 101 (PSE
FILTER IN/OUT) TO PUT
THE PSE FILTER IN | | ANNOTATE CMD ACTION
ON PSE ANALOG RECORDER | | | 4 4 | | INITIATE PSE HSP
FORMAT | RETURN DRUM RECORDER
ATTENUATION TO NORMAL
SETTINGS | | | 45 | | | OBTAIN PSE HSP FORMAT AND VERIFY STATUS OF THE FOLLOWING- SYMBOL NAME STATUS AL-1 X&Y AS REQD GAIN AS REQD AL-2 Z GAIN AS REQD AL-3 LVL NEG DIR AL-3 LVL LO SPEED AL-4 SP AS REQD GAIN AL-5 LVL AUTO MDE AL-5 LVL OUT SNSR AL-6 T CTL AUTO ON AL-7 LP/SP BOTH CAL OFF AL-8 UN- UN- CAGE CAGED | | | 46 | CHECK TASK COMPLETE ON WORK SCHEDULE AND LOG ANY ANOMALIES IN CONSOLE LOG BOOK | | | • | i | Step
No. | ASE | SYSTEMS | DATA | Comments | |-------------|--|-----------------------------|--|--| | 1 | INITIATE CMD 101 PSE
FILTER OUT | | · | | | 2 | INITIATE CMD 076
THERM CNTL AUTO OFF | INITIATE PSE HSP
FORMAT | OBTAIN PSE HSP FORMAT
AND GIVE COPY TO ASE | | | 3 | NOTE STATUS OF THE FOLLOWING TO DETER- MINE CMD ACTION REQUIRED (NOTE 1) SYMBOL NAME STATUS REQ FOR LVL AL-1 X&Y AS GAIN REQD AL-2 Z AS GAIN REQD AL-3 LVL NOTE 2 DIR AL-3 LVL LO SPEED AL-4 SP AS GAIN REQD AL-5 LVL FORCED MODF AL-5 LVL OUT SNSR AL-6 T CTL AUTO OFF AL-7 LP/SP BOTH CAL OFF AL-8 UN- UN- CAGE CAGED | VERIFY 5 W RESERVE
POWER | | NOTE 1: THERE ARE NO STATUS PARA- METERS FOR THE PSE FILTER OR THE THREE AXIS LEVELING MOTORS. AT PSE TURN ON: PSE FILTER INITIALIZES TO OUT LVL X MTR INITIALIZES TO OFF LVL Y MTR INITIALIZES TO OFF LVL Z MTR INITIALIZES TO OFF LVL Z MTR INITIALIZES TO OFF NOTE 2: MONITOR X TIDAL DATA ON PSE ANA- LOG RECORDER TO DETERMINE LEVELING DIRECTION. IF X TIDAL IS POS, NEG
DIRECTIONS REQUIRED. IF X TIDAL IS NEG, POS DIRECTION REQUIRED. | | 4 | IF NECESSARY,
CMD 067 (SP GAIN CH)
TO OBTAIN GAIN DE-
SIRED | | ANNOTATE CMD ACTION
ON PSE ANALOG RE-
CORDER | | | 5 | MONITOR X AXIS TIDAL DATA ON PSE ANALOG RECORDER. DETERMINE DIRECTION FOR LEVELING. IF X TIDAL DATA IS POS, USE NEG DIR. IF Z TIDAL DATA IS NEG, USE POS DIR. | | | | FCD Form 101 (April 70) NASA -- MSC | Step
No. | ASE | SYSTEMS | DATA | Comments | |-------------|--|------------------------------|--|----------| | 6 | INITIATE CMD 074 (LVL
DIR POS/NEG) TO PLACE
LVL DIR AS REQUIRED | | ANNOTATE CMD ACTION
ON PSE ANALOG RE-
CORDER | | | 7 | INITIATE CMD 102 (LVL
SNSR IN/OUT) TO PUT
LVL SNSR OUT.
ANNOTATE CMD. | | ANNOTATE CMD ACTION
ON PSE ANALOG RE-
CORDER | | | 8 | INITIATE CMD 103 (LVL
MODE A/F) TO PLACE
PSE IN THE FORCED
LVL MODE | | ANNOTATE CMD ACTION
ON PSE ANALOG RE-
CORDER | | | 9 | | | TURN DRUM RECORDER
ATTENTUATION TO
INFINITY | | | 10 | | INITIATE PSE HSP FOR-
MAT | OBTAIN PSE HSP FORMAT
AND GIVE COPY TO ASE | | | 17 | VERIFY STATUS OF THE FOLLOWING - SYMBOL NAME STATUS AL-1 X&Y AS GAIN REQD AL-2 Z AS GAIN REQD AL-3 LVL NOTE 2 DIR AL-3 LVL LO SPEED AL-4 SP AS GAIN REQD AL-5 LVL FORCED MODE AL-5 LVL OUT SNSR AL-6 T CTL AUTO STA OFF AL-7 LP/SP BOTH CAL OFF AL-8 UN- CAGE CAGED STA | | | | | 12 | ADVISE NETWORK THAT X
AXIS WILL BE LEVELED
FOR 4 SECONDS | | | | | 13 | INITIATE MAP OVERRIDE | | | | | 14 | INITIATE CMD 070 (LVL
MTR X ON/OFF) TO TURN
X LVL MTR ON | | ANNOTATE CMD ACTION
ON PSE ANALOG RECORDER | | | Step
No. | ASE | SYSTEMS | DATA | Comments | |-------------|---|--|--|----------| | 15 | LET MOTOR RUN FOR
ONLY 4 SECONDS, INI-
TIATE CMD 070 (LVL
MTR X ON/OFF) TO TURN
X LVL MTR OFF | | ANNOTATE CMD ACTION
ON PSE ANALOG
RECORDER | | | 16 | INITIATE CMD 103 (LVL
MODE A/F) TO TURN LVL
MODE TO AUTO IMMED-
IATELY | | ANNOTATE CMD ACTION
ON PSE ANALOG RE-
CORDER | | | 17 | RELEASE MAP OVERRIDE | ······································ | | | | 18 | MONITOR Y AXIS TIDAL DATA ON PSE ANALOG RECORDER. DETERMINE DIRECTION FOR LEVELING. IF Y TIDAL DATA IS POS, USE NEG DIR. IF Y TIDAL DATA IS NEG, USE POS DIR. | | | | | 19 | IF NECESSARY, INI-
TIATE CMD 074 (LVL
DIR POS/NEG) TO PLACE
LVL DIR AS REQUIRED | | ANNOTATE CMD ACTION
ON PSE ANALOG RE-
CORDER | | | 20 | ADVISE NETWORK THAT Y
AXIS WILL BE LEVELED
FOR 4 SEC | | | | | 21 | INITIATE CMD 103
(FORCED MODE) | | | | | 22 | INITIATE MAP OVERRIDE | | | | | 23 | INITIATE CMD 071 (LVL
MTR Y ON/OFF) TO TURN
Y MTR ON | | ANNOTATE CMD ACTION
ON PSE ANALOG RE-
CORDER | | | 24 | LET MOTOR RUN FOR
ONLY 4 SECS, INITIATE
CMD 071 (LVL MTR Y
ON/OFF) TO TURN Y
MOTOR OFF | | ANNOTATE CMD ACTION
ON PSE ANALOG RE-
CORDER | | | 25 | INITIATE CMD 103 (LVL
MODE A/F) TO TURN LVL
MODE TO AUTO
IMMEDIATELY | | ANNOTATE CMD ACTION
ON PSE ANALOG RE-
CORDER | | | 26 | RELEASE MAP OVERRIDE | | | | | Step | I | | | | |------|---|----------------------------|---|----------| | No. | ASE | SYSTEMS | DATA | Comments | | 27 | MONITOR Z AXIS TIDAL DATA ON PSE ANALOG RECORDER. DETERMINE DIRECTION FOR LEVELING. IF Z TIDAL DATA IS POS, USE NEG DIR. IF Z TIDAL DATA IS NEG, USE POS DIR. | | | | | 28 | IF NECESSARY, INITIAT
CMD 074 (LVL DIR POS/
NEG) TO PLACE LVL DIR
AS REQUIRED | | ANNOTATE ACTION ON PSE ANALOG RECORDER | | | 29 | ADVISE NETWORK THAT Z
AXIS WILL BE LEVELED
FOR 4 SECONDS | | | | | 30 | INITIATE CMD 103
(FORCED MODE) | | | | | 31 | INITIATE MAP OVERRIDE | | | | | 32 | INITIATE CMD 072 (LVL
MTR Z ON/OFF) TO TURN
Z MTR ON | | ANNOTATE CMD ACTION
ON PSE ANALOG RECORDER | | | 33 | LET THE MOTOR RUN FOR
ONLY 4 SECONDS.
INITIATE CMD 072 (LVL
MTR Z ON/OFF) TO TURN
Z MTR OFF. | | ANNOTATE CMD ACTION
ON PSE ANALOG RECORDER | | | 34 | INITIATE CMD 103 (LVL
MODE A/F) TO TURN LVL
MODE TO AUTO IMMEDI-
ATELY | | ANNOTATE CMD ACTION
ON PSE ANALOG RECORDE | 3 | | 35 | RELEASE MAP OVERRIDE | | | | | 36 | INITIATE CMD 076
THREE TIMES FOR THERM
CNTL AUTO ON | | | | | 37 | INITIATE CMD 101 (PSE
FILTER IN/OUT) TO PUT
THE PSE FILTER IN | | ANNOTATE CMD ACTION
ON PSE ANALOG RECORDE | ? | | 38 | | | RETURN DRUM RECORDER
ATTENTUATION TO
NORMAL SETTING | 3 | | 39 | | INITIATE PSE HSP
FORMAT | | | | | | | | | | Step
No. | ASE | SYSTEMS | DATA | Comments | |-------------|--|---------|--|----------| | 40 | | | OBTAIN PSE HSP FORMAT AND VERIFY STATUS OF THE FOLLOWING - SYMBOL NAME STATUS AL-1 X&Y AS GAIN REQD AL-2 Z AS GAIN REQD AL-3 LVL AS DIR REQD AL-3 LVL LO SPEED AL-4 SP AS GAIN REQD AL-5 LVL AUTO MODE AL-5 LVL AUTO MODE AL-5 LVL OUT SNSR AL-6 T AUTO CTL ON AL-7 LP/SP BOTH CAL OFF AL-8 UN- UN- CAGE CAGED | | | 41 | LOG TASK AND
ANOMALIES IN THE
CONSOLE HANDBOOK | | | | | | | | | | NASA --- MSC SOP 2-8 PSE GAIN CHANGE (LP X, Y, OR Z AND SP Z) PREREQUISITES: 1. PSE MUST BE IN OPERATE MODE 2. PSE MUST BE IN A NORMAL REFERENCE MODE (I.E., NOT LEVELING OR CAL) 3. PSE ANALOG RECORDERS AND DRUM RECORDERS CONFIGURED FOR PSE AS PER WORK SCHEDULE | Step
No. | ASE | SYSTEMS | DATA | Comments | |-------------|---|----------------------------|---|--| | 1 | INITIATE CMD 062 (XY
GAIN) AS NECESSARY TO
OBTAIN GAIN REQUIRED
(NOTE 1) | | ANNOTATE CMD ACTION
ON PSE ANALOG RE-
CORDER | NOTE 1: GAIN STEPS THROUGH THE FOLLOWING STEPS ONCE PER CMD 0 DB -10 -20 -30 AND REPEAT | | 2 | INITIATE CMD 064 (Z
GAIN) AS NECESSARY TO
OBTAIN GAIN REQUIRED
(NOTE 1) | | ANNOTATE CMD ACTION
ON PSE ANALOG RE-
CORDER | | | 3 | INITIATE CMD 067 (SP
GAIN) AS NECESSARY TO
OBTAIN GAIN REQUIRED
(NOTE 1) | INITIATE PSE HSP
FORMAT | ANNOTATE CMD ACTION
ON PSE ANALOG RE-
CORDER | | | 4 | | | VERIFY ON PSE HSP
FORMAT THAT PSE GAIN
HAS CHANGES AS RE-
QUIRED | , | | | | | | | - SOP 2-9 PSE SP OR LP CALIBRATION PREREQUISITES: 1. PSE 1 MUST BE IN OPERATE MODE. 2. PSE MUST BE IN A NORMAL SCIENCE MODE (I.E., NOT LEVELING). PSF ANALOG RECORDERS AND DRUM RECORDERS CONFIGURATION SCHEDULE. 3. PSE ANALOG RECORDERS AND DRUM RECORDERS CONFIGURED FOR PSE AS PER WORK SCHEDULE. | Step
No. | ASE | SYSTEMS | DATA | Comments | |-------------|--|---|--|----------| | 1 | INITIATE CMD 066 (LP
CAL ON/OFF) TO TURN
THE PSE LP CAL PULSE
ON | | ANNOTATE CMD ACTION
ON PSE ANALOG RE-
CORDER | | | 2 | | MONITOR PSE ANALOG
RECORDER FOR INDICATIO
OF CAL PULSE ON | N . | | | 3 | INITIATE CMD 066 (LP
CAL ON/OFF) TO TURN
THE PSE LP CAL PULSE
OFF | | ANNOTATE CMD ACTION ON
PSE ANALOG RECORDER | | | 4 | | MONITOR PSE ANALOG
RECORDER LP CHANNEL
FOR INDICATION OF CAL
PULSE IN OPPOSITE
DIRECTION FROM FIRST | | | | 5 | INITIATE CMD 065 (SP
CAL ON/OFF) TO TURN
THE PSE SP CAL PULSE
ON | | SPEED UP ANALOG RE-
CORDER TO 25.0 MM/SEC
FOR SP CAL PULSE AND
ANNOTATE CMD ACTION
ON PSE ANALOG
RECORDER | | | 6 | | MONITOR PSE ANALOG
RECORDER SP CHANNEL
FOR INDICATION OF
CAL PULSE ON | | | | 7 | INITIATE CMD 065 (SP
CAL ON/OFF) TO TURN
PSE SP CAL PULSE OFF | | ANNOTATE CMD ACTION
ON PSE ANALOG
RECORDER | | | 8 | | MONITOR PSE ANALOG
RECORDER SP CHANNEL
FOR INDICATION OF
CAL PULSE IN OPPOSITE
DIRECTION FROM FIRST | | | | 9 | | INITIATE PSE HSP
FORMAT | RETURN PSE ANALOG
RECORDER TO 0.05
MM/SEC SPEED | | | 10 | | | OBTAIN PSE HSP FORMAT
AND CHECK PSE CAL
STATUS.
SYMBOL NAME STATUS
AL-7 LP/SP BOTH
CAL OFF | | | Step
No. | ASE | SYSTEMS | DATA | Comments | |-------------|--|---|---|--| | 1 | LOG CREW COMMENT OF
LSM LEVELING | | | | | 2 | | START LSM NO. 1 AND
NO. 2 HSP
FORMATS
SELECT FORMAT 5 ON
ANALOG RECORDER NO. 4 | VERIFY RESERVE POWER
>8 WATTS | | | 3 | SEND CMD 042 (OPER
SEL) | ANNOTATE C/S AND LSM
ANALOG RECORDERS | | | | 4 | | DETERMINE FROM LSM ANALOG RECORDER AND PARAMETERS DM-12 X GIM POS DM-13 Y GIM POS DM-14 Z GIM POS THE MINIMUM SENSOR RANGE SO THAT ALL THREE PARAMETERS ARE NOT OFF SCALE | VERIFY ON LSM HSP
FORMAT NO. 2:
RANGE STEP - 200
GAMMA
FLD O/S - 0%
O/S ADD - OFF
FLIP/CAL INHIB -
INHIBITED
FILTER - IN
T CTL XYO - X | PRESET CONDITIONS STEP RANGES ARE ±50, ±100, ±200 GAMMA | | 5 | IF NECESSARY, SEND
CMD 123 (RANGE STEP)
TO PLACE SENSORS IN
DESIRED RANGE | | | FIRST CMD 123 ±50
GAMMA
SECOND CMD 123 ±100
GAMMA | | 6 | · | DETERMINE FROM THE
LSM ANALOG RECORDER,
THE AMOUNT OF OFF-SET
IN EACH AXIS REQUIRED
TO PRODUCE 50% PFS | | OFF-SETS ARE 0, ±25%
±50%, ±75% OF THE
GAMMA RANGE | | 7 | IF NECESSARY, SEND
CMD 125 (O/S ADD CH)
TO ADDRESS THE X AXIS | | | CMD 125 IS A FOUR
STATE COMMAND; X, Y,
Z, NEUTRAL | | 8 | IF NECESSARY, SEND
CMD 124 (FLD 0/S CH)
THE REQUIRED TIMES
TO PRODUCE A 50% PFS
OF DM-12 (X GIM POS) | | | CMD 124 IS A SEVEN
STATE COMMAND; 0,
+25%, +50%, +75%,
-75%, -50%, -25% | | 9 | IF NECESSARY, REPEAT
STEPS 8 AND 9 FOR
DM-13 (Y GIM POS) AND
DM-14 (Z GIM POS) | | | | | 10 | SEND CMD 127 (FLIP/
CAL ENABLE) | | VERIFY FLIP/CAL
ENABLE | | | | SYSTEMS | DATA | Comments | |----------------------------------|----------------------------------|----------------------------|---| | SEND CMD 131 (FLIP/
CAL GO) | VERIFY ON LSM
ANALOG RECORDER | | REQUIRES 5 MIN OF
LSM HSP FORMAT NO. 1
BEFORE AND AFTER THE
FLIP/CAL | | SEND CMD 127 FLIP/CAL
INHIBIT | | VERIFY FLIP/CAL
INHIBIT | · | - | | | | | | CAL GO) SEND CMD 127 FLIP/CAL | SEND CMD 127 FLIP/CAL | CAL GO) ANALOG RECORDER SEND CMD 127 FLIP/CAL VERIFY FLIP/CAL | | Step
No. | ASE | SYSTEMS | DAȚA | Comments | |-------------|--|---|--|---| | 1 | NOTIFY NETWORK TO
ENABLE CRITICAL RTC
LOAD NO. 3 (CMD 133) | START LSM HSP FORMAT
NO. 1 AND NO. 2
5 MIN PRIOR TO CMD 133 | | | | 2 | SEND CMD 133 (X AXIS
SURVEY) | | | CMD 133 ACTIVATES THE
SITE SURVEY GENERATOR
FIRST APPLICATION
SURVEYS THE X AXIS.
SECOND AND THIRD
SURVEY Y AND Z. | | 3 | | | NOTIFY ASE WHEN LSM
HAS RETURNED TO
SCIENCE MODE | | | 4 | REPEAT STEPS 2 AND 3
FOR Y AXIS SURVEY
AND Z AXIS SURVEY | | REPEAT STEPS 2 AND 3
FOR Y AXIS SURVEY AND
Z AXIS SURVEY | Step
No. | ASE | SYSTEMS | DATA | Comments | |-------------|---|----------------------|--|---| | 1 | | START SWS HSP FORMAT | VERIFY RES PWR >8.2 W | | | 2 | SEND CMD 045 (SWS
OPER SEL) | | VERIFY SWS DATA IS
CYCLING PROPERLY | SWS WILL BE TURNED ON
DURING THE EVA IN
CASE GND CMD DOESN'T
FUNCATION AND CREW
MUST ACTIVATE SW
NO. 3 | | 3 | | STOP SWS HSP FORMAT | | | | 4 | | START SWS HSP FORMAT | | STEPS 4, 5, AND 6
WILL BE INITIATED
AFTER LM ASCENT | | 5 | NOTIFY NETWORK LOAD
CRITICAL GROUP 1 | | | | | 6 | SEND CMD 122 (CVR GO) | | VERIFY DATA | | | | | | | | | _____| FCD Form 101 (April 70) | <u> </u> | | | | | |-------------|--|---|------|--| | Step
No. | ASE | SYSTEMS | DATA | Comments | | 1 | | VERIFY THAT CUP 14
SUM IS EQUAL TO OR
GREATER THAN 40 FOR
ONE COMPLETE SOLAR
WIND CYCLE | · | | | 2 | ENABLE MAP OVERRIDE | | | | | 3 | SEND CMD 122 THREE
TIMES WITHIN 10 SEC
(SWS HI GAIN) | | | CUP 14 SUM WILL GO TO
SOME NUMBER DIFFERENT
FROM LO GAIN | FCD Form 101 (April 70) 1 NASA --- MSC | Step
No. | ASE | SYSTEMS | DATA | Comments | |-------------|----------------------------|--|------|----------| | 1 | | VERIFY THAT CUP 14
SUM IS 5 OR MORE LESS
THAN WHEN COMMANDED
TO HI GAIN | | | | 2 | SEND CMD 046 (SWS
STBY) | VERIFY EXP 3 STBY
STATUS LIGHT ON | | | | 3 | SEND CMD 045 (SWS ON) | VERIFY EXP 3 STBY
STATUS LIGHT OFF | · | , | | | | | | | | | | FCD Form 101 (April 70) | Step
No. | ASE | SYSTEMS | DATA | Comments | |-------------|--|--|--|----------| | 1 | | INITIATE C/S HSP | OBTAIN C/S HSP FORMAT AND VERIFY THE FOLLOWING - | | | | | | CS-2 RES PWR GREATER THAN 15 W AE-9 BUS VOLT +12 VDC AE-7 BUS VOLT +29 VDC AE-8 BUS VOLT +15 VDC AE-10 BUS VOLT +5 VDC AE-11 BUS VOLT -12 VDC | | | | | | AE-12 BUS VOLT -6 VDC
AE-1 DSS ADC 0.25 V
AE-2 DSS ADC 4.75 V | | | 2 | | GIVE GO/NO-GO FOR SIDE
TURN ON | GIVE GO/NO-GO FOR
SIDE TURN ON | | | 3 | INITIATE CMD 045 EXP
3 OPER SEL | INITIATE SIDE HSP
FORMATS 1 AND 2 | ANNOTATE CMD ACTION
ON C/S AND SIDE
RCDRS | | | 4 | DUST COVER REMOVAL
CMD 107 THEN 110 TO
EXECUTE | VERIFY RES PWR > 8 W.
INITIATE SIDE HSP
FORMAT 1. | VERIFY CMD REGISTER
READS "MSTR" ON HSP
AFTER CMD 107. | | | | | | VERIFY MODE REGISTER
READS "MSTR" AND CMD
REGISTER READS "CLR"
AFTER CMD 110. | | | | | | CHECK DI-12, SOLAR
CELL OUTPUT, ON HSP. | | | 5 | CCIG SEAL BREAK CMD
105 THEN 110 TO
EXECUTE | SELECT SIDE FORMAT 4
ON ANALOG RECORDER.
INITIATE SIDE HSP | VERIFY CMD REGISTER
READS "RSF10" ON HSP
AFTER CMD 105. | | | | | FORMAT 1. | VERIFY MODE REGISTER
READS "RSF10" AND
CMD REGISTER READS
"CLR." | ı | Step
No. | ASE | SYSTEMS | DATA | Comments | |-------------|--|--|--|---| | 7 | į | ENABLE HFE LIMIT SENSING CATEGORY 5 AND CHECK C/S RES PWR ON THE ANALOG RECORDER | OBTAIN C/S HSP FORMAT AND CHECK THE FOLLOWING: CS-2 RES PWR GREATER THAN OR EQUAL TO 8 W AE-9 BUS VOLT +12 VDC AE-7 BUS VOLT +29 VDC AE-8 BUS VOLT +15 VDC AE-10 BUS VOLT +5 VDC AE-11 BUS VOLT -12 VDC AE-12 BUS VOLT -6 VDC AE-1 DSS ADC 0.25 V AE-2 DSS ADC 4.75 V (NOTE 1) | NOTE 1: LIMITS AS
IN SODB | | 2 | | GIVE GO/NO-GO FOR HFE GIVE GO/NO-GO FOR HFE TURN-ON | | | | 3 | INITIATE CMD 036 (EXP
5 OPER SEL) TO TURN
THE HFE ON | VERIFY CHANGE IN RES
PWR | ANNOTATE CMD ACTION
ON THE C/S ANALOG
RECORDER | | | 4 | | INITIATE HFE HSP
FORMAT 2 | VERIFY STATUS OF HFE HOUSEKEEPING AHO1 +5 VDC AHO2 -5 VDC AHO3 15 VDC AHO4 -15 VDC AHO6 HTR LK AHO7 HTR HK | NOTE 2: AHO6 AND
AHO7 SHOULD
READ OFF | | 5 | | | VERIFY THAT EXPERI-
MENT IS IN MODE 2 AND
IN FULL SEQ | | | | | | | | FCD Form 101 (April 70) | Step
No. | ASE | SYSTEMS | DATA | Comments | |-------------|---|--|--|---| | 1 | | INITIATE HFE HSP
FORMAT 2 | · | | | 2 | | | VERIFY MODE OF
EXPERIMENT AND HEATER
STEP | | | 3 | | DETERMINE THE NUMBER OF TIMES CMD 152 WILL HAVE TO BE SENT TO OBTAIN THE PROPER STEP (NOTE 1) | | | | 4 | INITIATE CMD 152 (HFE
HTR STEPS) AS MANY
TIMES AS REQUIRED TO
REACH THE DESIRED
STEP (NOTE 1) | VERIFY THE FIRST COMMAND OF 152, THE NEXT TO THE LAST COMMAND OF 152, AND THE LAST COMMAND OF 152 ON THE HSP | | NOTE 1: THE ORDER O HEATER STEP IS: 12 OFF 12 ON 14 OFF 14 ON 11 OFF 11 ON 13 OFF 13 ON 22 OFF 22 ON 24 OFF 24 ON 21 OFF 21 ON 23 OFF 23 ON 12 OFF 13 ON 23 OFF 21 ON 23 OFF 21 ON 25 OFF 21 ON 26 OFF 27 ON 27 OFF 28 ON 29 OFF 29 ON 29 OFF 20 ON
20 OFF 21 ON 21 OFF 21 ON 22 OFF 23 ON 12 OFF 24 ON 25 OFF 26 ON 27 OFF 28 ON 29 OFF 29 ON 20 OFF 20 ON 21 OFF 21 ON 22 OFF 23 ON 24 OFF 25 ON 26 OFF 27 ON 27 OFF | | 5 | RETURN TO DESIRED
OPERATING MODE | VERIFY MODE CHANGE ON
HSP | VERIFY THE CHANGE IN DATA INDICATING THAT THE PROPER HEATER IS FUNCTIONING | | | | | | | | | | | | | P | | Step
No. | ASE | SYSTEMS | DATA | Comments | |-------------|---|---|--|----------| | 1 | | INITIATE HFE HSP
FORMAT | VERIFY OPERATING
STATE OF EXPERIMENT
AND REPORT TO ASE | | | 2 | INITIATE THE NECES-
SARY COMMANDS TO
REACH DESIRED
OPERATING STATE
(NOTE 1) | | | | | 3 | | VERIFY THAT EXPERI-
MENT IS IN THE
PROPER OPERATING
STATE FROM HFE HSP
FORMAT | | · | #### NOTE 1 I. TO CHANGE MODES: MODE I - 135 MODE II - 136 MODE III - 140 AND 144 II. TO CHANGE PROBES: BOTH PROBES - 141 (FUL SEQ) PROBE I ONLY - 142 PROBE II ONLY - 143 III. TO CHANGE SUB-SEQUENCES IN MODE I AND MODE II: | FROM TO | АТН | ATL | тс | Т | |---------|-----|------------|------------|------------| | ATH . | | 145 | 145 | 146 | | ATL | 144 | | 146
146 | 144
146 | | тс | 144 | 144
145 | | 144
146 | | Т | 144 | 144
145 | 145 | | ALSEP CH BASIC SELECT C/S FORMAT ON CHART RECORDER #3 (FMT 7 OR 8) PREREQUISITES: PAGE 1 OF 3 | | UR 6) | | |---|--|---| | STEP | LEO | SYSTEMS/DATA | | 1. REQUEST ALSEP NET-
WORK OPERATOR TO
SITE SELECT CON-
SOLE | | | | 2. | | OBTAIN C/S HSP FORMAT AND
CHECK RESERVE PWR EQUAL TO OR
GREATER THAN 11.1 WATTS | | 3. | | GIVE GO/NO-GO FOR LSG TURN ON | | 4. INITIATE CMD 5A052
EXP. 4 POWER ON | | CHECK RESERVE POWER ON CHART
RECORDER FOR A CHANGE OF 2.75
W MINIMUM, 9.2 W MAXIMUM.
INITIATE LSG HSP FORMAT | | 3 - FREE MODE | DGO2
- DGO3
AGO2
- AGO3
AGO1
P - AGO4
FORMAT
1
(CHART
RCDR) | VERIFY LSG STATUS FROM HSP
FORMAT AGO4 - SNSR TEMP AGO5 - OSL AGO6 - 4.552 (CAGED) AGO7 - 15 ± 1 VOLTS AGO8 - +15 V AGO915 V AG10 - +5 V DG11 - RLYS 1, 2, 4, 5 SEL DG12 - OFF DG13 - OFF AND N/SL DG14 - OFF DG15 - ON DG16 - ON DG17 - OFF DG18 - LOW DG19 - RANDOM | | 6. | | NOTIFY ASE OF LSG STATUS AND ANY ANOMALOUS READINGS REQUIF ING COMMAND ACTION TO CORRECT | SOP 6-1 - LSG ACTIVATION | | STEP | LEO | SYSTEMS/DATA | |----|----------------------------------|--|--| | | READ SHAFT
ENCODERS | INITIATE CMD 5A070
& 5A072 TO INCREMENT
CMD REG TO READ 01 | | | | VERIFY CMD
REGISTER | | INITIATE HSP FORMAT & VERIFY CMD REG READS 01 (READ SHAFT ENCODER) | | 9. | EXECUTE | INITIATE CMD 5A067 | | | | OBTAIN VALID
ENCODER READINGS | | INITIATE 4 HSP FORMATS AT
20 SECOND INTERVALS | | | | | | | STEP | LEO | SYSTEMS/DATA | |---|--|--| | | DETERMINE FROM THE CMD
LIST THOSE COMMANDS
REQUIRED TO RESTORE
THE LSG TO PROPER
INITIAL CONFIGURATION. | | | | TO INITIATE LSG MULTIF | LEXED COMMANDS DO THE FOLLOW- | | | | 5AO70 (THIS INSURES THAT
TURNED ON AND RESETS THE
O ALL ZEROS) | | - | CAUSES THE LSG COM | MAND 5A072 OR 5A074. (THIS MAND REGISTER TO INCREMENT OWNWARD ONE BINARY COUNT EACH S EXECUTED) | | | REGISTER, AS READ COMMAND 5A067. (T COMMAND CONTAINED INITIATION OF 5A06 | MMAND IS CONTAINED IN THE LSG OUT ON THE HSP FORMAT, INITIATE HIS CAUSES EXECUTION OF THE IN THE REGISTER. REPEATED 7 WILL CAUSE REPEATED EXECUTION TAINED IN THE LSG REGISTER.) | | | TO CAUSE THE COMMA | MAND 5A070, 5A072, OR 5A074 ND REGISTER TO INCREMENT AS REQUIRED TO SET THE LSG VEXT COMMAND. | | | | CTION UNTIL LSG INITIAL CON-
OUT ON THE HSP FORMAT IS IN
IP 5. | | LSG COMMAND REGISTER (STATE. FOR EXAMPLE, IS 28, THEN THE QUICK ON), THEN 5A074 (COUN REGISTER TO ALL ZEROS (BINARY 31). EACH SU | THE MINIMUM NUMBER OF THE THE REGISTER READS AS EST WAY TO ACHIEVE THIS TOOWN) FOUR TIMES. IN SEQUENT 074 INCREMENTS AND. WHEN THE DESIRED | 074 AS REQUIRED TO STEP THE TIMES TO REACH THE DESIRED AND THE NEXT COMMAND DESIRED IS TO SEND 5A070 (CMD DECODER THIS EXAMPLE THE 070 RESETS THE TPS THE REGISTER TO ALL ONES THE REGISTER DOWNWARD ONE BINARY 28 IS REACHED, IT IS | SOP 6-2 LSG INITIAL SET-UP PREREQUISITES: | | STEP | LEO | SYSTEMS/DATA | |-----|--|--|--| | 1. | SITE SELECT
CONSOLE | REQUEST NETWORK CON-
TROLLER TO SITE SE-
LECT CONSOLE FOR ALSEP
COMMANDING. | SELECT LSG CHART RECORDER
FORMAT #1 ON RECORDERS 2 & 4.
SELECT C/S FORMAT ON RECORD-
ER #3. | | 2. | | | INITIATE LSG HSP FORMAT. VERIFY STATUS (SEE STEP 5, SOP 6-1). | | 3. | VERIFY RESERVE
POWER 6.5 W | • | VERIFY RESERVE POWER IS 6.5 WATTS OR GREATER FROM CHART RECORDER. GIVE GO/NO-GO FOR CONTINUATION. | | 4. | COMMAND SLAVE
HEATER OFF | INITIATE COMMAND 5A-
064 | | | 5. | VERIFY FUNCTION | | INITIATE HSP AND CONFIRM DG16 READS OFF. | | 6. | READ COMMAND
REGISTER | | READ FROM HSP THE DECIMAL VALUE OF DG-19 (CMD REG). | | 7. | RESET ALL TEMPERA
TURE RELAYS TO
N/SEL | INCREMENT THE COMMAND REGISTER BY INITIAT-ING COMMAND 5A070, 5A072, OR 5A074 UNTIL DG-19 READS DECIMAL 28. | | | 8. | VERIFY CMD
REGISTER | | INITIATE HSP FORMAT & VERIFY COMMAND REGISTER READS 28 (TEMP RESET). | | 9. | EXECUTE | INITIATE COMMAND 067 | | | 10. | VERIFY FUNCTION | | INITIATE HSP FORMAT & VERIFY DG11 ALL READ N/SEL | ## NOV 20 1972 | | STEP . | LE0 | SYSTEMS/DATA | |-----|--|--|---| | 11. | | INITIATE CMDS 5A070;
5A072, OR 5A074 TO
INCREMENT CMD REGISTER
TO 30 | | | 12. | VERIFY CAD
REGISTER | | INITIATE HSP FORMAT & VERIFY DG19 READS 30 (P AMP GAIN RST). | | 13. | EXECUTE | INITIATE CMD 067 | | | 14. | SET POST AMP
GAIN TO SECOND
STEP | INITIATE CMD 5A074
TO INCREMENT CMD
REGISTER TO 29 | | | 15. | VERIFY CAD
REGISTER | | INITIATE HSP FORMAT & VERIFY DG19 READS 29 (P AMP GAIN INC) | | 16. | EXECUTE . | ILRITIATE CAD 5AU57 | VERIFY DGO1 READS APPROX -6.0V & DGO2 APPROX 0.0 W/CORRESPONDIN CHANGE ON AGO1. | | 17. | ACTIVATE PRESS
TRANSDUCER | INITIATE CADS 5A070,
5A072, OR 5A074 TO
INCREMENT CAD REGISTER
TO 13. | | | 18. | VERIFY CAD
REGISTER | | INITIATE HSP FORMAT & VERIFY DG19 READS 13 (PRES XDUCER ON) | | 19. | EXECUTE ` | INITIATE CMD 5AC67. | VERIFY DG17 READS "ON." | | 20. | VERIFY FUNCTION | | INITIATE HSP FORMAT AND READ PRESSURE | | 21. | TURN PRESSURE
XDUCER OFF | INITIATE CAD 5A074 TO INCREMENT CAD REGISTER TO 12. | | ### NOV 20 1972 | | STEP | LE0 | -SYSTEMS/DATA | |-----|---------------------------------------|---|--| | 22. | VERIFY CAD
REGISTER | | INITIATE HSP FORMAT & VERIFY DG19 READS 12 (TILT MASS SERVO OFF). | | 23. | EXECUTE | INITIATE CMD 5A067 | | | 24. | VERIFY P XDUCER
OFF FUNCTION | | INITIATE HSP FORMAT & VERIFY AGO5 READS OSL & DG17 READS OFF. | | 25. | TURN MASS CHNG
MOTOR ON | INITIATE CMD 5A070,
5A072, OR 5A074 UNTIL
CMD REGISTER READS 2. | INSURE RESERVE POWER IS AT LEAST 14 WATTS. | | 26. | VERIFY C:D
REGISTER | | INITIATE HSP FORMAT & VERIFY DG19 READS 2 (MASS MTR ON). | | 27. | EXECUTE | INITIATE CAD 5A067. | | | 28. | VERIFY FUNCTION & IMMEDIATELY PROCEED | | INITIATE HSP FORMAT & VERIFY DG12 READS "ON" & AGO6 READS 4.552 V. | | 29. | | INITIATE CAD 5A072 TO
INCREMENT CAD REGISTER
TO 14. | | | 30. | VERIFY CND
REGISTER | | INITIATE HSP FORMAT & VERIFY DG19 READS 14 (MASS INCREMENT | | 31. | EXECUTE ` | INITIATE CMD 5A067
& EXECUTE TWO TIMES. | | | 32. | VERIFY FUNCTION | | INITIATE HSP FORMAT & VERIFY AGO6 READS 3.860 VOLTS. (+ .1V) | | 33. | EXECUTE | INITIATE CMD 5A067 | | | 34. | VERIFY FUNCTION | | INITIATE HSP FORMAT & VERIFY AGO6 READS 3.897 VOLTS. (±.10 | | 35. | STOP MASS CHG | INITIATE CADS 5A070, 5A072, OR 5A074 TO INCREMENT THE CAD RELISTER TO 12. | | #### PAGE 4 OF 10 NOV 201972 | | STEP . | LEO | SYSTEMS/DATA | |-----|----------------------------|--|--| | 36. | VERIFY CAD
REGISTER | | INITIATE HSP FORMAT & VERIFY DG19 READS 12 (TILT MASS SERVO OFF). | | 37. | EXECUTE | INITIATE CMD 5A067 | | | 38. | VERIFY FUNCTION | | INITIATE HSP FORMAT AND VERIFY DG12
READS OFF. | | 39. | UNCAGE BEAM | INITIATE CMD 5A074 TO INCREMENT CMD REGISTER TO 10. | | | 40. | VERIFY COMMAND
REGISTER | | INITIATE HSP & VERIFY DG19
READS 10 (SNSR BEAM UNCAGED). | | 41. | EXECUTE | INITIATE CD 5A067. | | | 42. | VERIFY FUNCTION | | DETERMINE FROM CHART RECORDER THE VALUE OF 5001 (SEIGMIC SIGNAL VOLTAGE). | | 43. | CAGE BEAM | IF DGO1 IS HIGHPROCEED
TO STEP 60. IF DGO1
DOES NOT CHANGE VALUE
INITIATE CAD 5A074 TO
INCREMENT THE COMMAND
REGISTER TO 9. | H. ≅ +5.6V
L. ≅ -6.0
(MAX & MIN RDG ON THE STOPS
WITH GAIN AT STEP 2) | | 44. | VERIFY COMMAND
REGISTER | | INITIATE HSP FORMAT & VERIFY DG19 READS 9. | | 45. | EXECUTE | INITIATE CMD 5A067 | | | 46. | CMD MASS MOTOR
ON | INITIATE CMD 5A070 & 5A072 UNTIL CMD REGISTER READS 2 | | NOV 201972 | | | • | MOA 50 1215 | |-------------|----------------------------|--|---| | | STEP | LEO | . SYSTEMS/DATA | | 47. | VERIFY COMMAND REGISTER | | INITIATE HSP FORMAT & VERIFY DG19 READS 2. | | 48. | EXECUTE | INITIATE CAD 5A067 | | | 49. | VERIFY FUNCTION | | INITIATE HSP FORMAT & VERIFY DG12 READS "ON" & AGO6 READS 4.552 + 5V. | | 50. | REMOVE MASS #1 | INITIATE CMD 5A070 & 5A072 UNTIL CMD REG-
ISTER READS 14. | | | 51. | VERIFY COMMAND
REGISTER | | INITIATE HSP FORMAT & VERIFY DG19 READS 14 (MASS INCREMENT) | | 52. | EXECUTE | INITIATE CMD 5A067
FOUR TIMES. | | | 53. | VERIFY FUNCTION | | INITIATE HSP FORMAT & VERIFY AGO6 READS 3.141 VOLTS. | | 54. | EXECUTE | INITIATE CAD 5A \$67 | | | 55. | VERIFY FUNCTION | | INITIATE HSP FORMAT & VERIFY AGO6 READS 3.178) | | 56. | TURN MASS MOTOR OFF | INITIATE CMD 5A074
UNTIL CAD REGISTER
READS 12. | | | 57. | VERIFY COMMAND
REGISTER | | INITIATE HSP FORMAT & VERIFY DG19 READS 12 (TILT MASS SERVO OFF). | | 58. | EXECUTE | INITIATE CMD 5A067 | | | 5 9. | VERIFY FUNCTION | | INITIATE HSP FORMAT & VERIFY DG12 READS "OFF." | | 60. | UNCAGE BEAM | INITIATE CMDS 5A070,
5A072, OR 5A074 UNTIL
CMD REGISTER READS 10 | | | | STEP | LEO | SYSTEMS/DATA | |-----|--|--|--| | 61. | VERIFY COMMAND
REGISTER | - | INITIATE HSP FORMAT & VERIFY.
DG19 READS 10 (SNSR BEAM UN-
CAGED). | | 62. | EXECUTE | INITIATE CMD 5A067 | | | 63. | VERIFY FUNCTION | | DETERMINE FROM CHART RECORDER
THE VALUE OF DGO1. | | 64. | | IF DGO1 DOES NOT CHANG
IN VALUE, REPEAT STEPS
43 THRU 51THEN PRO-
CEED TO STEP 65. IF
HIGH OR IF ON SCALE
PROCEED TO STEP 70. | | | 65. | EXECUTE MASS INCREMENT CMD (REMOVE TWO MASSES) | INITIATE CMD 5A067
SIX TIMES. | | | 66. | VERIFY FUNCTION | | INITIATE HSP FORMAT & VERIFY AGO6 READS 2.451 VOLTS. | | 67. | EXECUTE | INITIATE CMD 5A067 | | | 68. | VERIFY FUNCTION | | INITIATE HSP FORMAT & VERIFY AGO6 READS 2.488 VOLTS. | | 69. | | REPEAT STEPS 56 THRU 63 THEN PROCEED TO STEP 70. | | | 70. | TURN SLAVE HTR
ON | INITIATE CMD 5A063 | | | 71. | VERIFY FUNCTION | | INITIATE HSP FORMAT & VERIFY DG16 READS "ON." | | 72. | START COARSE
SCREW SERVO | IF DG01 IS ON SCALE PROCEED TO STEP G/ IF HIGH INITIATE CMDS 5A070, 072, OR 074 UNTIL CMD REGISTER READS 11. | | # NOV 201972 | • | STEP | LEO | SYSTEMS/DATA | |-----|--|--|---| | 73. | VERIFY COMMAND
REGISTER | | INITIATE HSP FORMAT & VERIFY CMD REGISTER READS 11 (COARSE SERVO ON). | | 74. | EXECUTE | INITIATE CAD 54067 | | | 75. | VERIFY FUNCTION | | INITIATE HSP FORMAT & VERIFY DG13 READS "SLEW." | | 76. | SELECT GROSS
DOWN COMMAND | INITIATE CAD 5A070,
072, OR 074 UNTIL CAD
REGISTER READS 16. | | | 77. | VERIFY COMMAND
REGISTER | | INITIATE HSP FORMAT & VERIFY DG19 READS 16 (GROSS DOWN, TILT DOWN). | | 78. | EXECUTE | INITIATE CMD 5A067 | | | 79. | CONTINUE DRIVING
COARSE SCREW | REPEAT STEP 78 EVERY 5.5 MIN UNTIL DG01 CROSSES OVER ON CHART RECORDER. (UP TO 31 TIMES.) | OBSERVE DGO1 ON CHART RECORDED
FOR CROSSOVER FROM HIGH TO
LOW. | | 30. | AFTER EACH FOURTH
REPEAT OF STEP 78
TURN OFF SLAVE HT
AND CAGE THEN UN-
CAGE THE BEAM. | 1 | - | | 81. | SELECT PROPER DRIVE DIRECTION & CHANGE TO VERNIER | ACTUATE MAP OVERRIDE
AND INITIATE CMD 5A072
AND FOLLOW WITH CMD
5A067. | | | 82. | VERIFY FUNCTION | STAY IN MAP OVERRIDE | INITIATE HSP FORMAT & VERIFY DG19 READS 17 (VERNIER UP). | | 83. | CONTINUE DRIVING
IN UP DIRECTION | REPEAT CMD 5A067 EACH
3 SECOIDS UNTIL DG01
READS ON SCALE. TURN
OFF MAP OVERRIDE. | CBSERVE CHART RECORDER FOR D GO1 ON SCALE CONDITION. | | | STEP | LEO | SYSTEMS/DATA | |-----|---------------------------------------|--|---| | 84. | INCREASE POST
AMP GAIN ONE
STEP | INITIATE CMDS 5A070,
072, OR 074 TO INCRE-
MENT COMMAND REGISTER
TO 29. | | | 85. | VERIFY COMMAND
REGISTER | | INITIATE HSP FORMAT & VERIFY
DG19 READS 29 (P AMP GAIN INC | | 86. | EXECUTE | INITIATE CMD 5A067 | | | 87. | SWITCH TO FINE
SCREW SERVO | INITIATE CMD 5A074
UNTIL CMD REGISTER
READS 19. | . | | 88. | VERIFY CMD
REGISTER | | INITIATE HSP FORMAT & VERIFY DG19 READS 19 (FINE SERVO ON) | | 89. | EXECUTE | INITIATE CMD 5A067 | | | 90. | VERIFY FUNCTION | | INITIATE HSP FORMAT & VERIFY DG13 READS "NOT SLEW." | | | START VERNIER
DRIVE | INITIATE CMD 5A074
UNTIL CMD REGISTER
READS 17. | | | 92. | VERIFY COMMAND
REGISTER | | INITIATE HSP FORMAT & VERIFY DG19 READS 17 (VERNIER UP). | | 93• | EXECUTE | INITIATE CMD 5A067
UNTIL AGO1 READS
CENTER SCALE. | OBSERVE CHART RECORDER FOR AGO1 TO MOVE TO CENTER SCALE. | | 94• | TURN SERVO
MOTOR OFF | INITIATE CMD 5A074
UNTIL CMD REGISTER
READS 12. | | | | - | | | | | STEP | LEO | SYSTEMS/DATA | |------|--|--|--| | 95. | VERIFY COMMAND
REGISTER | - <u>-</u> <u>-</u> <u>-</u> | INITIATE HSP FORMAT & VERIFY
DG19 READS 12 (TILT MASS
SERVO OFF). | | 96. | EXECUTE | INITIATE CMD 5A067 | | | 97. | VERIFY FUNCTION | | INITIATE HSP FORMAT & VERIFY DG13 READS "OFF." | | 98. | READ SHAFT
ENCODER | INITIATE CMD 5A070,
072, OR 074 UNTIL CMD
REGISTER READS 01. | | | 92. | VERIFY COMMAND
REGISTER | | INITIATE HSP FORMAT & VERIFY COMMAND REGISTER READS 01 (READ SHAFT ENCODER). | | 100. | EXECUTE | INITIATE COMMAND 5A067 | | | 101. | OBTAIN VALID
ENCODER READINGS | | INITIATE 4 HSP FORMATS AT 20 SECOND INTERVALS. | | 102. | INCREASE POST
AMP GAIN AS
REQUIRED | INITIATE CMDS 5A070,
072, OR 074 TO INCRE-
MENT COMMAND REGISTER
TO 29. | | | 103. | VERIFY COMMAND
REGISTER | | INITIATE HSP FORMAT & VERIFY COMMAND REGISTER READS 29 (P AMP GAIN INC). | | 104. | EXECUTE | INITIATE CMD 5A067
AS REQUIRED. | | | 105. | SET SEISMIC GAIN
TO HIGH (CAD 08) | | | | 106. | BEGIN TEMP
STAB. PERIOD | | PLOT DG04 VS. DG01. | | | | | | SOP 6-2 LSG INITIAL SET-UP | • | <u>-</u> | | |---------------------------------------|--|--| | STEP | LEO | SYSTEMS/DATA | | 107. RELEVEL BEAM | ALLOW AGO1 TO DRIFT TO NEAR BANDEDGE BEFORE RE-CENTERING BEAM. REPEAT STEPS 80 THRU 94, AS REQUIRED. | | | 108. DETERMINE TEMP
HAS STABILIZED | | VERIFY FROM HSP AND FROM PLOT
THAT DGO4 TEMP HAS STABILIZED
AND THAT DGO1 DRIFT RATE IS
ZERO OR NEAR ZERO. THE PARA-
METER VALUE OF DGO4 SHOULD BE
IN GOOD AGREEMENT WITH THE
VALUE OF DG11 SELECTED TEMP. | | 109. BEGIN TILT ADJUSTMENTS | USE TILT ADJUSTMENT PROCEDURE SOP 6.3 | | | | | | | | | | | | | | | | | a | | | | | | | | | | | | | | | | | LSG TILT ADJUSTMENT PREREQUISITES: INITIAL ADJUSTMENT COMPLETE PER SOP 6-2 INTEGRATOR: NORMAL BIAS: IN SEISMIC GAIN: LOW POST AMP GAIN: STEP 8 | | STEP | LEO | SYSTEMS/DATA | |-----|--|--|---| | 1. | VERIFY BEAM
CENTERED & TEMP
STABILIZED. | . <u>-</u> | INITIATE HSP FORMAT & LOG
VALUES OF DGO1 & DGO4. | | 2. | START A PLOT OF
DGO2 (TIDAL) VS.
TILT MOTOR POSI-
TION. | | PREPARE A PLOT OF DG02 VS. N-S TILT MOTOR STEPS. (±5V Y AXIS; 0-26 STEPS X-AXIS.) | | 3. | ACTUATE N-S TILT MOTOR. | INITIATE CMDS 5A070,
072, OR 074 TO INCRE-
MENT THE CMD REGISTER
TO 20. | | | 4. | VERIFY CMD
REGISTER. | - | INITIATE HSP FORMAT TO VERIFY CMD REGISTER READS 20 (N/S TILT ON). | | 5. | EXECUTE. | INITIATE CMD 5A067. | | | 6. | VERIFY FUNCTION. | | INITIATE HSP FORMAT TO VERIFY DG14 READS "ON." | | 7. | SELECT TILT MOTOR "UP." | INITIATE CMDS 5A070,
072, OR 074 TO INCRE-
MENT THE CMD REGISTER
TO 15. | | | 8. | VERIFY CMD
REGISTER. | | INITIATE HSP FORMAT TO VERIFY CMD REGISTER READS 15 (GROSS UP TILT UP). | | 9. | EXECUTE. | INITIATE CMD 5A067. | | | 10. | REPEAT STEP 9
UNTIL TILT MOTOR REACHES FULL UP (STEP 26). | | VERIFY FROM HSP THAT DGO2 VALUE DOES NOT CHANGE WITH EXECUTION OF CMD 15 (TILT MOTOR IS FULL UP). PLOT TILT MOTOR STEP 26 VS. DGO2. | # NOV 201972 | | STEP | LEO | SYSTEMS/DATA | |-----|--|---|--| | 11. | CHANGE TILT
MOTOR DIRECTION. | INITIATE CMD 5A072 TO INCREMENT CMD REGISTER TO 16. | | | 12. | VERIFY CMD
REGISTER. | · | INITIATE HSP FORMAT & VERIFY CMD REGISTER READS 16 (GROSS DOWN TILT DOWN). | | 13. | EXECUTE. | INITIATE CMD 5A067. (2 | 30 SEC INTERVALS. | | 14. | PLOT VALUE. | | INITIATE HSP FORMAT & PLOT
DGO2 AT EACH TILT MOTOR STEP. | | 15. | REPEAT STEPS 13
& 14 UNTIL DGO2
VALUE PASSES
THROUGH A MINIMUM
VALUE AND FOUR(4)
MOTOR STEPS YIELD
RIGING VALUES OF
DGO2. | | PLOT EACH MOTOR STEP, INSUR-
ING ACCURATE COUNT OF MOTOR
STEPS. | | 16. | CHANGE TILT
MOTOR DIRECTION. | INITIATE CMDS 5 A O 7 O , O 7 2 , OR O 7 4 TO INCREMENT CMD REGISTER TO 15. | • • | | 17. | | | INITIATE HSP FORMAT & VERIFY CMD REGISTER READS 15 (GROSS UP TILT UP). | | 18. | EXECUTE. | INITIATE CMD 5A067. @ | 30 SEC INTERVALS. | | 19. | PLOT VALUE. | | INITIATE HSP FORMAT & PLOT
VALUE OF DGO2 VS. MOTOR STEP | | 20. | REPEAT STEPS 18 & 19 UNTIL DG02 VALUE PASSES THROUGH A MINIMUM VALUE & FOUR(4) MOTOR STEP: YIELD RISING VALUESOF DG02. | | PLOT EACH MOTOR STEP INSURING ACCURATE COUNT OF MOTOR STEPS | | er
F | STEP | TEO | SYSTEMS/DATA | |---------|--|--|--| | 21. | REPEAT STEPS 11 THROUGH 14 UNTIL THAT MOTOR STEP CORRESPOND- ING TO THE LOWEST VALUE OF DGO2, AS DETERMINED FROM THE PLOT, IS REACHED. | - | INITIATE HSP & VERIFY THAT THE VALUE OF DGO2 AGREES WITH MINIMUM VALUE PREVIOUSLY PLOTTED. | | 22. | SWITCH TO E/W
TILT MOTOR. | INITIATE CMDS 070,
072, OR 074 TO INCRE-
MENT THE CMD REGISTER
TO 21. | PREPARE A NEW PLOT OF DG01 VS. E/W TILT MOTOR STEPS. (±5V, Y-AXIS; 0-26 STEPS, X-AXIS). | | 23. | VERIFY CMD
REGISTER. | • | INITIATE HSP FORMAT & VERIFY CMD REGISTER READS 21 (E/W TILT ON). | | 24. | EXECUTE. | INITIATE CMD 5A067. | PLOT CURRENT VALUE OF DGO2
AT STEP 22 ON THE "X" AXIS. | | 25. | SELECT TILT
UP DIRECTION. | INITIATE CMD 074 TO
INCREMENT THE CMD
REGISTER TO 15. | | | 26. | VERIFY CMD
REGISTER. | | INITIATE HSP FORMAT & VERIFY CMD REGISTER READS 15 (GROSS UP TILT UP). | | 27. | EXECUTE. | INITIATE CMD 5A067. | | | 28. | REPEAT STEP 27 UNTIL TILT MOTOR REACHES FULL "UP" POSITION (STEP 26) | | VERIFY FROM HSP THAT DGO2 VALUE DOES NOT CHANGE WITH EXECUTION OF CMD 15.TILT MOTOR IS IN FULL "UP" POSITION PLOT TILT MOTOR STEP 26 VS. DGO2. | | | STEP | LEO | SYSTEMS/DATA | |-----|---|---|--| | 29. | CHANGE TILT MOTOR DIRECTION. | INITIATE CMD 5A072 TO INCREMENT AND REGISTER TO 16. | | | 30. | VERIFY CAD
REGISTER. | | INITIATE HSP FORMAT & VERIFY CMD REGISTER READS 16 (GROSS DOWN TILT DOWN). | | 31. | EXECUTE. | INITIATE CAD 5A067. | | | 32. | PLOT VALUE. | | INITIATE HSP FORMAT & PLOT DG02 AT STEP 25. | | 33. | REPEAT STEPS 31
& 32 UNTIL DG02
PASSES THROUGH A
MINIMUM VALUE &
FOUR (4) MOTOR
STEPS YIELD RIS-
ING VALUES OF
DC02. | | PLOT EACH MOTOR STEP, INSUR-
ING ACCURATE COUNT OF MOTOR
STEPS. | | 34. | CHANGE TILT
MOTOR DIRECTION. | INITIATE CMD 5A072
TO INCREMENT CAD
REGISTER TO 15. | | | 35. | VERIFY CMD
REGISTER. | • | INITIATE HSP FORMAT & VERIFY OMD REGISTER READS 15 (GROSS UP TILT UP). | | 36. | EXECUTE. | INITIATE CAD 5A067. | | | 37. | PLOT VALUE. | | INITIATE HSP FORMAT & PLOT DGO2 VS. MOTOR STEP. | | 38. | REPEAT STEPS 36
& 37 UNTIL TILT
MOTOR REACHES
FULL "UP." | | PLOT DG02 VS. MOTOR STEP. | | | STEP | LEO | SYSTEMS/DATA | |-----|--|---|---| | 39. | REPEAT STEPS 29 THROUGH 31 UNTIL THAT MOTOR STEP CORRESPONDING TO THE LOWEST VALUE OF DGO2, AS DETERMINED FROM THE PLOT, IS REACHED. | - | INITIATE HSP FORMAT & VERIFY THAT THE VALUE OF DGO2 AGREES WITH MINIMUM VALUE PREVIOUSLY PLOTTED. | | 40. | TURN TILT MOTOR OFF. | INITIATE CMDS 5A070,
072, OR 074 UNTIL CMD
REGISTER READS 12. | | | 41. | VERIFY CMD
REGISTER. | - | INITIATE HSP FORMAT & VERIFY CMD REGISTER READS 12. | | 42. | EXECUTE. | INITIATE CMD 5A067. | | | 43. | VERIFY FUNCTION. | | INITIATE HSP & VERIFY MASS
CHANGE MOTOR READS OFF. | | | | | | SOP 6-4 LSG TEMPERATURE INCREMENTING 6INTEGRATOR: SHORTED PREREQUISITES: occMPLETION OF INITIAL SET-UP (SOP 6-2) - occMPLETION OF TILT ADJUSTMENTS (SOP 6-3) - oPARAMETERS DG01 & DG04 STABLE | | | SOP 6-3) - oPARAMETERS | | |-----|---|--|--| | | STEP | LEO . | SYSTEMS/DATA | | 1. | NULL
SENSOR BEAM | INITIATE CADS 5A070,
072, OR 074 TO INCRE-
MENT CAD REGISTER
TO 19. | | | 2. | VERIFY
CMD REGISTER | | INITIATE HSP FORMAT & VERIFY CMD REGISTER READS 19 (FINE SERVO ON). | | 3. | EXECUTE | INITIATE CMD 5A067. | | | 4. | VERIFY FUNCTION | | INITIATE HSP FORMAT & VERIFY
DG13 READS "ON." | | 5. | SELECT VERNIER
UP (OR VERNIER
DOWN) | INITIATE C:D 5A074
TO INCREMENT C:D
REGISTER TO 17 (OR 18) | | | 6. | VERIFY
CAD REGISTER | | INITIATE HSP & VERIFY CAD
REGISTER READS 17 (OR 18)
(VERNIER UP) (OR VERNIER DOWN) | | 7. | EXECUTE | | MONITOR PARAMETER AGO1 ON CHAR
RECORDER UNTIL ITS VALUE
APPROACHES MIDSCALE. | | 8. | VERIFY DATA | | INITIATE HSP FORMAT AFTER EACH 5A067 CMD. EXECUTE AND VERIFY WHEN DG01 VALUE IS ZERO. | | 9. | STOP SCREW
SERVO | INITIATE CMDS 5A070,
072, OR 074 TO INCRE-
MENT THE CMD REGISTER
TO 12. | | | 10. | VERIFY
CMD REGISTER | | INITIATE HSP FORMAT AND VERIFY
CMD REGISTER READS 12 (TILT
MASS SERVO OFF). | | | STEP | LEO | SYSTEMS/DATA | |-----|---|---|---| | 11. | EXECUTE | INITIATE CMD 5A067 | | | 12. | VERIFY FUNCTION | | INITIATE HSP FORMAT AND VERIFY DG13 READS "OFF." | | 13. | READ ENCODERS | INITIATE CMDS 5A070,
072, OR 074 TO INCRE-
MENT CMD REGISTER TO 1 | | | 14. | VERIFY CMD
REGISTER | | INITIATE HSP FORMAT & VERIFY CMD REGISTER READS 1 (READ SHAFT ENC). | | 15. | EXECUTE | INITIATE CMD 5A067 | | | 16. | READ SHAFT
ENCODER | - | INITIATE HSP FORMAT AND DETER-
MINE & LOG SHAFT ENCODER VALUES
AND SENSOR TEMP. | | 17. | INCREMENT
TEMP | INITIATE CMDS5A070,
072, OR 074 TO INCRE-
MENT CMD REGISTER TO
25. | PREPARE A TABLE OF DG09/DG10 (SHAFT ENCODER) VS. DG04 (SENSOR TEMP). | | 18. | VERIFY CMD
REGISTER | | INITIATE HSP FORMAT & VERIFY CMD REGISTER READS 25 (TEMP INC 4). | | 19. | EXECUTE | INITIATE CMD 5A067 | | | 20. | VERIFY FUNCTION | | INITIATE HSP FORMAT & VERIFY DG11 READS TEMP RELAY 4 "SEL." (ALL OTHER RELAYS "N/SEC.") | | 21. | WAIT FOR TEMP TO
STABILIZE AT A
NEW VALUE. (≅ 3
HOURS) | l ' | INITIATE HSP FORMATS PERIODICAL UNTIL DGO4 (SENSOR TEMP) & DGO1 (SEISMIC SIGNAL VOLTAGE) HAVE STABILIZED. | | | STEP | LEO | SYSTEMS/DATA | |-----|--|--|--| | 22. | REPEAT STEPS 5
THROUGH 16 | - | | | 23. | RELAYS | INITIATE CMDS 5A070,
072, 074 TO INCREMENT
CMD REGISTER TO READ
28. | | | 24. | VERIFY CMD
REGISTER | | INITIATE HSP FORMAT & VERIFY CMD REGISTER READS 28 (TEMP RESET). | | 25. | EXECUTE | INITIATE CMD 5A067 | | | 26. | VERIFY FUNCTION | - | INITIATE HSP FORMAT AND VERIFY
DG11 READS N/SEL FOR ALL TEMP
RELAYS. | | 27. | | INITIATE CMDS 5A070,
072, OR 074 TO INCRE-
MENT CMD REGISTER TO
26. | | | 28. | VERIFY CMD
REGISTER | | INITIATE HSP FORMAT AND VERIFY CMD REGISTER READS 26 (TEMP INC 5). | | 29. | EXECUTE | INITIATE CMD 5A067 | | | 30. | VERIFY
FUNCTION | | INITIATE HSP FORMAT AND VERIFY DG11 READS TEMP RELAY 5 "SEL" (ALL OTHER RELAYS N/SEL). | | 31. | WAIT FOR TEMP TO
STABILIZE AT A
NEW VALUE (≅ 3
HOURS) | | INITIATE HSP FORMATS PERIODICAL
UNTIL DGO4 (SENSOR TEMP) & DGO1
(SEISMIC SIGNAL VOLTAGE) HAVE
STABILIZED. | | | STEP | LEO | SYSTEMS/DATA | |-----|-------------------------------|---|---| | 32. | REPEAT STEPS 5
THROUGH 19 | | | | 33. | VERIFY FUNCTION | - | INITIATE HSP FORMAT AND
VERIFY
DG-11 READS TEMP RELAY 4 "SEL"
AND TEMP RELAY 5 "SEL." | | 34. | REPEAT STEPS 21
THROUGH 22 | | · | | 35. | INCREMENT TEMP | INITIATE CMDS 5A070,
072, OR 074 AND INCRE-
MENT CMD REGISTER TO
22. | | | 36. | VERIFY CMD
REGISTER | | INITIATE HSP FORMAT AND VERIFY CMD REGISTER READS 22 (TEMP INC 1). | | 37. | EXECUTE | INITIATE CMD 5A056 | | | 38. | VERIFY FUNCTION | | INITIATE HSP FORMAT AND VERIFY DG11 READS: TEMP RELAY 1 "SEL" TEMP RELAY 4 "SEL" TEMP RELAY 5 "SEL" (ALL OTHER RELAYS N/SEL). | | 39. | INCREMENT TEMP | INITIATE CMDS 5A070,
072, 074 TO INCREMENT
CMD REGISTER TO 23. | | | 40. | VERIFY CMD
REGISTER | | INITIATE HSP FORMAT AND VERIFY CMD REGISTER READS 23 (TEMP INC 2). | | 41. | EXECUTE | INITIATE CMD 5A067 | | | | | | | | | STEP | LEO | SYSTEMS/DATA | |-----|-------------------------------|---|---| | 42. | VERIFY FUNCTION | - | INITIATE HSP FORMAT AND VERIFY DG11 READS: TEMP RLY 1 "SEL" TEMP RLY 2 "SEL" TEMP RLY 4 "SEL" TEMP RLY 5 "SEL" (ALL OTHER RELAYS N/SEL) | | 43. | REPEAT STEPS
21 THROUGH 26 | | · | | 44. | INCREMENT TEMP | INITIATE CADS 5A070,
072, AND 074 TO IN-
CREMENT CAD REGISTER
TO 26. | | | 45. | VERIFY CMD
REGISTER | | INITIATE HSP FORMAT & VERIFY CMD REGISTER READS 26 (TEMP INC 5). | | 46. | EXECUTE | INITIATE CMD 5A067 | | | 47. | INCREMENT TEMP | INITIATE CMD 5A074
TO INCREMENT AND
REGISTER TO 25. | | | 48. | VERIFY CMD
REGISTER | | INITIATE HSP FORMAT & VERIFY CMD REGISTER READS 25 (TEMP INC 4). | | 49. | EXECUTE | INITIATE CMD 5A076 | | | 50. | INCREMENT TEMP | INITIATE CMD 5A074
TO INCREMENT CMD
REGISTER TO 24. | | | 51. | VERIFY CMD
REGISTER | • | INITIATE HSP FORMAT & VERIFY CMD REGISTER READS 24 (TEMP INC 3). | | | STEP | LEO | SYSTEMS/DATA | |-----|-------------------------------|--|--| | 52. | EXECUTE | INITIATE CMD 5A067 | | | 53. | INCREMENT TEMP | INITIATE CAD 5A074
TO INCREMENT CAD
REGISTER TO 23. | | | 54. | VERIFY CMD
REGISTER | | INITIATE HSP FORMAT & VERIFY CMD REGISTER READS 23 (TEMP INC 2). | | 55. | EXECUTE | INITIATE CMD 5A067 | | | 56. | VERIFY
FUNCTION | | INITIATE HSP & VERIFY DG11 READS: TEMP RELAY 2 "SEL" TEMP RELAY 3 "SEL" TEMP RELAY 4 "SEL" TEMP RELAY 5 "SEL" (ALL OTHER RELAYS N/SEL) | | 57. | REPEAT STEPS 21
THROUGH 26 | | | | 58. | INCREMENT TEMP | INITIATE CMDS 5A070,
072, OR 074 TO INCRE-
MENT CMD REGISTER TO
27. | | | 59. | VERIFY CMD
REGISTER | | INITIATE HSP FORMAT & VERIFY CMD REGISTER READS 27 (TEMP RELAY 6). | | 60. | EXECUTE | INITIATE CMD 5A067 | | | 61. | INCREMENT TEAP | INITIATE CMD 5A074
TO INCREMENT CMD
REGISTER TO 23. | | | | | | | | | STEP | LEO | SYSTEMS/DATA | |-----|-------------------------------|--|--| | 62. | VERIFY CMD
REGISTER | - · · | INITIATE HSP FORMAT & VERIFY CMD REGISTER READS 23 (TEMP INC 2). | | 63. | EXECUTE | INITIATE CMD 5A067 | | | 64. | INCREMENT TEMP | INITIATE CMD 5A072
TO INCREMENT CMD
REGISTER TO 24. | | | 65. | VERIFY CMD
REGISTER | | INITIATE HSP FORMAT & VERIFY CMD REGISTER READS 24 (TEMP INC 3). | | 66. | EXECUTE | INITIATE CMD 5A067 | | | 67. | VERIFY FUNCTION | | INITIATE HSP FORMAT & VERIFY DG11 READS: TEMP RELAY 2 "SEL" TEMP RELAY 3 "SEL" TEMP RELAY 6 "SEL" (ALL OTHER RELAYS N/SEL) | | 68. | REPEAT STEPS 21
THROUGH 22 | | | | 69. | INCREMENT TEMP | INITIATE CMDS 5A070,
072, OR 074 TO INCRE-
MENT CMD REGISTER TO
25. | | | 70. | VERIFY CMD
REGISTER | | INITIATE HSP FORMAT & VERIFY CMD REGISTER READS 25 (TEMP INC 4). | | 71. | EXECUTE | INITIATE CMD 5A067 | | | 1 | | | | | | STEP | LEO | SYSTEMS/DATA | |-----|-------------------------------|--|---| | 72. | VERIFY FUNCTION | - | INITIATE HSP FORMAT & VERIFY DG11 READS: TEMP RELAY 2 "SEL" TEMP RELAY 3 "SEL" TEMP RELAY 4 "SEL" TEMP RELAY 6 "SEL" (ALL OTHER RELAYS N/SEL) | | 73. | REPEAT STEPS 21
THROUGH 26 | | | | 74. | INCREMENT TEMP | INITIATE CMDS 5A070,
072, OR 074 TO INCRE-
MENT CMD REGISTER
TO 27. | | | 75. | VERIFY CMD
REGISTER | | INITIATE HSP FORMAT & VERIFY CMD REGISTER READS 27 (TEMP RELAY 6). | | 76. | EXECUTE | INITIATE CMD 5A067 | | | 77. | INCREMENT TEMP | INITIATE CMD 5A074
TO INCREMENT CMD
REGISTER TO 26. | | | 78. | VERIFY CMD
REGISTER | | INITIATE HSP FORMAT & VERIFY CMD REGISTER READS 26 (TEMP RELAY 5). | | 79. | EXECUTE | INITIATE CMD 5A067 | | | 80. | INCREMENT TEMP | INITIATE CMD 5A074
TO INCREMENT CMD
REGISTER TO 24. | | | 81. | VERIFY CMD
REGISTER | | INITIATE HSP FORMAT & VERIFY CMD REGISTER READS 24 (TEMP RELAY 3). | | | | - | • | |-----|-------------------------------|--|---| | | STEP | LEO | SYSTEMS/DATA | | 82. | EXECUTE | INITIATE CMD 5A067 | | | 83. | INCREMENT TEMP | INITIATE CMD 5A074 TO INCREMENT CMD REGISTER TO 23. | | | 84. | VERIFY CMD
REGISTER | : ` . | INITIATE HSP FORMAT & VERIFY CMD REGISTER READS 23 (TEMP RELAY 2). | | 85. | EXECUTE | INITIATE CMD 5A067 | | | 86. | VERIFY FUNCTION | | INITIATE HSP FORMAT & VERIFY DG11 READS: TEMP RELAY 2 "SEL" TEMP RELAY 3 "SEL" TEMP RELAY 5 "SEL" TEMP RELAY 6 "SEL" | | 87. | REPEAT STEPS
21 THROUGH 22 | | | | 88. | INCREMENT TEMP | INITIATE CMDS 50070,
072, OR 074 TO INCRE-
MENT CMD REGISTER
TO 25. | | | 89. | VERIFY CMD
REGISTER | | INITIATE HSP FORMAT & VERIFY CMD REGISTER READS 25 (TEMP RELAY 4). | | 90. | EXECUTE | INITIATE CMD 5A067 | | | 91. | VERIFY FUNCTION | | INITIATE HSP FORMAT & VERIFY DG11 READS: TEMP RELAY 2 "SEL" TEMP RELAY 3 "SEL" TEMP RELAY 4 "SEL" TEMP RELAY 5 "SEL" TEMP RELAY 6 "SEL" | (TEMP RELAY 1 "N/SEL") | | | | • | |-----|-------------------------------|--|---| | | STEP | LEO | SYSTEMS/DATA | | 92. | REPEAT STEPS
21 THROUGH 22 | | | | 93. | PLOT TEMP DATA | - | PREPARE A GRAPH OF SENSOR TEMPS VS. FINE ENCODER VALUES. DETERMINE TEMP RELAY SETTING CORRESPONDING TO THE VERTEX OF THE PARABOLIC CURVE DESCRIBED BY THE PLOT. | | 94. | SET INVERSION
TEMP | INITIATE CMDS 5A070,
072, OR 074 TO INCRE-
MENT THE CMD REGISTER
AS REQUIRED TO SET
TEMP RELAYS AS DETER-
MINED FROM STEP 93. | VERIFY CMD REGISTER BEFORE EACH 5A067 EXECUTE. | | 95. | REPEAT STEPS
21 THROUGH 22 | | | | | | • · · · · · · · · · · · · · · · · · · · | | | | | | | | | | | | SOP 6-5 FINAL INSTRUMENT SETUP PREREQUISITES: COMPLETION OF SOPs 6-1, 6-2, 6-3, & 6-4 | | STEP | LEO | SYSTEMS/DATA | |-----|------------------------------|--|---| | 1. | | INITIATE CADS 5A070,
072, OR 074 TO INCRE-
MENT CAD REGISTER TO 3 | | | 2. | VERIFY C.D
REGISTER | | INITIATE HSP FORMAT & VERIFY
CMD REGISTER READS 3 (BIAS IN) | | 3. | EXECUTE | INITIATE G-D 5A067. | | | 4. | VERIFY FUNCTION | | VERIFY FROM CHART RECORDER THAT SEISMIC OUTPUT CHANGES. | | 5. | POST AMP GAIN ADJUSTMENT | INITIATE CEDS 5A070,
072, OR 074 TO INCRE-
MENT CED REGISTER
TO 29. | | | 6. | VERIFY CAD
REGISTER | | INITIATE HSP FORMAT & VERIFY CAD REGISTER READS 29 (POST AMP GAIN INCREMENT). | | 7. | EXECUTE | INITIATE CAD 5A067
FOR EACH GAIN INCREAS
INCREMENT DESIRED. | SE. | | 8. | SEISAIC GAIN
AS REQUIRED. | INITIATE CADS 5A070,
072, OR 074 TO INCRE-
MENT CAD REGISTER
TO 8. | | | 9. | VERIFY COMMAND
REGISTER | | INITIATE HSP FORMAT & VERIFY CAD REGISTER READS 8 (SEISMIC HIGH GAIN). | | 10 | . EXECUTE | INITIATE C.D 5A067 | | | :11 | . VERIFY FUNCTION | | VERIFY FROM CHART RECORDER THAT SEISAIC OUTPUT HAS INCREASED. | | | STEP | LEO | SYSTEMS/DATA | |-----|-----------------------------|---|---| | 12. | INTEGRATOR
NORMAL | INITIATE CADS 5A070,
072, OR 074 TO INCRE-
MENT CAD REGISTER TO
5. | | | 13. | VERIFY CAD
REGISTER | | INITIATE HSP FORMAT & VERIFY CMD REGISTER READS 5 (INTG, NORM). | | 14. | EXECUTE | INITIATE CAD 5A067 | | | 15. | VERIFY FUNCTION | | VERIFY FROM CHART RECORDER THAT TIDAL OUTPUT DEPARTS FROM ZERO AND FREE MODE GOES OFF SCALE. (40 MINUTE RESPONSE PERIOD TO RETURN TO ON SCALE.) | | 16. | TURN OFF COMMAND
DECODER | INITIATE CAD 5A071 | ` | | 17. | VERIFY FUNCTION | • | INITIATE HSP FORMAT & VERIFY COMMAND REGISTER (DG-19) READS "NO FUNCTION." | | | | | | | | | | | | Manager Land | | | PAGE 1 OF 1 |
--|--|-------------------|---| | NO. | LEO | SYSTEMS/DATA | COMPANIE | | | | VERIFY | COMMENTS AM-12 AND AM-13 ZERO | | | OCT 123, 132, 134 | * | BM-20 | | Marine and American State of the th | CYCLIC MODE
OCT 124, 133, 134
FIL 2 ON | - | | | | OCT 123 , 133, 134
124 125 | | NOV 2 1 1972 | | | | 7,134 DISCRIMINAT | of Low command (FELDIMENT) | | - | FIXED MODE
OCT 123, 125, 134
FIL 1 ON | | | | <u> </u> | OCT 124, -125 , 134 | | Dra - 20 & Dra - 19 | | 3 | | VERIFY FILAMENT | PILAMENT CURRENT IC 100 m A | | | 001 12), 124, 134 | | PINED | | 4 | RECONFIGURE EXP. TO DESIRED CONDITION | | CYCLIC MODE CMD AND FIXED MODE CMD ARE MULTIFUNCTIONAL. | | Account of the second | Same of the o | | | | | Marganet Co. | | | | | | | | | | | | | 1 OF 1 | |------------|---|--|--| | NO. | LEO | SYSTHMS/DATA | COMMENTS | | AFTER | DEPLOYMENT | | The second of th | | 1 | LMS ON OCT 036. | VERIFY HV OFF AND BAKE
OUT HTR OFF. | 10-WATT DECREASE IN RESERVE POWER. (CMDs 125, 133, & 134). | | 2 | LMS OFF OCT 041. | | 10-WATT INCREASE IN RESERVE POWER. | | AFTER | LSP DETONATIONS | | | | 3 | LMS ON OCT 036. | | 10-WATT DECREASE IN RESERVE
POWER. | | 4 | DUST COVER GO
OCT 127, 132, 134. | VERIFY COVER GO. | DM-17 | | 5 | BAKE-OUT HTR ON OCT 125, 132, 134. | VERIFY HTR ON. | DM-18 | | 6 | LMS STBY OCT 37. | | | | | REPEAT STEPS 3, 5, & 6 EVERY 3 HOURS FOR A TOTAL OF 9 HOURS | READ ION PMPATEMP
WHEN LMS IS ON. | AM-06 AND AM-05 NOV 2 1 1972 MISSION RULE 32-2-C | | 8 | AFTER 9 HOURS OF BAKE-
OUT, TURN LMS ON OCT
036. | | | | 8 A | | RAYL OUT HEATER OFF
READ ION PMP PRESS. | AM-03 AND AM-04 | | 10 | ION PMP OFF - AM -03
OCT 132, 133, 134 | 40.3mA | | | NEAR . | SUNSET | | AM-05 = +10°C AM-03 < 0.3.4A | | 11 | SELECT FIXED MODE
OCT 123, 125, 134 | | REQUIRES AM-05 < 0°C AND AM-03 < 0.3 µA | | 2 | SELECT FIL #1
OCT 123, 133, 134 | VERIFY, ON HSP. | | | 13 | CMD HV ON
OCT 123, 124, 134 | VERIFY HV ON AND
SCIENCE DATA. | | | | | I | | PAGE 1 OF 1 | \ | ry II start i intermentati untertatat atta stario anternativa anternativa de participa de seculos d | | PAGE 1 OF 1 | |----------------|--|-----------------|--| | NO. | LEO | SYSTEMS/DATA | COMMENTS | | 1 | LOCK SWEEP
OCT 123, 125, 134 | VERIFY | | | | J-PLATE STEP EN OCT 124, 133, 134 | Disc Hegh | | | 3 | SW STEP
OCT 123, 127, 134 | | SEND NUMBER OF TIMES REQUIRED TO GET TO PROPER STEP. | | 4 | J STEP
OCT 123, 125, 134 | | SEND NUMBER OF TIME REQUIRED. | | 5 | J-PLATE STEP INH
OCT 125, 127, 134 | | | | 6 | HV ON
OCT 123, 124, 134 | DNA-19 NOV 2119 | 72 | | ACTIVIST. | of statements. | | | | | | | | | | | - | | | PAGE 1 OF 1 | |-------------|-------------|--|--------------|----------------------------------| | . • | STEP
NO. | LEO | SYSTEMS/DATA | COMMENTS | | - | 1 | EMISSION OFF
OCT 123, 132, 134 | VERIFY | 111-12-1110-111-13-2ERO
DM-20 | | | Military | SELECT REDUNDANT
FIL | -
- | | | | | OCT 123, 133, 134
(FIL #1)
OCT 124, 125, 134
(FIL #2) | | | | ,
- | _2 | (FIL #2) | | | | | | -0CT-123, 124, 134 | | | | | · | • · · · · · · · · · · · · · · · · · · · | | | | • | | | | | | | wallis. | | • | | | (| Mary market | - | | | | | | | | | | | | in the same | wice | | | | | Silling. | SHI SA | | | | | | | | | | | | Lucana | THERM ROLLVALLOW | |
PAGE 1 OF 1 | |-------|--------------|--|------------------------------------|--| | eser" | STEP
NO. | TEO . | SYSTEMS/DATA | COMMENTS | | | AFTER | DEPLOYMENT | | The state of s | | | 1 2 | LEAM ON OCT 042.
LEAM CALS OCT 111. | OBTAIN HSP AND CHECK
ENG. DATA. | 3-WATT DECREASE IN RESERVE
POWER. LEAVE ON FOR 2 HOURS. | | | 3 | LEAM OFF OCT 044. | | 3-WATT INCREASE IN RESERVE POWER. | | | AFTER | LSP DETONATIONS | | | | - | 4 | LEAM ON OCT 042. | VERIFY LEAM ON. | 3-WATT INCREASE IN RESERVE
POWER | | | 5 | MIRROR CVR GO OCT 112 | VERIFY CVR GO ON HSP. | • • • | | | <u>48-E0</u> | RS AFTER SUNSET | | | | | 6 | SENSOR CVR GO OCT 114. | | | | | | | • | | | ! | | | | | | | | | | | | | | | | | | | • | | • | *
= # | | | | en e | | | | | • | ` | • | | | | | | | | | | | | | | | 1 | 1.
1 | | | | | | | | • | | ALSEP CH BASIC PAGE 1 OF 2 LSP EXPLOSIVE PACKAGE DETONATION LISTENING MODE TEQUISITES: 1. VERIFY THAT ALL ANALOG RECORDERS HAVE NEW ROLL OF PAPER & INK. 2. VERIFY 6.3 WATTS RESERVE PWR | Margaret S. | | WALLD TURNET THE | | |--|---|---|--| | STEP
NO. | I.EO | SYSTEMS/DATA | COMMENTS | | | INITIATE CMD 055 (LSP
OPER SEL). | ON C/S HSP VERIFY 5.3
WATT DECREASE IN RE-
SERVE POWER. ANNOTATE
CMD ACTION ON C/S
ANALOG RECORDER. | Coord on the Co | | FG | INITIATE CMD 156 (LSP
PULSES ON). | ON C/S HSP VERIFY O.7 WATT DECREASE IN RE- SERVE POWER. ANNOTATE CMD ACTION ON C/S ANALOG RECORDER. | CODED FIRE PULSES MUST BE RECEIVED BY EXPLOSIVE PACKAGE FOR DETONATION WHEN TIMERS TIME-OUT. DP-20 ONCE EVERY 29 SC. SWITCHEL FROM ONE TO RESO | | Zr. | INTENDED LSP FORMAT MODE SEL CMD. | | BIT RATE OF 3533 BPS IN THE NORMAL DATA RATE LSP FMT MODE. | | 43 | IF SYSTEM IS IN LOW BIT RATE, INITIATE CMD 006 (NOFMAL BIT RATE SEL). | | NORMAL OPERATION IS DP FORMAT-
TING AND NORMAL BIT RATE. | | Bq | | SELECT LSP FORMATS 4 OR 5 ON RECORDER NO. 2 AND FORMAT 6 ON RECORDER NO. 3. ANNOTATE RECORDERS. | | | 6 | INITIATE CMD 170 (LSP
GEO CAL), AS REQUIRED | ANNOTATE CMD ACTION
ON RECORDERS NO. 2
AND NO. 3 | | | general de la constantina della dell | | ANNOTATE CMD ACTION ON RECORDERS NO. 2 AND NO. 3. | LOW GAIN DECREASES THE NORMAL
GEOPHONE GAIN BY A FACTOR
OF 10. | FORWAT FOREMAT NOV 211972 FORMAT LSP EXPLOSIVE PACKAGE DETONATION LISTENING MODE PAGE 2 OF 2 TREQUISITES: 1. VERIFY THAT ALL ANALOG RECORDERS HAVE NEW ROLL OF PAPER & INK. | 2. | VERIFY | 6.3 | WATTS | RESERVE | PWR | |----|--------|-----|-------|---------|-----| |----|--------|-----|-------|---------|-----| | No. | and the second | Z. VERLET C.5 | WAITS RESERVE PWR | | |--|---|---|--|--| | - 1 | TEP
VO. | LEO | SYSTEMS/DATA | COMMENTS | | , inimes | 8 | NOTIFY NETWORK TIME
OF INTENDED DP FORMAT-
TING MODE CMD. | | DETONATION OF ALL EXPLOSIVE
PACKAGES SHOULD HAVE OCCURRED | | The same of sa | 9 | FORMAT ON). | ANNOTATE CMD ACTION ON RECORDERS NO. 2 AND NO. 3. | | | | 10 | | VERIFY DP FORMAT LOCK-
UP AND SET ALL DRUMS
AND RECORDERS TO PRE-
LSP MODE FORMATS. | BIT RATE IS 1060 BPS. | | Manny | 11 | INITIATE CMD 162 (LSP
PULSES OFF). | ON C/S HSP VERIFY O.7 WATT INCHEASE IN RESERVE POWER. ANNOTAT CMD
ACTION ON C/S ANALOG RECORDER. | Step as not
necessary command
B 057 | | and the second | 12 | INITIATE CMD 057 (LSP
OFF SEL). | ANNOTATE CMD ACTION ON C/S ANALOG RECORD- ER.' VERIFY 5.3 WATT INCREASE IN RESERVE POWER. | LSP HAS NO STANDBY HEATERS
AND WILL NOT BE COMMANDED TO
STANDBY. | | | 13 | CHECK TEST COMPLETE ON WORK SCHEDULE AND LOG ANOMALIES. | | _ | | Manner | o de la companya | _ | | • | | L | | | | | | SIEP
NO. | LEO | SYSTEAS/DATA | COMMENTS | |-------------|--|---|--| | 1 - | | ON C/S HSP VERIFY 5.3
WATT DECREASE IN RE-
SERVE POWER. ANNOTATE
CMD ACTION ON C/S
ANALOG RECORDER. | | | 2 | OF INTENDED LSP FOR-
MAT MODE SEL CMD. | | BIT RATE OF 3533 BPS IN THE NORMAL DATA RATE LSP FMT MODE. | | 3 | IF SYSTEM IS IN LOW
BIT RATE, INITIATE
CHD 006 (NORMAL BIT
RATE SEL). | | NORMAL OPERATION IS DP FORMAT-
TING AND NORMAL BIT RATE. | | 4 | INITIATE CMD 003 (LSP FORMAT ON). | SELECT LSP FORMATS 4 OR 5 OH RECORDER NO. 2 AND FORMAT 6 ON RECORDER NO. 3. ANNOTATE RECORDERS. | RECORDER SPEED IS 10 MM/SEC. | | 5 | INITIATE CMD 170 (LSP
GEO CAL). | ANNOTATE CMD ACTION ON RECORDERS NO. 2 AND'NO. 3. | | | 6 | INITIATE CMD 163 (LSP GAIN NORM) AND CMD 164 (LSP GAIN LOW), AS REQUIRED. | ON RECORDERS NO. 2 | LOW GAIN DECREASES THE NORMAL GEOPHONE GAIN BY A FACTOR OF 10. | | 7 | INITIATE CMD 170 (LSP GEO CAL). | ANNOTATE CMD ACTION ON RECORDER NO. 2 | | | 8 | NOTIFY NETWORK TIME
OF INTENDED DP FORMAT-
TING MODE CMD. | | LSP FORMATTING MODE ON TIME WILL BE APPROXIMATELY 30 MINUTES. | | | INITIATE CMD 005
(DP FORMAT ON). | ANNOTATE CMD ACTION ON RECORDERS NO. 2 AND NO. 3. | | | | | | | | | The artists of the state t | | | |-----------------------|--|--|--| | NO. | LEO | SYSTEAS/DATA | COMMENTS | | 10 | | VERIFY DP FORMAT LOCK-
UP AND SET ALL DRUMS
AND RECORDERS TO PRE-
LSP MODE FORMATS. | THE COLUMN CONTRACTOR OF THE PROPERTY OF THE PARTY | | and the second second | INITIATE CMD 057 (LSP OFF SEL). | AMMOTATE CMD ACTION ON C/S ANALOG RECORD- ER. VERIFY 5.3 WATT INCREASE IN RESERVE POWER. | LSP HAS NO STANDBY HEATERS
AND WILL NOT BE COMMANDED TO
STANDBY. | | 12 | CHECK TEST COMPLETE
ON WORK SCHEDULE AND
LOG ANOMALIES. | | | | | | | • | | on the second | | | • | | | | | | | | | | | | Montage, | | | | | nggggara a s | | | | ## NOV 20 1972 | B.07.4. | . Brigger opping Agency & | *** | | NUV 2019/2 | |---------|---------------------------|---|--|--| | | TEP
!O. | LEO | Systicas/data | COMMENTS | | | 1 | | READ RES. PWR | | | | 2 | CAD HFE TO STBY | READ RES. PWR IN STBY | CMD 046 | | | 3 | CMD HFE TO OFF | READ RES. PWR IN OFF | CHD 050 | | | 4 | A. IF STBY PWR GREAT
DECREASES TO 250° | R THAN 4 WATTS, CAD HE
THEN CAD TO STBY UNI | E ON. LEAVE ON UNTIL TEMP
LL LUNAR SUNRISE. | | | | B. IF STBY PWER LESS
EVER IS MAXIMUM P | THAN 4 WATTS, CAD HEE | TO EITHER STBY OR ON WHICH- | | | | NOTE | DAY NIC
HFE ON 3.9W 10. | - | | | | | HFE STBY 4.2W 4. | 2W. | | | | | | | | | .] | | | e e e e e e e e e e e e e e e e e e e | | | | | | | | | | | | • | | | • | ÷ | : | | | | | | | | | | | | | | | | | | | garenne
garengi kan manan | | | | | | • | | | | B. B. B. Wall and Supplied | | The second secon | | | | | | | ALSEP CONSOLE HANDBOOK APOLLO 12, ALSEP 1 THROUGH APOLLO 17, ALSEP E MAY 15, 1971 FCD MSC NASA