Bendix	

Aerospace Systems Division ASE/CE 16 Ch. Multiplexer-A/D Converter Reliability Prediction And Failure Mode, Effects & Criticality Analysis

NÓ. REV. NO. ATM-912 1 PAGE . OF DATE 8/20/70

This ATM documents the Reliability Prediction and Failure Modes Effects & Criticality Analysis of the Bendix designed ASE/CE 16CH Multiplexer-A/D Converter. The analysis reflects the final flight configuration for the Array D ALSEP System.

-7

Prepared by

Rodney. allaire Rodney J. Dallaire ALSEP Reliability Dept.

Approved by

S. J. Ellison

ALSEP Reliability Manager

—	1	[HO.	REV. NO.
Bendix		ATM 912 ·	
Aerospace	ASE/CE 16 Ch. Multiplexer-A/D Converter Reliability Prediction And Failure Mode, Effects & Criticality Analysis	PAGE	of <u>16</u>
Systems Division	4	DATE 8/20/	70

1.0 INTRODUCTION

The results of the Reliability Prediction and the Failure Mode, Effects, & Criticality Analysis for the ALSEP Array D ASE/CE 16 Channel Multiplexer-A/D Converter are documented in this report. This M & A/D represents the Bendix Designed unit which makes extensive use of SSI and MSI integrated circuits and was integrated with the Active Seismic Experiment Central Electronics.

The Reliability Prediction for the 16 Channel Multiplexer is .99995 and the Reliability Prediction for the A/D Converter is .99993. The overall reliability of the M & A/D is calculated to be .99989.

2.0 CIRCUIT DESCRIPTION

Figure 1 presents a Functional Block Diagram of the M & A/D. This diagram is included to clarify the terms and discriptions given in the Failure Mode, Effects, & Criticality Analysis portion of this ATM (Tables II & III). The numbers in each box correspond to the Circuit/ Function Item Number listed in the FMECA. Thus a clear picture may be obtained of the inter-relationships between Circuit Functions and Failure Mode Effects.

The Multiplexing Gates are the same is those used on the Array A2 and Array D 90 Channel Multiplexer, and the A/D Converter is exactly the same design as the Array D Converter except a set of Buffer-Inverters that have been added for output phase compatibility. With the above considerations, full operational capability can be confidentally expected of the Bendix Redesigned ASE/CE M & A/D.

3.0 RELIABILITY PREDICTION

The Reliability Prediction for the 16 Channel Multiplexer is .9999510 and the A/D Converter Prediction is .9999343. The overall reliability for the M & A/D is calculated to be .9998853, which is approximately equal to the design goal of .99990. The above predictions are based on an intended lunar mission of launch, deployment, and 30 hours operation and 8730 hours standby. Figure 2 defines the Reliability Block Diagram and Mathematical Model for the Multiplexer and A/D Converter.

.

•

•

Figure 2, ASE/CE M&A/D Operational Block Diagram

Aerospace Systems Division

ASE/CE 16 Ch. Multiplexer-A/D Converter Reliability Prediction and Failure Mode, Effects & Criticality Analysis

1 NO.	REV. NO.
ATM 912	
PAGE	of <u>16</u>
DATE	

The failure rates for each functional component identified in Figure 2 are tabulated in Table I. The failure rates shown represent composite totals derived from the part application stress ratios of each electronic piece part. The application reflects the anticipated "use" environment.

TABLE I

FAILURE RATE SUMMARY

	λ_{ai} (%1000	λ _{si} (%/1000
Assembly	Hrs.) Operating	Hrs.) Standby
16 Ch. Multiplexer	.041800	.000418
A/D Conv., Analog Board	. 035321	. 000353
A/D Conv., Digital Board	. 020710	. 000207
Totals	. 097831	.000978

Reliability Calculations

R Mux	=	$\epsilon^{-\lambda_1} + \lambda_2 + \lambda_3 + \lambda_4 + \lambda_5)t = \epsilon^{-(.0418)(30 + 87.3) \times 10^{-5}}$
	=	.9999510
R _A /D	.	$\epsilon^{-(\lambda_{6} + \lambda_{7})t} = \epsilon^{-(.056031)(30 + 87.3) \times 10^{-5}}$
	=	. 9999343
R _{Total}	=	$R_{Mux} \cdot R_{A/D} = .9998853$ (Probability of no failure)
R _{Ge} o	Ξ	$\begin{bmatrix} 1 - 3\lambda^{2}, t^{2} \end{bmatrix} e^{-(\lambda 5 + \lambda 6 + \lambda 7)t} = \begin{bmatrix} 1944347 \times 10^{-10} \end{bmatrix}$ $e^{-(.06983)(117.3) \times 10^{-5}}$
R _{Geo}	=	.999928 (Probability of no more than one geophone channel failure)

Bendix	

Aerospace Systems Division ASE/CE 16 Ch. Multiplexer-A/D Converter Reliability Prediction and Failure Mode, Effects & Criticality Analysis

NO. Atn	1-912	
PAGE _	<u>6</u> or <u>16</u>	
DATE	8/20/70	

3.0 FAILURE MODES, EFFECTS & CRITICALITY ANALYSIS

The failure mode and effects analysis for the M&A/D are documented in Tables II and III. Table II describes the functional failure modes and the resultant effects on the end item and system level. Table III delineates the failure modes at the piece part level. Each identified failure is numerically itemized for cross reference between Tables II and III, and Figure 2. (Note: the cross reference must be correlated by Assembly).

The failure probabilities reflect the identified line item. The criticality ranking lists by order of magnitude, the highest down to the lowest failure probabilities. Table II lists criticalities by circuit/function, while Table III lists the criticality sub-ranking within each circuit/ function item. With this method, the highest order criticalities are easily identified both by circuit/function levels and by discrete part levels.

The format of Tables II and III is designed to provide the reader with a narrative description of the varying types of failures that could occur, combined with the resultant performance characteristics. This information is useful to system support in performing fault isolation. should an anomally occur.

The Failure Modes Effects and Criticality Analysis has shown that there are no ALSEP Single Point Failures in the M&A/D. There is one failure mode, however, which constitutes an ASE Single Thread Failure Mode. All 16 channels will be lost if a short occurs in the second tier MOS FET gate package. There is absolutely no way to eliminate this failure mode since all multiplexers, regardless of the number of tiers, will have a finial MOS-FET gate which can fail shorted. This failure mode is identified in Table 4, Section 6, of the Failure Mode Effects and Criticality Analysis. An intensive design effort has been made by Bendix to insure a reliable design, especially in the area of multiplex channel losses. Previous experience with the Dynatronics design has shown that 15 or 16 channels were usually lost when only one component in one channel had failed. Bendix has investigated tiering to minimize these multiple channel losses. The selected design was determined to be the best design.

The selected design was also shown to have the highest reliability with respect to preserving at least two of the three Geophone channels. This is an important criteria for two reasons.

Bei	ndix
-	
Contraction of the second	The output the second

Aerospace

Systems Division

ASE/CE 16 Ch. Multiplexer-A/D Converter Reliability Prediction and Failure Mode, Effects & Criticality Analysis

NÓ. REV. NO. ATM-912 PAGE 7 OF DATE 8/20/70

- 1) The Geophone channels are considered to be the most important from a data standpoint. Some engineering data may be returned if two or the three channels are operating while no useful engineering data is returned if more than one Geophone channel fails.
- The Geophone channels provide a good cross section of the 16 channels and indicate the reliability of the complete 16 channel system.

5.0 RELIABILITY ASSESSMENT

The purpose of performing a reliability prediction and failure modes analysis is to identify inherent design weaknesses. From the results of these analyses it has been concluded the reliability and design objectives have been fully satisfied.

•				SYSTEM PPEPARED BY	N	REV.
				ALSEP R. J. Dallair END ITEM ASE/CE 234670		L
	FAILURE MODE, EFFE	CT & CRITICALITY AN	NALYSIS	ASS'Y 16 Ch. MUX 234671	DATE	0/70
CIRCUIT			EFFECT C	F FAILURE	FAILURE	CRITIC-
CR FUNCTION	ASSUMED FAILURE MODE	CAUSE OF FAILURE	END ITEM	S YSTEM	PROBABILITY Q x 105	ALITY
1.0 First Tier Channel	1.0 Failure as Shown Below	1.0 Electrical Failure	1.0 ASE MUX Affected as Shown	1.0 Output Affected as Shown	. 00300	3
Encoder	 1.1 One First Tier MOS FET Gate in Each of the Four MOS-FET Chips is Always "On". 	1.1 Output of SN54L20 Fails High	1.1 (3 of 4 Channels of each First Tier MOS FET Chip will be Lost	1.1 Loss of 12 Channels		
	1.2 One First Tier MOS FET Gate in Each of the Four MOS-FET Chips is Always "Off".	1.2 Output of SN54L20 Fails Low	1.2 One Channel From each First Tier MOS Chip Lost	1.2 Loss of 4 Channels		
	1.3 First Tier MOS FET Gate Always "Off".	1.3 Input Fails Open or Short	1.3 One Channel From each First Tier MOS Chip Lost	1.3 Loss of 4 Channels		
2.0 Second Tier Chan- nel Encod- er	2.0 Failure as Shown Below	2.0 Electrical Failure	2.0 ASE MUX Affected as Shown	2.0 Output Affected as Shown	. 00300	3
	2.1 Second Tier MOS FET Gate Always ''On''	2.1 Output of SN54L20 Fails High	2.1 3 of 4 First Tier MOS Chip Lost	2.1 Loss of 12 Channels		
	2.2 Second Tier MOS FET Gate Always "Off"	2.2 Output of SN54L20 Fails Low	2.2 One First Tier MOS Chip Lost	2.2 Loss of 4 Channels		
	2.3 Second Tier MOS FET Gate Always "Off"	2.3 Input Fails Open or Short	2.3 One First Tier MOS Chip Lost	2.3 Loss of 4 Channels		
3.0 First Tier MOS FET Gate Drive rs	3.0 Failure as Shown Below	3.0 Electrical Failure	3.0 ASE MUX Affected as Shown	3.0 Output Affected as Shown	. 00240	S
	3.1 Driven MOS FET Always "Off"	3.1 Driver Output Fails High	3.1 One Channel From each First Tier Chip Lost	3.1 Loss of 4 Channels		
	3.2 Driven MOS FET Always "On"	3.2 Driver Output Fails Low	3.2 3 of 4 Channels From Each First Tier Chip Lost	3.2 Loss of 12 Channels		

President reference de	FAILURE MODE, EFFE	ECT & CRITICALITY AN	NALYSIS	SYSTEM ALSEP END ITEM ASE/CE ASS'Y 16 Ch. MUX BPFPARED BY R. J. Dallair. 234670 234671 DWG NO. 234671	00 PAGE 9 of 16
CIRCUIT OR FUNCTION	ASSUMED FAILURE MODE	CAUSE OF FAILURE	EFFECT (CF FAILURE SYSTEM	FAILURE CRITIC- PRCBABILITY Q x IC ⁵ ALITY
4.0 Second Tier MOS FET Gate Drivers	4.0 Failure as Shown Below	4.0 Electrical Failure	4.0 MUX Affected as Shown	4.0 Output Affected as Shown	. 00240 5
	4.1 Driven MOS FET Always "Off"	4.1 Driver Output Fails High	4.1 One First Tier MOS Chip Lost	4.1 Loss of 4 Channels	
	4.2 Driven MOS FET Always . "On"	4.2 Driver Output Fails Low	4.2 3 of 4 First Tier Chips Lost	4.2 Loss of 12 Channels	
5.0 First Tier FET	5.0 Failure as Shown	5.0 Electrical Failure	5.0 MUX Affected as Shown	5.0 Output Affected as Shown	. 00600 ,
	5.1 Loss of a Gate on Chip	5.1 Short Source-Gate or Any Open	5.1 Loss of 1 Channel	5.1 Loss of 1 Channel	
	5.2 Loss of MX02D Chip	5.2 Short Drain-Substrate, Source-Substrate, Drain- Gate, or Gate-Substrate	5.2 Loss of 4 consecutive Channels	5.2 Loss of 4 Channels	
	5.3 Loss of Other Gates on Chip	5.3 Short Drain-Source	5.3 Loss of 3 Consecutive Channels	5.3 Loss of 3 Channels	
	5.4 Loss of MX02D Chip	5.4 Short Drain-Substrate of Used Gates	5.4 Loss of 4 Consecutive Channels,	5.4 Loss of 4 Channels	
6.0 Second Tier FET	6.0 Failure as Shown	6.0 Electrical Failure	6.0 MUX Affected as Shown	6.0 Output Affected as Shown	. 00600 1
	6.1 Loss of Gate on Chip	6.1 Short Source - Gate or Any Open	6.1 Loss of reer, ith channel	6.1 Loss of 4 Channels	
	6.2 Loss of MX02D Chip	6.2 Short Drain-Substrate, Source-Substrate, Drain Gate, or Gate-Substrate	6.2 Loss of all channels	6.2 Loss of all Channels	
	6.3 Loss of Other Gates on Chip	6.3 Short Drain-Source	6.3 Loss of All Channels	6.3 Loss of 12 Channels	
	6.4 Loss of MX02D Chip	6.4 Short Drain-Substrate of Unused Gates	6.4 Loss of All Channels	6.4 Loss of all Channels	

		(
	FAILURE MODE, EFFE	TABLE II ECT & CRITICALITY AN		SYSTEM PPEPARED BY ALSEP R. J. Dallain END NEM CWG NO. ASE/CE 234670 ASSYY WG NO. A/D ConvAnalog Brok 234671	0 PAGE 15 DATE	
	ASSUMED FAILURE MODE	CAUSE OF FAILURE		F FAILURE SYSTEM	FAILURE PROBABILITY Q x 10 ⁻⁵	CRT ALI
1.0 Oscillator- Clock	1.0 Oscillator Fails as Shown	1.0 Failure of Discrete Parts or Integrated Circuits	1.0 Clock Affected as Shown	1.0 Output Affected as Shown	.007313	2
	1.1 Oscillator Fails to Provide Output	 1.1 Short or Open R1, R2, R3, R4, R5, C1, C2, Y1, or Failure of NGIA, NGIB, NGIC 	1.1 Loss of Clock to Counters	1, 1 Output will be Frozen		
	1.2 Oscillator Frequency Drift	1.2 Crystal (Y1) Parameter Drift	1.2 Counters Will Count at Wrong Speed	1.1 Output Slightly High or Low		
2.0 Input Buffer	2.0 Buffer Fails as Shown	2.0 Failure of I.C. or Capacitor as Shown	2.0 Analog Input Affected	2.0 Output Affected as Shown	.004507	4
	2.1 Loss of Input to Comparator	2.1 Short C4, Failed Output of LM102	2.1 Analog Input Appears High or Low	2.1 Output all 1's or 0's		
	2.2 Offset Input to Comparator	2.2 Input Offset Drift of LM102	2.2 Offset Input Voltage	2.2 Slight Error in Output		
	2.3 Noise to Input of Comparator	2.3 Open C4	2.3 Chance of Small Errors in Conversion	2.3 Occassional Error in Output		
(Compares	3.0 Comparator Fails as Shown	3.0 Failure of Discrete Parts or I.C.'s	3.0 Ramp Comparison Affected	3.0 Output Affected as Shown	.004833	3
Ramp Vol- tage to Analog Input	3.1 Loss of Command Latch Signal	3.1 Open R5, R13, or short R6, C7, or failure of LM111, X5.	3.1 Counters Will Count Erron- eously	5.1 Output will be Random or All Zeros		
	3.2 Comparator Will Switch too Soon or too Late	3.2 LM111 Input Offset Drift	3.2 Count Will be Slightly too High or too Low	3.2 Output will be Slightly High or Low		
	3.3 Noise in Comparator	3.3 Open C5 or short R12	3.3 Chance Count Will be Low	3.3 Occasional Slightly Low Output		

.

.

	•		•		TABLE I		SYSTE END IT	ALSEP	PRFPARED BY R. J. Dallaire DMG NO-		
	FA	ILURE	MODE, EFF	EC	F & CRITICALITY AN	NALYSIS	858 Z	ASE/CE	234670		<u>cf 16</u> 70
CIRCUIT OR FUNCTION		ASSUMED	FAILURE MODE		CAUSE OF FAILURE	EFFECT C		Contraction of the local division of the loc			
4.0 Ramp Generator	\$.0	Ramp Gen Shown	nerator Fails as Show	n4. 0	Failure of Discrete Devices or I. C.	4.0 Ramp Generator Affected as Shown	4.0 (Dutput Affected	M. i	Q × 10 ⁻⁵	1
	4.1	Ramp Ger Function	nerator Will Cease to	4.1	Open or Short R8, R9, R10, R11, R14, R15, C3, CR2, Q1 Open R7, or LM107 Failure	4. l Counter Will Not Turn Off	4,1 (Dutput Will Be 1	Random		- -
	4.2	Incorrect	Ramp Slope	4, 2	Drift of CR2, R8, R9, R10, R11, C3, or Input Offset Drift of LM107	4.2 Counter Turned Off too Soon or too Late	4.2 (Output Slightly (High or Low		
	4.3	Excess C	urrent in Zener CR1	4.3	Short R7	4.3-12V Supply May Be Shorted	l v	Possible Loss overter (Will Ca Switch to Redun Converter)	use PDU to	-	
5.0 Power Supply Noise	5.0	On-Board as Shown	Supplies Affected	5.0	Failure of Capacitors as Shown	5.0 On-Board Supplies Affected As Shown	5.0 (Output Affected	as Shown	.000804	5
	5.1	Loss of -	12V or +5V Lines	5.1	Short C8 or C9	5.1 Loss of One MUX - A/D Conv.	5.1	Loss of One A/	D Converter		
	5.2	Noise on Lines	+12V, -12, or 5V	5.2	Open C6, C7, C8, or C9	5.2 Chance Erroneous Count	5.2 (Occasional Outj	put Error		
	5.3	Loss of +	12V Line Capacitor	5.3	Short C6 or C7	5.3 No Effect Due to Redundant Capacitors	5.3 1	No Effect			
6.0 Thermistor Network	6.0	Thermist	or Affected as Shown	6.0	Resistor Failures as Shown	6.0 Thermistor Readings Affected as Shown		A/D Converter not Affected	Operation	.000335	6
	6.1	Improper Thermist		6.1	Open or Short R16, R7	6, 1 Thermistor Readings Offscale High or Low	1	Thermistor Off Low	scale High or		
	6. Z	Drift in V Thermist	oltage Supplied to	6.2	2 Drift R16, R17	6.2 Thermistor Readings Slightly High or Low		Thermistor Sli .ow	ghtly High or		
			<u></u>				Ī		**************************************		

.

. . .

.

			TABLE II		SYSTEM ALSEP R. J. Dallaire END ITEM ASE CE DWG NO- 23467			
	l	FAILURE MODE, EFFE	CT & CRITICALITY AN	IALYSIS	ASS'Y DMENO. A/D Conv DigitalBrd 23467	DATE		
	CIRCUIT CR	ASSUMED FAILURE MODE	CAUSE OF FAILURE	EFFECT C	F FAILURE SYSTEM	FAILURE PROBABILITY Q × 10 ⁵	CRITIC - ALITY	
	NCTION Counter Control	1.0 Counter Controls Fail as Shown	1.0 I.C. Failure	1.0 Counter Control Affected as Shown	1.0 Output Affected as Shown	.005900	2	
	Circuitry	1.1 Counters Will Not Change States	I.1 Failure of NG1, NG2, H1A, H2A, H2B, H1C, X2	1.1 Loss of Control to Counters	1.1 Output Will be Random			
2.0	Counter Circuitry	2.0 Counters or Buffers Fail As Shown	2.0 I.C. Failure	2.0 Counters and Buffers Affected as Shown	2.0 Output Affected as Shown	.009600	1	
	and Output Buffers	2.1 Higher Order Stages Will Not Change States	2.1 Failure of X4 or X5	2.1 Higher Order Bits Frozen	2.1 Higher Order Bits Frozen			
		2.2 Counter "Over Count" When Analog Input is Over 5V	2.2 Failure of X6 High	2.2 When Analog Input is Over 5V Counters Will Recycle	2.2 An Analog Input of Greater than 5V will Digitally Read Less Than 5V, Analog Inputs Under 5V Will be Unaffected			
		2.3 Counters Stop Counting	2.3 Failure of X6 Low	2.3 Counters Will Stay at Zero After Reset	2.3 Output Always Read Zeros			
	2	2.4 One Ousput Bit'Always High or Low	2.4 Failure of Buffer Gate High or Low	2.4 One Bit Erroneous, Other 7 Will Be Okay	2.4 One Bit Erroneous			
3. _i 0	Voltage Supply	3.0 Noise Suppressor Fails as Shown	3.0 Discrete Parts Failure	3.0 Digital Circuitry Affected as Shown	3.0 Output Affected as Shown	.005210	3	
	Noise Lappres- sion	3.1 Loss of +5V to Board	3.1 Open R1 or Short C1	3.1 Digital Circuitry Will Cease to Function	3.1 Outputs Will Appear to be All Ones			
		3.2 Noise on +5V Line	3.2 Open Cl or Short Rl	3.2 Chance Erroneous Count	3.2 Output Occasionally Erron- eous			
		· · · · · · · · · · · · · · · · · · ·						
	•							

:

ł

	FAILURE MODE, EFFECT &	CRI	TABLE III TICALITY ANALYSIS WORKSHEI	ΞT	SYSTEM ALSEP DO THEM ASE/CE ASSY 16 Ch. Multiplexer	PREPARED B R. J. Dall DWG NO. 2346 DWG NO.	700 PAGE	13 of 10
PART/COMPONENT	FAILURE MODE			FAILURE	16 Cn. Multiplexer	23	FAILURE PROBABILITY	CRITIC-
SYMBOL		(α)	ASSEMBLY	· · · · · · · · · · · · · · · · · · ·	END ITEM		Q × 10 ⁵	ALITY
1.0 First Tier Chan- nel Encoders (SN54120)	1.1 Output of SN54L20 Fails High	(. 400)	 1.1 One First Tier MOS FET Gate in Each of the Four MOS-FET Chips is Always "On". 	1.1 Loss of each of each be los	h First Tier MOS FE		.0012	1=*
	1.2 Output of SN54L20 Fails Low	(. 400)	 One First Tier MOS FET Gate in Each of the Four MOS-FED Chips is Always "Off". 		f 4 Channels, (One C Each First Tier MOS		.0012	1
•	1.3 Input Fails Open or Short	(,200)	1.3 First Tier MOS FET Gate Always "Off".		of 4 Channels (One Ch Each First Tier MOS		.0006	2
2.0 Second Tier Channel Encoders (SN54L20)	2.1 Output of SN54L20 Fails High	(. 400)	2.1 Second Tier MOS FET Gate Always "On"	2.1 Loss (MOS (of 12 Channels (3 of 4 Chips)	First Tier	.0012	1**
	2.2 Output of SN54L20 Fails Low	(.400)	2.2 Second Tier MOS FET Gate Always "Off"	2.2 Loss MOS (of 4 Channels (One Fi Chip	rst Ti er	.0012	1
	2.3 Input Fails Open or Short	(.200)	2.3 Second Tier MOS FET Gate Always "Off"	2.3 Loss MOS (of 4 Channels (One Fi Chip)	rst Tier	.0006	2
3.0 First Tier MOS FET Gate Drivers (DM 7800)	3.1 Output Fails High	(.500)	3.1 Driven MOS FET Always "Off"		of 4 Channels (One Ch Each First Tier Chip		.0012	1
	3.2 Output Fails Low	(. 50 0)	3.2 Driver MOS FET Always "On"		of 12 Channels (3 of 4 Each First Tier Chip		.0012	1**
4.0 Second Tier MOS FET Gate	4.1 Output Fails High	(.500)	4.1 Driver MOS FET Always "Off"	4.1 Loss MOS	of 4 Channels (One Fi Chip)	rst Tier	.0012	1
Drivers (DM 7800)	4.2 Output Fails Low	(. 500)	4.2 Driver MOS FET Always "On"		of 12 Channels (3 of 4 Chips)	First	.0012]**
							-	

,

.

C C

		TABLE III	SYSTEM A LSEP END ITFM ASE CE	OWG NO. 2346700 P/). ATM 9]2 REV. AGE 17 of 1€
	FAILURE MODE, EFFECT & CRI			DWG NO. 2346711	ATE 8 20 -0
PART/COMPONENT SYMBOL	FAILURE MODE (OC)	EFFECT OF	F FAILURE END ITEM	FAILUR PROBABIL Q × 10	
5.0 First Tier MOS FET (MX02D)	 5.1 Short Source-Gate or Any Open (.373) 5.2 Short Drain-Substrate, Source - Substrate, Drain-Gate, or Gate- Substrate (.213) 	5.1 Loss of a Gate on Chip 5.2 Loss of MX02D Chip	5.1 Loss of 1 Channel 5.2 Loss of 4 Channels	.00317 .00181	1 2
	5.3 Short Drain-Source (.080) 5.4 Short Drain-Substrate of Unused Gates (.040)	5.3 Loss of Other Gates on Chip 5.4 Loss of MX02D Chip	5.3 Loss of 3 Channels 5.4 Loss of 4 Channels	. 00068 . 00034	4
6.0 Second Tier MOS FET (MX02D)	 b. 1 Short Source - Gate or Any Open(. 373) b. 2 Short Drain-Substrate, Source- Substrate, Drain-Gate, Drain- Gate, or Gate-Substrate (. 213) 	6.2 Loss of MX02D Chip	6.1 Loss of 4 Channels 6.2 Loss of All Channels	. 00317 . 00181	1 . 2*
	6.4 Short Drain-Substrate of Unused	6.3 Loss of Other Gates on Chip6.4 Loss of MX02D Chip	6.3 Loss of 12 Channels 6.4 Loss of All Channels	. 00068 . 00034	3** - 4 *
		 * Single Asterisk Denotes Loss of All 16 Channels. ** Double Asterisk Denotes Loss 12 Channels Which Implies the Loss of More than One Geophone Channel. Only Criticality Numbers Having Asterisks are Termed "Serious Failure Modes". 			

.

•

ì.

4

				TABLE III		SYSTEM ALSEP END ITEM ASE/CE	PREPARED R. J. Dail DWG NO.		12 REV.
	·	FAILURE MODE, EFFECT &	CRI	TICALITY ANALYSIS WORKSHE	ET	ASS'Y A/D Conv. Analog B	DW6 NO. nt 23	DATE	e - e
P	ART/COMPONENT SYMBOL	FAILURE MODE	(OL)	EFFECT O	F FAILURE	END ITEM		FAILURE PROBABILITY Q × 10 ⁻⁵	CRITIC-
.0	Oscillator Clock: R1, R2, R3, R4, R5, C1,	 1.1 Short or Open R1, R2, R3, R4, C1, C2, Y1, or Failure of NG1. NG1B, NG1C 		1.1 Oscilaltor Will Fail to Provide Output	1.1 Loss o	f Clock to Counters		.004313	1
	C2, Y1, NGIA, NGIB, NGIC	1.2 Crystal (Y1) Drift	(. 371)	1.2 Oscillator Frequency Drift	1.2 Counte	rs Will Count at Wro	ong Speed	. 003000	2
.0	Input Buffer: LM102, C4	2.1 Short C4, Output LM102	(. 7 76)	2.1 Loss of Input to Comparator	2.1 Analog	Input Appears High	or Low	.003503	1
		2.2 Input Offset Drift	(.193)	2.2 Offset Input to Comparator	2.2 Offset	Input Voltage		.000870	2
		2.3 Open C4	(.030)	2.3 Noise to Input of Comparator	2.3 Chance	e of Small Errors in	Conversion	.000134	3
.0	Comparator: R12, R13, C5, LM111, X5	3.1 Open R12, R13, Short R13, C5; Failure of LM111, X5	(. 798)	3.1 Loss of Command Latch Signal	3.1 Counte	rs Will Count Errone	eously	. 004020	1
	: i	3.2 LM111 Input Offset Drift	(.140)	3.2 Comparator Will Switch too Soon or too Late	3.2 Count too Loo	Will be Slightly too H w	ligh o r	.00 0810	2
	<u> </u>	3.3 Open C5, Short R12	(.002)	3.3 Noise in Comparator	3.3 Chance	e Count Will be Low		. 000003	* 3
1 ••0	R7, R8, R9, R10 R14, R15, C3, CR2, Q1, O R11, R14, R15, or Output Failure of LM107			4.1 Ramp Generator Will Cease to Function	4.1 Counte	r Will Not Turn Off		. 009248	1
	C3, C12, Q1, LM107	4.2 Drift of CR2, R8, R9, R10, R1	l. 413)	4.2 Incorrect Ramp Slope	4.2 Counte Late	r Turned Off too Soo	n or too	.006631	2
	•	4.3 Short R7	(.001)	4.3 Excess Current in Zener CR1	4.3 -12V S	upply May Be Shorte	d	. 00003	3
	Supply Noise Suppression	5.1 Short C8, C9	(. 070)	5.1 Loss of -12V or +5V	5.1 Loss o	of One MUX-A/D Con	verter	. 000060	2
	C6, C7, C8, C9	5.2 Open C6, C7, C8, C9	(.798)	5.2 Noise on +12, -12, & +5V Lines	5.2 Chance	e of Erroneous Count	L -	.000084	1
	· ·	5.3 Short C6, or C7	(.070)	5.3 No Effect Due to Redundant Capacitor	5.3 No Eff	ect		.000060	z
5.0	Thermistor Network: R16,	6.1 Open or Short R16, R17	(. 817)	6.1 Thermistors Not Supplied Proper	6,1 Incorr	ect Thermistor Outp	outs	.000274	1
	R17	6.2 Drift R16, R17	(. 183)	Voltages 6.2 Thermistors Not Supplied Exact	6.2 Slight	Error in Thermistor	Outputs	.000061	2

MRU UPCENT STREAL FALURE MODE (d) ASSEMBLY END ITEM PROFABILITY Q + City ALITY 1.0 Counter Control Circuitry NGL, NCZ, HIA, 122, HIC, X2 1.1 Any Failure of Digital Circuitry 0.00 1.1 Loss of Control to Counters 1.1 Counters Will Not Change State .005400 1 2.0 Counter Circuitry 2.1 Failure of Any Stage in Counters(631 2.1 Higher Order Stages Will Not Change 2.1 Higher Order Bits Erronsous .004800 1 3.0 Counter Circuitry 2.1 Failure of XANy Stage in Counters(631 2.1 Higher Order Stages Will Not Change 2.2 All Analog Input Will Allow Counters to Creationation .004800 1 2.4 Status .2 Failure of X6 High (.0651 2.3 Counters Will Stop Counting 2.2 All Analog Input Will Allow Counters Will Stop Counters 2.3 Counters Will Stop Counters .0004800 4 2.4 Failure of X6 Low (.063) 2.3 Counters Will Stop Counting 2.3 Counters All Others .0003400 2 3.0 Supply Decoupling 3.1 #pen R1, Short C1 (.729) 1.1 Loss of +5V to Board 3.1 Outputs Will Alpreat to be All Ones .000340 2 1 3.2 Open C1, Short R1 (.26713.2 Noise on -15V Line 3.2 Chance Errone	PART/COMPONENT	AILURE MODE, EFFECT &			ET ASS'Y A/D'Corv. Digital Brd. DWG NO.	FAILURE	3 20 70
1.0 Counter Control, Circuitry Will, NCZ, HIA, H2B 1.1 Any Failure of Digital Circuitry 0.00 1.1 Loss of Control to Counters 1.1 Counter's Will Not Change State 0.005400 1 2.0 Counter Circuitry ARC, HIE, HIF, X4, X5, X6 2.1 Failure of Any Stage in Counters (63) 2.1 Higher Order Stages Will Not Change States 2.1 Higher Order Bits Erroncous 0.004800 1 2.0 Counter Circuitry ARC, HIE, HIF, X4, X5, X6 2.1 Failure of X6 High (.095 2.2 Overvoltage Analog Input Will Allow Counter's to Covercourt 2.2 All Analog Input Sover 5V Will Digital Diver SV All Others Are OK 0.004800 4 2.3 Pailure of X6 Low (.063) 2.3 Counters Will Stop Counting 2.3 Counters Will Stop All Zero After Reset 0.000480 4 3.0 Supply Decoupling 3.1 Agen R1, Short C1 (.729 3).1 Loss of +5V to Board 3.1 Outputs Will Appear to be All Others 0.003100 2 3.0 Supply Decoupling 3.1 Agen R1, Short R1 (.267 3).2 Noise on -15V Line 3.2 Chance Erroneous Count 0.00140 2		FAILURE MODE	(a)				
and Output Huffers HZ, HLS, HIF, X4, X5, X6SalaresStates2.2 All Analog Inputs Over 5V Will Outputs Digitally Read Less Than 5V All Others Are OK0.00072032.3 Failure of X6 Low(.063 2.3 Counters Will Stop Counting2.3 Counters Will Stop Counting2.3 Counters Will Stop At Zero After Reset0.00048042.4 Failure of X6 Low(.013 2.3 Counters Will Stop Counting2.3 Counters Will Stop Counting2.4 One Bit Will Be Erroneous All Others0.00072023.0 Supply Decoupling R1, C13.1 *pen R1, Short C1(.729 3.1 Loss of +5V to Board R1, C13.2 Open C1, Short R1(.267 3.2 Noise on -15V Line3.2 Chance Erroneous Count0.00014021112.4 Failure of X6 Low	Circuitry: NG1, NG2, H1A, H2B,	1.1 Any Failure of Digital Circuitry	(1.00)	1.1 Loss of Control to Counters	1.1 Counters Will Not Change State	.005400	1
X4, X5, X6 2.2 Failure of X6 High (.095 2.2 Overvoltage Analog Input Will Allow Counters to Cvercourt 2.2 All Analog Input Over 5V Will .000720 3 2.3 Failure of X6 Low (.063 2.3 Counters Will Stay At Zero After Reset .000480 4 2.4 Failure of Output Buffer Gate (.211) 2.4 One Bit Will Always Be High or Low 2.3 Counters Will Stay At Zero After Reset .0003600 2 3.0 Supply Decoupling R1, C1 3.1 Appen R1, Short C1 (.729) 3.1 Loss of +5V to Board 3.1 Outputs Will Appear to be All Ones .000381 1 3.2 Open C1, Short R1 (.267) 3.2 Noise on -15V Line 3.2 Chance Erroneous Count .000140 2	and Output Buffers	2. 1 Failure of Any Stage in Counters	631		2.1 Higher Order Bits Erroneous	.004800	1
2.4 Failure of Output Buffer Gate (.211 2.4 One Bit Will Always Be High or Low 2.4 One Bit Will Be Erroncous All Others .003600 2 3.0 Supply Decoupling R1, Cl 3.1 Apen R1, Short Cl (.729 3.1 Loss of +5V to Board 3.1 Outputs Will Appear to be All Ones .000381 1 3.2 Open Cl, Short R1 (.267 3.2 Noise on -15V Line 3.2 Chance Erroneous Count .000140 2		2.2 Failure of X6 High	(.095)		Digitally Read Less Than 5V All	.000720	ž
3.0 Supply Decoupling: 3.1 *pen R1, Short C1 (.729) 3.1 Loss of +5V to Board 3.1 Outputs Will Appear to be All Ones. .000381 1 1, C1 3.2 Open C1, Short R1 (.267) 3.2 Noise on -15V Line 3.2 Chance Erroneous Count .000140 2	- -	2.3 Failure of X6 Low	(.063)	2.3 Counters Will Stop Counting	2.3 Counters Will Stay At Zero After Reset	.000480	4
R1, C1 1 3, 2 Open C1, Short R1 (.267) 3. 2 Noise on -15V Line 3. 2 Chance Erroneous Count .000140 2		2.4 Failure of Output Buffer Gate	(.211)	2.4 One Bit Will Always Be High or Low		. 003600	2
1 3.2 Open C1, Short R1 (.267) 3.2 Noise on -15V Line 3.2 Chance Erroneous Count .000140 2		3.1 ^A pen RI, Short Cl	(.729)	3.1 Loss of +5V to Board	3. 1 Outputs Will Appear to be All Ones	.000381	1
		3.2 Open Cl, Short Rl	(.267)	3.2 Noise on -15V Line	3.2 Chance Erroneous Count	.000140	Z
	1	•					
							l I
			1				
	9 1						
	4 						

) - company - compan