

This ATM documents the Reliability Prediction and Failure Modes Effects \& Criticality Analysis of the Bendix designed ASE/CE 16CH Multiplexer A/D Converter. The analysis reflects the final flight configuration for the Array D ALSEP System.
$\bullet$


| ASEf'CE 16 Ch. Multiplexer-A/D Converter Reliability Prediction And Failure Mode, Effects \& Criticality Analysis | No. <br> ATM 912 | REV. no. |
| :---: | :---: | :---: |
|  | Page _2 | OF 16 |
|  | DATE $8 / 20$ |  |

### 1.0 INTRODUCTION

The results of the Reliability Prediction and the Failure Mode, Effects, \& Criticality Analysis for the ALSEP Array D ASE/CE 16 Channel Multiplexer-A/D Converter are documented in this report. This M \& A/D represents the Bendix Designed unit which makes extensive use of SSI and MSI integrated circuits and was integrated with the Active Seismic Experiment Central Electronics.

The Reliability Prediction for the 16 Channel Multiplexer is . 99995 and the Reliability Prediction for the A./D Converter is. 99993. The overall reliability of the $M \& A / D$ is calculated to be .99989.

### 2.0 CIR CUIT DESCRIPTION

Figure 1 presents a Functional Block liagram of the $M \& A / D$. This diagram is included to clarify the terms and discriptions given in the Failure Mode, Effects, \& Criticality Analysis portion of this ATM (Tables II \& III). The numbers in each box correspond to the Circuit/ Function Item Number listed in the FMECA. Thus a clear picture may be obtained of the inter-relationships between Circuit Functions and Failure Mode Effects.

The Multiplexing Gates are the same is those used on the Array A2 and Array D 90 Channel Multiplexer, and the A/D Converter is exactly the same design as the Array D Converter except a set of Buffer-Inverters that have been added for output phase compatibility. With the above considerations, full operational capability can be confidentally expected of the Bendix Redesigned ASE/CE M \& A/D.

### 3.0 RELIABILITY PREDICTION

The Reliability Prediction for the 16 Channel Multiplexer is . 9999510 and the $A / D$ Converter Prediction is .9999343 . The overall reliability for the $M \& A / D$ is calculated to be .9998853 , which is approximately equal to the design goal of .99990 . The above predictions are based on an intended lunar mission of launch, deployment, and 30 hours operation and 8730 hours standby. Figure 2 defines the Reliability Block Diagram and Mathematical Model for the Multiplexer and A/D Converter.

| ASE/CE 16 Ch. Multiplexer-A/D Converter Reliability Prediction and Failure Mode, Effects \& Criticality Analysis | но. ATM-912 |  | REv. no. |
| :---: | :---: | :---: | :---: |
|  | page | 3 | -or_16 |
|  | Date | 8/20 |  |



ASE/CE 16 Ch. Multiplexer-A/D Converter Reliability Prediction and Failure Mode, Effects \& Criticality Analysis

| ${ }^{\text {No. }}$ ATM-912 | \|rev. no. |
| :---: | :---: |
| Page _ 4 | 16 |
| date |  |



Figure 2, ASE/CE M\&A/D Operational Block Diagram

ASE/CE 16 Ch. Multiplexer-A/D Con-
verter Reliability Prediction and Failure
Asrospace Systems Division

| No. ATM 912 | REV. No. |
| :---: | :---: |
| PAGE 5 | OF 16 |
| DATE |  |

The failure rates for each functional component identified in Figure 2 are tabulated in Table I. The failure rates shown represent composite totals derived from the part application stress ratios of each electronic piece part. The application reflects the anticipated "use" environment. .

TABLEI
FAILURE RATE SUMMARY

$$
\lambda_{a i}\left(\% 1000 \quad \lambda_{s i}(\% / 1000\right.
$$

| E.ssembly | Hrs.) Operating | Hrs.) Standby |
| :---: | :---: | :---: |
| 16 Ch. Multiplexer | .041800 | .000418 |
| A/D Conv., Analog <br> Board | .035321 | .000353 |
| A/D Conv., Digital <br> Board | .020710 | .000207 |
| Totals | .097831 |  |

## Reliability Calculations

$$
\begin{array}{rl}
R_{\text {Mux }} & =\epsilon^{\left.-\lambda_{1}+\lambda_{2}+\lambda_{3}+\lambda_{4}+\lambda_{5}\right) t}=\epsilon^{-(.0418)(30+87.3) \times 10^{-5}} \\
& =.9999510 \\
& =\epsilon^{-\left(\lambda_{6}+\lambda_{7}\right) t}=\epsilon^{-(.056031)(30+87.3) \times 10^{-5}} \\
R_{A / D} & .9999343 \\
R_{\text {Total }} & =R_{\text {Mux }} \cdot R_{A / D}=.9998853 \quad \text { (Probability of no failure) } \\
R_{\text {Geo }} & \equiv\left[1-3 \lambda^{2}, t^{2}\right] \epsilon^{-(\lambda 5+\lambda 6+\lambda 7) t}=\left[1-944347 \times 10^{-10}\right] \\
R_{\text {Geo }} & =.999928 \quad \text { (Probability of no more than one geophone }
\end{array}
$$



### 3.0 FAILURE MODES, EFFECTS \& CRITICALITY ANALYSIS

The failure mode and effects analysis for the $M \& A / D$ are documented in Tables II and III. Table II describes the functional failure modes and the resultant effects on the end item and system level. Table III delineates the failure modes at the piece part level. Each identified failure is numerically itemized for cross reference between Tables II and III, and Figure 2. (Note: the cross reference must be correlated by Assembly).

The failure probabilities reflect the identified line item. The criticality ranking lists by order of magnitude, the highest down to the lowest failure probabilitios. Table II lists criticalities by circuit/function, while Table III lists the criticality sub-ranking within each circuit/ function item. With this method, the highest order criticalities are easily identified both by circuit/function levels and by discrete part levels.

The format of Tables II and III is designed to provide the reader with a narrative description of the varying ty ses of failures that could occur, combined with the resultant performance characteristics. This information is useful to system support in performing fault isolatior. should an anomally occur.

The Failure Modes Effects and Criticality Analysis has shown that there are no ALSEP Single Point Failures in the M\&A/D. There is one failure mode, however, which constitutes an ASE Single Thread Failure Mode. All 16 channels will be lost if a short occurs in the second tier MOS FET gate package. There is absolutely no way to eliminate this failure mode since all multiplexers, regardless of the number of tiers, will have a finial NOS-FET gate which can fail shorted. This failure mode is identified in Table 4, Section 6, of the Failure Mode Effects and Criticality Analysis. An intensive design effort has been made by Bendix to insure a reliable design, especially in the area of multiplex channel losses. Previous experience with the Dynatronics design has shown that 15 or 16 channels were usually lost when only one component in one channel had failed. Bendix has investigated tiering to minimize these multiple channel losses. The selected design was determined to be the best design.

The selected design was also shown to have the highest reliability with respect to preserving at least two of the three Geophone channels. This is an important criteria for two reasons.


Aerospace Systems Division

| ATM-912 | nev. no. |
| :---: | :---: |
| pace 7 7 of 16 |  |
| Date 8/20/70 |  |

1) The Geophone channels are considered to be the most important from a data standpoint. Some engineering data may be returned if two or the three channels are operating while no useful engineering data is returned if more than one Geophone channel fails.
2) The Geophone channels provide a good cross section of the 16 channels and indicate the reliability of the complete 16 channel system.
5.0 RELIABILITY ASSESSMENT

The purpose of performing a reliability prediction and failure modes analysis is to identify inherent design weaknesses. From the results of these analyses it has been concluded the reliability and design objectives have been fully satisfied.

FAILURE MODE, EFFECT \& CRITICALITY ANALYSIS


FAILURE MODE, EFFECT \& CRITICALITY ANALYSIS

| STSTEM ALSEP | $\begin{aligned} & \text { PPFFDRED EY } \\ & \text { R. J. Dallaire } \\ & \hline \end{aligned}$ |  |
| :---: | :---: | :---: |
| ENO TTEM ASE/CE | OWG NO. 2346700 | - |
| ASS'Y $^{16 \mathrm{Ch} .} \mathrm{MUX}$ | CWG NO. 2346711 | DATE 8:20:70 |


| $\begin{gathered} \text { CRCUT } \\ \text { CR } \\ \text { FUNCTICN } \end{gathered}$ | ASSUMED FALURE MODE | CAUSE OF FALLURE | FFFECT CF FAllure |  | $\begin{aligned} & \text { FARLURE } \\ & \text { PRCBABRUTY } \\ & Q \times 10^{-5} \end{aligned}$ | $\begin{aligned} & \text { CRITIC- } \\ & \text { ALITY } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | END ITEM | SYSTEM |  |  |
| 4.0 Second <br> Tier MOS <br> FET Gate <br> Drivers | 4.0 Failure as Shown Below <br> 4.1 Driven MOS FET Always "Off" <br> 4.2 Driven MOS FET Always "On" | 4.0 Electrical Failure <br> 4.1 Driver Output Fails High <br> 4.2 Driver Output Fails Low | 4.0 MUX Affected as Shown <br> 4.1 One First Tier MOS Chip Lost <br> 4.23 of 4 First Tier Chips Lost | 4.0 Output Affected as Shown <br> 4.1 Loss of 4 Channels <br> 4.2 Loss of 12 Channels | . 00240 | 5 |
| 5.0 First Tier FET | 5.0 Failure as Shown <br> 5.1 Loss of a Gate on Chip <br> 5.2 Loss of MX02D Chip <br> 5.3 Loss of Other Gates on Chip <br> 5.4 Loss of MX02D Chip | 5.0 Electrical Failure <br> 5.1 Short Source-Gate or Any Open <br> 5.2 Short Drain-Substrate, Source-Substrate, DrainGate, or Gate-Substrate <br> 5.3 Short Drain-Source <br> 5.4 Short Drain-Substrate of Used Gates | E. O MUX Affected as Shown <br> 5.1 Loss of 1 Channel <br> 5. 2 Loss of 4 consecutive Channels <br> 5.3 Loss of 3 Consecutive Channela <br> 5.4 Loss of 4 Consecutive Channels, | 5.0 Output Affected as Shown <br> 5.1 Loss of I Channel <br> 5.2 Loss of 4 Channels <br> 5.3 Loss of 3 Channels <br> 5.4 Loss of 4 Channels | . 00600 | , |
| 6.0 Second Tier FET | 6.0 Failure as Shown <br> 6.1 Loss of Gate on Chip <br> 6.2 Loss of MX02D Chip <br> 6.3 Loss of Other Gates on Chip <br> 6.4 Loss of MX02D Chip | 6.0 Electrical Failure <br> 6.1 Short sourct - Éate or ing Open <br> 6.2 Short Drain-Substrate, Source-Substrate, Drain Gate, or Gate-Substrate <br> 6.3 Short Drain-Source <br> 6.4 Short Drain-Substrate of Unused Gates | 6.0 MUX Affected as Shown <br>  <br> 6.2 Loss of all channels <br> 6.3 Lose of All Channels <br> 6.4 Loss of All Channels | 6.0 Output Affected as Shown <br> 6.1 Loss of 4 Channels <br> 6. 2 Loss of all Channels <br> 6.3 Loss of 12 Channels <br> 6.4 Loes of all Channels | . 00600 | 1 |

FAILURE MODE, EFFECT \& CRITICALITY ANALYSIS


## TABLEII

FAILURE MODE, EFFECT \& CRITICALITY ANALYSIS

| SYSTEM A LSEP | PrFPMRED BY <br> R. J. Dallaire | $\text { ATM } 912]^{\mathrm{N}}$ |
| :---: | :---: | :---: |
| $\text { ENOMEM } \begin{gathered} \text { ASE/CE } \\ \hline \end{gathered}$ | OWGNO. 2346700 | PASE 11 of 1 t |
| ASS'Conv. - Analog Brd | CWGNO. 2346719 | CWTE 8:20-0 |



FAILURE MODE, EFFECT \& CRITICALITY ANALYSIS

| $\begin{gathered} \text { CRCUT } \\ \text { CR } \\ \text { FUNTKN } \end{gathered}$ | ASSUMED FALURE MODE | CAUSE Of FAllure | FFFECT CF FALLURE |  | FALURE PRCBABULITY $0 \times 1^{-5}$ | CRITK AUITY |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | END ITEM. | SYSTEM |  |  |
| $\text { \| } 1.0 \begin{array}{ll} \text { Counter } \\ & \text { Control } \\ & \text { Circuitry } \end{array}$ | 1.0 Counter Controls Fail as Shown. <br> 1.1 Counters Will Not Change States | 1.0 I. C. Failure <br> 1.1 Failure of NG1, NG2, H1A, H2A, H2B, H1C, X2 | 1.0 Counter Control Affected as Shown <br> 1. 1 Loss of Control to Counters | 1.0 Output Affected as Shown <br> 1.1 Output Will be Random | . 005900 | 2 |
| 2.0 Counter Circuitry and Output Buffers | 2.0 Counters or Buffers Fail As Shown <br> 2. 1 Higher Order Stages Will Not Change States <br> 2.2 Counter "Over Count" When Analog Input is Over 5 V <br> 2.3 Counters Stop Counting <br> 2.4 One Output Bit Always High or Low | 2.0 I. C. Failure <br> 2. 1 Failure of X4 or' X5 <br> 2.2 Failure of X6 High <br> 2.3 Failure of X6 Low <br> 2.4 Failure of Buffer Gate High or Low | 2.0 Counters and Buffers Affected as Shown <br> 2.1 Higher Order Bits Frozen <br> 2.2 When Analog Input is Over 5V Counters Will Recycle <br> 2.3 Counters Will Stay at Zero After Reset <br> 2.4 One Bit Erroneous, Other 7 Will Be Okay | 2.0 Output Affected as Shown <br> 2.1 Higher Order Bits Frozen <br> 2.2 An Analog Input of Greater than 5 V will Digitally Read Less Than 5V. Analog Inputs Under 5V Will be Lnaffected <br> 2.3 Output Always Read Zeros <br> 2.4 One Bit Erroneous | . 009000 |  |
| 3.0 <br> Voltage Supply Noise - ippression | 3.0 Noise Suppressor Fails as Shown <br> 3.1 Loss of +5 V to Board <br> 3. 2 Noise on +5 V Line | 3.0 Discrete Parts Failure <br> 3.1 Open R1 or Short Cl <br> 3.2 Open Cl or Short R1 | 3.0 Digital Circuitry Affected as Shown. <br> 3.1 Digital Circuitry Will Cease to Function <br> 3.2 Chance Erroneous Count | 3.0 Output Affected as Shown <br> 3.1 Outputs Will Appear to be All Ones <br> 3.2 Output Occasionally Erroneous | . 005210 | 3 |
| $\cdots$ |  |  |  | . |  |  |

FAILURE MODE, EFFECT \& CRITICALITY ANALYSIS WORKSHEET

| STSTEM ALSEP | PREFAT: 08 <br> R. J. Dallaire |  |
| :---: | :---: | :---: |
| 20TTEM ASE/CE | $\text { OWG NO } 2346700$ | PAGE 13 of |
| ${ }^{\text {ASS'Y }} 16 \mathrm{Ch}$. Multiplexer | OW6 NO. 2346711 | DATE $2:-0$ |



FAILURE MODE, EFFECT \& CRITICALITY ANALYSIS WORKSHEET

|  | FAILURE MODE, EFFECT \& CRIT | CA | ALITY ANALYSIS WORKSH | $A^{\prime \prime} 5^{\prime} \mathrm{Ch}$. MUX | O46 N0. 2346711 D4TE: | -0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PART/COMPONENT SYMBOL | FAILURE MODE ( $\alpha$ ) | EFFECT OF FAILURE |  |  | $\begin{gathered} \text { FAILURE } \\ \text { PROBABILITY } \\ 0 \times 10^{-3} \end{gathered}$ | CRITICALITY |
|  |  | ASSEMBLY |  | END ITEM |  |  |
| 5.0 First Tier MOS FET (MX02D) | 5.1 Short Source-Gate or Any Open (.373) <br> 5. 2 Short Drain-Substrate, Source Substrate, Drain-Gate, or GateSubstrate <br> (.213) <br> 5. 3 Short Drain-Source <br> (.080) <br> 5. 4 Short Drain-Substrate of Unused Gates | 5.1 Loss of a Gate on Chip <br> 5.2 Loss of MX02D Chip |  | 5.1 Loss of 1 Channel <br> 5.2 Loss of 4 Channels | . 00317 | 1 |
|  |  |  |  | . 00181 | 2 |  |
|  |  | 5.3 Loss of Other Gates on Chip |  |  | 5. 3 Loss of 3 Channels | . 00068 | 3 |
|  |  |  | Loss of MXO2D Chip | 5.4 Loss of 4 Channels | . 00034 | 4 |
| 6.0 Second Tier MOS FET (MX02D) | $\begin{array}{\|l} \text { 6. } 1 \text { Short Source - Gate or Any Open(.373) } \\ \text { 6. } 2 \text { Short Drain-Substrate, Source- } \\ \text { Substrate; Drain-Gate, Drain- } \\ \text { Gate, or Gate-Substrate } \end{array}$ | 6.1 Loss of Gate on Chip |  | 6.1 Loss of 4 Channels | . 00317 | 1 |
|  |  |  | . 2 Loss of MX02D Chip | 6.2 Loss of All Channels | . 00181 | $2 *$ |
| $\because$ | 6. 3-Short Drain-Souce (.080) | 6.3 Loss of Other Gates on Chip |  | 6.3 Loss of 12 Channels | . 00068 | $3 x \div$ |
| $\therefore \quad \vdots$ | 6. 4 Short Drain-Substrate of Unused Gates $(.040)$ |  | Loss of MX02D Chip | 6.4 Lose of All Channels | . 00034 | 4* |
| : |  | * Single Asterisk Denotes Lass of All 16 Channels. <br> ** Double Asterisk Denotes Loss 12 Channels Which Implies the Loss of More than Mme Cannhano rtazazl. <br> Only Criticality Numbers Having Asterisks are Termed 'Serious Failure Modes' ${ }^{\prime \prime}$. |  |  |  |  |
|  | : |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |

## TABLE III

FAILURE MODE, EFFECT \& CRITICALITY ANALYSIS WORKSHEET


FAILURE MODE, EFFECT \& CRITICALITY ANALYSIS WORKSHEET


