ASE/CE 16 Ch. Multiplexer-A/D Converter Reliability Prediction And Failure Mode, Effects \& Criticality Analysis	No. ATM-912	$\left.\right\|_{\text {REV. wo. }} ^{\text {A. }}$
	PAGE 1	or 16
	DATE $8 / 20 / 70$	

This ATM documents the Reliability Prediction and Failure Modes Effects \& Criticality Analysis of the Bendix designed ASE/CE 16 CH MultiplexerA/D Converter. The analysis reflects the final flight configuration for the Array D ALSEP System.

Revision A clarifies the discussion of single point failure modes in Paragraph 3. 0.

ASE/CE 16 Ch. Multiplexer-A/D Converter Reliability Prediction And Failure Mode, Effects \& Criticality Analysis

1.0

INTRODUCTION

The results of the Reliability Prediction and the Failure Mode, Effects, \& Criticality Analysis for the ALSEP Array D ASE/CE 16 Channel Multiplexer-A/D Converter are documented in this report. This M \& A/D represents the Bendix Designed unit which makes extensive use of SSI and MSI integrated circuits and was integrated with the Active Seismic Experiment Central Electronics.

The Reliability Prediction for the 16 Channel Multiplexer is . 99995 and the Reliability Prediction for the A/D Converter is .99993. The overall reliability of the $M \& A / D$ is calculated to be .99989 .

2.0 CIRCUIT DESCRIPTION

Figure 1 presents a Functional Block Diagram of the $M \& A / D$. This diagram is included to clarify the terms and discriptions given in the Failure Mode, Effects, \& Criticality Analysis portion of this ATM (Tables II \& III). The numbers in each box correspond to the Circuit/ Function Item Number listed in the FMECA. Thus a clear picture may be obtained of the inter-relationships between Circuit Functions and Failure Mode Effects.

The Multiplexing Gates are the same as those used on the Array A2 and Array D 90 Channel Multiplexer, and the A/D Converter is exactly the same design as the Array D Converter except a set of Buffer-Inverters that have been added for output phase compatibility. With the above considerations, full operational capability can be confidentally expected of the Bendix Redesigned ASE/CE M \& A/D.

3.0 RELIABILITY PREDICTION

The Reliability Prediction for the 16 Channel Multiplexer is . 9999510 and the A/D Converter Prediction is .9999343. The overall reliability for the $M \& A / D$ is calculated to be .9998853 , which is approximately equal to the design goal of .99990 . The above predictions are based on an intended lunar mission of launch, deployment, and 30 hours operation and 8730 hours standby. Figure 2 defines the Reliability Block Diagram and Mathematical Model for the Multiplexer and A / D Converter.

ASE/CE 16 Ch. Multiplexer-A/D Converter Reliability Prediction and Failure Mode,

mo.	ATM-912	REV. no.

1st Tier
Ch. 1-4
Incl. 1
Geo. Ch.

$\lambda_{1}=.00675$

$$
\mathrm{R}_{\mathrm{T}}=\epsilon^{-\left(\lambda_{1}+\lambda_{2}+\lambda_{3}+\lambda_{4}+\lambda_{5}+\lambda_{6}+\lambda_{7}\right) \mathrm{t}} \text { (Any failure of any channe }
$$

Figure 2 ASE/CE M\&A/D Reliability Block Diagram

ASE/CE 16 Ch. Multiplexer-A/D Converter Reliability Prediction and Failure Mode, Effects \& Criticality Analysis

wo. ATM -912	nev. Ma.	A
PAGE	4	
DATE		

Figure 2, ASE/CE M\&A/P noerational Block Diagram

ASE/CE 16 Ch. Multiplexer-A/D Converter Reliability Prediction and Failure Mode, Effects \& Criticality Analysis

The failure rates for each functional component identified in Figure 2 are tabulated in Table I. The failure rates shown represent composite totals derived from the part application stress ratios of each electronic piece part. The application reflects the anticipated "use" environment.

TABLE I
FAILURE RATE SUMMARY

$$
\lambda_{a i}\left(\% 1000 \quad \lambda_{\mathrm{si}}(\% / 1000\right.
$$

Assembly Hrs.) Operating Hrs.) Standby

16 Ch. Multiplexer .041800
. 000418
A/D Conv., Analog Board . 035321
. 000353
A/D Conv., Digital
Board . 020710 . 000207

Totals
. 097831
.000978
Reliability Calculations
$R_{\text {Mux }}=\epsilon^{\left.-\lambda_{1}+\lambda_{2}+\lambda_{3}+\lambda_{4}+\lambda_{5}\right) t}=\epsilon^{-(.0418)(30+87.3) \times 10^{-5}}$
$=.9999510$
$R_{A / D}=\epsilon^{-\left(\lambda_{6}+\lambda_{7}\right) t}=\epsilon^{-(.056031)(30+87.3) \times 10^{-5}}$
$=.9999343$
$R_{\text {Total }}=R_{\text {Mux }} \cdot R_{A / D}=.9998853 \quad$ (Probability of no failure)
$R_{G e o} \equiv\left[1-3 \lambda^{2}, \mathrm{t}^{2}\right] \epsilon^{-(\lambda 5+\lambda 6+\lambda 7) t}=\left[1-.944347 \times 10^{-10}\right]$ $\epsilon^{-(.06983)(117.3) \times 10^{-5}}$
$R_{\text {Geo }}=.999928 \quad$ (Probability of no more than one geophone channel failure)

ASE/CE 16 Ch. Multiplexer-A/D Converter Reliability Prediction and Failure Mode, Effects \& Criticality Analysis

No. ATM-912	\| REv. no. A
Page $\quad 6$	OF 16
date $8 / 20$	/70

3.0 FAILURE MODES, EFFECTS \& CRITICALITY ANALYSIS

The failure mode and effects analysis for the $M \& A / D$ are documented in Tables II and III. Table II describes the functional failure modes and the resultant effects on the end item and system level. Table III delineates the failure modes at the piece part level. Each identified failure is numerically itemized for cross reference between Tables II and III, and Figure 2. (Note: the cross reference must be correlated by Assembly).

The failure probabilities reflect the identified line item. The criticality ranking lists by order of magnitude, the highest down to the lowest failure probabilities. Table II lists criticalities by circuit/function, while Table III lists the criticality sub-ranking within each circuit/ function item. With this method, the highest order criticalities are easily identified both by circuit/function levels and by discrete part levels.

The format of Tables II and III is designed to provide the reader with a narrative description of the varying types of failures that could occur, combined with the resultant performance characteristics. This information is useful to system support in performing fault isolation should an anomally occur.

The Failure Modes Effects and Criticality Analysis has shown that there is one failure mode, which constitutes an ASE Single Point Failure Mode. All 16 channels will be lost if a short occurs in the second tier MOS-FET gate package. There is absolutely no way to eliminate this failure mode since all multiplexers, regardless of the number of tiers, will have a final MOS-FET gate which can fail shorted. This failure mode is identified in Table 4, Section 6, of the Failure Mode Effects and Criticality Analysis. An intensive design effort has been made by Bendix to insure a reliable design, especially in the area of multiplex channel losses. Previous experience with the Dynatronics design has shown that 15 or 16 channels were usually lost when only one component in one channel had failed. Bendix has investigated tiering to minimize these multiple channel losses. The selected design was determined to be the best design.

There are no failure modes in the ASE/CE M\& A/D which constitute an ALSEP System Single Point Failure Mode.

The selected design was also shown to have the highest reliability with respect to preserving at least two of the three Geophone channels. This is an important criteria for two reasons.

ASE/CE 16 Ch. Multiplexer-A/D Converter Reliability Prediction and Failure Mode,

Page 7 of 16 Effects \& Criticality Analysis

1) The Geophone channels are considered to be the most important from a data standpoint. Some engineering data may be returned if two or the three channels are operating while no useful engineering data is returned if more than one Geophone channel fails.
2) The Geophone channels provide a good cross section of the 16 channels and indicate the reliability of the complete 16 channel system.

5.0 RELIABILITY ASSESSMENT

The purpose of performing a reliability prediction and failure modes analysis is to identify inherent design weaknesses. From the results of these analyses it has been concluded the reliability and design objectives have been fully satisfied.

FAILURE MODE, EFFECT \& CRITICALITY ANALYSIS

FAILURE MODE, EFFECT \& CRITICALITY ANALYSIS

$\begin{gathered} \text { CIRCUTT } \\ \text { CUACTICN } \\ \hline \end{gathered}$	FAllURE MODE, EFFE	T \& CRITKALITY AI	LYSIS		PATE 8/2	
	ASSLMED FALURE MOOE	CAUSE OF FALLURE	FFFECT CF FALURE		$\begin{aligned} & \text { FARURE } \\ & \text { PRCSAKBLTI } \\ & Q \times K^{-5} \end{aligned}$	$\begin{aligned} & \text { CRTIC- } \\ & \text { AUTY } \end{aligned}$
			END ITEM	SYSTEM		
4.0 Second Tier MOS FET Gate Drivers	4.0 Failure as Shown Below 4.1 Driven MOS FET Always 'Off" 4.2 Driven MOS FET Always "On"	4.0 Electrical Failure 4. 1 Driver Output Fails High 4.2 Driver Output Fails Low	4.0 MUX Affected as Shown 4.1 One First Tier MOS Chip Lost 4.23 of 4 First Tier Chips Lost	4.0 Output Affected as Shown 4. 1 Loss of 4 Channels 4.2 Loss of 12 Channels	. 00240	5
	5.0 Failure as Shown 5.1 Loss of a Gate on Chip 5.2 Loss of MXO2D Chip 5.3 Loss of Other Gates on Chip 5.4 Loss of MXO2D Chip	5.0 Electrical Failure 5.1 Short Source-Gate or Any Open 5.2 Short Drain-Substrate, Source-Substrate, DrainGate, or Gate-Substrate 5.3 Short Drain-Source 5.4 Short Drain-Substrate of Used Gates	5.0 MUX Affected as Shown 5.1 Loss of 1 Channel 5.2 Loss of 4 consecutive Channels 5.3 Loss of 3 Consecutive Channels 5.4 Loss of 4 Consecutive Channels	5.0 Output Affected as Shown 5.1 Loss of 1 Channel 5.2 Loss of 4 Channels 5.3 Loss of 3 Channels 5.4 Loss of 4 Channels	. 00600	1
$6.0 \begin{aligned} & \text { Second } \\ & \text { Tier FET }\end{aligned}$	6.0 Failure as Shown 6.1 Loss of Gate on Thip 6.2 Loss of MX02D Chip 6.3 Loss of Other Gates on Chip 6.4 Loss of MX02D Chip	6.0 Electrical Failure 5.1 Short Source - Gate or Any Open 6.2 Short Drain-Substrate, Source-Substrate, Drain Gate, or Gate-Substrate 6.3 Short Drain-Source 6.4 Short Drain-Substrate of Unused Gates	6.0 MUX Affected as Shown 6.1 Loss of every 4th channel 6.2 Loss of all channels 6.3 Loss of All Channels 6.4 Losa of All Channels	6.0 Output Affected as Shown 6.1 Loss of 4 Channels 6.2 Loss of all Channels 6.3 Loss of 12 Channels 6.4 Lose of all Channels	. 00600	1

FAILURE MODE, EFFECT CRITICALITY ANALYSIS

$\begin{aligned} & \text { SYSTEM } \\ & \text { ALSEP } \end{aligned}$	$\begin{aligned} & \text { Pr:=्रमRED EY } \\ & \text { R. J. Dallaire } \end{aligned}$	$\left.\operatorname{HaTM}_{2}\right]_{\mathrm{A}}^{\mathrm{EV}}$
$\begin{gathered} \text { END ITM } \\ \text { ASE/CE } \end{gathered}$	स्जु NO- 2346700	PAGE 10 of 15
ASDD Com.Analog Brd	FWENO. 2346719	$\mathrm{O}^{\text {F }}$ - 8/20/70

$\begin{gathered} \text { CIRCUTT } \\ \text { CR } \\ \text { FUNCTICN } \end{gathered}$	ASSUMED FALLURE MODE	CAUSE OF FARLURE	FFFEEC CF FARLURE		$\begin{aligned} & \text { FALLURE } \\ & \text { PRCBAELUTY } \\ & Q \times \mathrm{K}^{-5} \end{aligned}$	$\begin{aligned} & \text { CRITK- } \\ & \text { AlITY } \end{aligned}$
			EMD ITEM	SYSTEM		
1.0 OscillatorClock	1.0 Oscillator Fails as Shown 1.1 Oscillator Fails to Provide Output 1.2 Oscillator Frequency Drift	1.0 Failure of Discrete Parts or Integrated Circuits 1.1 Short or Open R1, R2, R3, R4 R5, C1, C2, Y1, or Failure of NGlA, NGIB, NGIC 1.2 Crystal (Y1) Parameter Drift	1.0 Clock Affected as Shown 1.1 Loss of Clock to Counters 1.2 Counters Will Count at Wrong Speed	1. 0 Output Affected as Shown 1. 1 Output will be Frozen 1. 1 Output Slightly High or Low	. 007313	2
2.0 Input Buffer	2. 0 Buffer Fails as Shown 2.1 Loss of Input to Comparator 2.2 Offset Input to Comparator 2.3 Noise to Input of Comparator	2.0 Failure of I. C. or Capacitor as Shown 2. 1 Short C4, Failed Output of LM1 02 2.2 Input Offset Drift of LM102 2.3 Open C4	2.0 Analog Lnput Affected R. 1 Analog Input Appears High or Low 2. 2 Offset Input Voltage 2. 3 Chance of Small Errors in Conversion	2.0 Output Affected as Shown 2. 1 Output all 1's or 0's 2. 2 Slight Error in Output 2. 3 Occassional Error in Output	. 004507	4
3.0 Comparator (Compares Ramp Vol- tage to Analog Input Voltage)	3.0 Comparator Fails as Shown 3.1 Loss of Command Latch Signal 3.2 Comparator Will Switch too Soon or too Late 3.3 Noise in Comparator	3. O Failure of Discrete Parts or I. C.'s 3.1 Open R5, R13, or short R6, C7, or failure of LM111, X5. 3.2 LM111 Input Offset Drift 3.3 Open C5 or short R12	3.0 Ramp Comparison Affected 3.1 Counters Will Count Erroneously 3.2 Count Will be Slightly too High or too Low 3.3 Chance Count Will be Low	3. 0 Output Affected as Shown 3. 1 Output will be Random or All Zeros 3.2 Outpat will be Slightly High or Low 3.3 Occasional Slightly Low Cutput	. 004833	3

TABLE II
FAILURE MODE, EFFECT \& CRITICALITY ANALYSIS

FAILURE MODE, EFFECT \& CRITICALITY ANALYSIS

$\begin{aligned} & \text { CRECUTT } \\ & \text { FANCTICN } \end{aligned}$		ASSUMED FALURE MODE	CAUSE OF FALUPE		F.FFECT CF FARURE		$\begin{aligned} & \text { FALURE } \\ & \text { PRCBASHMY } \\ & \mathbf{Q} \times K^{5} \end{aligned}$	CRITCALTY	
		END ITEM			SYSTEM				
1.0	Counter Control Circuitry.		1.0 Counter Controls Fail as Shown 1.1 Counters Will Not Change States	1.0 1.1	I. C. Failure Failure of NG1, NG2, H1A, H2A, H2B, H1C, X2	1.0 Counter Control Affected as Shown 1.1 Loss of Control to Counters	1.0 Output Affected as Shown 1.1 Oatput Will be Random	. 005900	2
	Counter Circuitry and Output Buffers	2.0 Counters or Buffers Fail As Shown 2. 1 Higher Order Stages Will Not Change States 2.2 Counter "Over Count" When Analog Input is Over 5V 2. 3 Counters Stop Counting 2.4 One Output Bit Always High or Low	2.0	I. C. Failure Failure of X4 or X5 Failure of $\times 6 \mathrm{High}$ Failure of $\mathbf{X 6}$ Low Failure of Buffer Gate High or Low	2.0 Counters and Buffers Affected as Shown 2.1 Higher Order Bits Frozen 2.2 When Analog Input is Over 5V Counters Will Recycle 2.3 Counters Will Stay at Zero After Reset 2.4 One Bit Erroneous, Other 7 Will Be Okay	2.0 Output Affected as Shown 2.1 Higher Order Bits Frozen 2.2 An Analog Input of Greater than 5Y will Digitally Read Less Than 5V, Analog Inputs Lincer 5V Will be Unaffected 2.3 Output Always Read Zeros 2.4 One Bit Erroneous	. 009600	1	
	Voltage Supply Noise Suppres - sior	3.0 Noise Suppressor Fails as Shown 3.1 Loss of +5 V to Bourd 3. 2 Noise on +5 V Line	3.0 3. 3.2	Discrete Parts Failure Open RI or Short Cl Open Cl or Short R1	3.0 Digital Circuitry Affected as Shown 3. 1 Digital Circuitry Will Cease to Fuaction 3.2 Chance Erroneous Count	3.0 Output Affected as Shown 3.1 Outputs Will Appear to be All Ones 3.2 Output Occasionally Erroneous	. 005210	3	
					\cdots				

TABIE III
FAILURE MODE, EFFECT \& CRITICALITY ANALYSIS WORKSHEET

FAILURE MODE, EFFECT \& CRITICALITY ANALYSIS WORKSHEET

PART/COMPONENT SYMBOL	FAILURE MODE (α)	EfFECT OF failure		fallure PROBABILITY $Q \times 10^{-5}$	$\begin{aligned} & \text { CRITIC- } \\ & \text { ALITY } \end{aligned}$
		ASSEMPLY	END ITEM		
5.0 First Tier MOS FET (MX02D)		5.1 Loss of a Gate on Chip 5.2 Loss of MXO2D Chip 5.3 Loss of Other Gates on Chip 5.4 Loss of MX02D Chip	5.1 Loss of 1 Channel 5.2 Loss of 4 Channels 5.3 Loss of 3 Channels 5.4 Loss of 4 Channels	.00317 .00181 .00068 .00034	2 3 4
6.0 Second Tier MOS FET (MX02D)		6.! Loss of Gate on Chip o. 2 Loss of MX02D Chip 6. 3 Loss of Other Gates on Chip 6. 4 Loss of MX02D Chip	6. 1 Loss of 4 Channels 6.2 Loss of All Channels 6.3 Loss of 12 Channels 6.4 Loss of All Channels	$\begin{aligned} & .00317 \\ & .00181 \\ & .00068 \\ & .00034 \end{aligned}$	1 2: 3** 4*
	-	* Single Asterisk Denotes Loss of All 16 Channels. \#* Double Asterisk Denotes Loss 12 Channeis Which Implies the Loss of More than One Geophone Channel. Only Criticality Numbers Having Asterisks are Termed 'Serious Failure Modes ${ }^{1}$.	,		

FAILURE MODE, EFFECT \& CRITICALITY ANALYSIS WORKSHEET

FART/COMPONENT STMBOL		FAILURE MODE		EFFECT OF FAILURE		$\begin{gathered} \text { FAILURE } \\ \text { PROBABILITY } \\ 0 \times 10^{5} \\ \hline \end{gathered}$	CRITICALITY		
		ASSEMELY	END ITEM						
1.0	Oscillator Cloci: R1, R2, R3, R4, R5, Cl, C2, Y1, NGlA, NGIB, NGIC			1.1 Short or Open R1, R2, R Cl, C2, Yl, or Failure NGlB, NGlC 1.2 Crystal (Y1) Drift	$\begin{aligned} & \mathrm{R} 5, \\ & (.533) \\ & (.371) \end{aligned}$	1.1 Oscilaltor Will Fail to Provide Output 1.2 Oscillator Frequency Drift	1. 1 Loss of Clock to Counters 1.2 Counters Will Count at Wrong Speed	$.004313$ $.003000$	1 2
2.0	Input Buffer: $\mathrm{ZM102}, \mathrm{C} 4$	2. 1 Short C4, Output LM102 2.2 Input Offset Drift 2.3 Open C4	$\begin{aligned} & (.776) \\ & (.193) \\ & (.030) \end{aligned}$	2.1 Loss of Input to Comparator 2.2 Offset Input to Comparator 2.3 Nioise to Input of Comparator	2.1 Analog Input Appears High or Low 2.2 Offset Input Voltage 2.3 Chance of Small Errors in Conversion	$\begin{aligned} & .003503 \\ & .000870 \\ & .000134 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$		
	Comparator: R12, R13, C5, LMA11, X5	3.1 Open R12, R13, Short R Failure of LM111, X5 3.2 LM111 Input Offset Drift 3.3 Open C5, Short R12	(.798) (.140) (.002)	3.1 Loss of Command Latch Signal 3.2 Comparator Will Switch too Soon or too Late 3. 3 Noise in Comparator	3.1 Counters Will Count Erroneously 3.2 Count Will be Slightly too High or too Low 3.3 Chance Count Will be Low	.004020 .000810 .000003	2 3		
	Ramp Generator: RT, R8, R9, R10 R11, R14, R15. C3, C12, Q1. LM107	4. 1 Open or Short R8, R9, R10, R11, R14, R15, C3, CR2, Q1, Open R7, or Output Failure of LM107 (.442) 4.2 Drift of CR2, R8, R9, R10, R1 (.413) 4. 3 Short R7 (.001)		4.1 Ramp Generator Will Cease to Function 4. 2 Incorrect Ramp Slope 4.3 Excess Current in Zener CR1	4. 1 Counter Will Not Turn Off 4.2 Counter Turned Off too Soon or too Late 4. 3 - 12V Supply May Be Shorted	$.009248$ $.008631$ $.00003$	2 3		
	Supply Noise Suppression C6, C7, C8, C9	$\left\{\begin{array}{l} 5.1 \text { Short C8, C9 } \\ 5.2 \text { Open C6, C7, C8, C9 } \\ 5.3 \text { Short C6, or C7 } \end{array}\right.$	$\begin{aligned} & (.070) \\ & (.798) \\ & (.070) \end{aligned}$	5.1 Loss of -12 V or +5 V 5.2 Noise on $+12,-12, \&+5 \mathrm{~V}$ Lines 5. 3 No Effect Due to Redundant Capacitor:	5.1 Loss of One MUX-A/D Converter 5.2 Chance of Erroneous Count 5.3 No Effect	.000060 $.000684$ $.000060$	2 2		
	Thermistor Network: R16, R17	$\left\{\begin{array}{l} \text { 6.1 Open or Short R16, R17 } \\ 6.2 \text { Drift R16, R17 } \end{array}\right.$	$\begin{aligned} & (.817) \\ & (.183) \end{aligned}$	6. 1 Thermistors Not Supplied Proper Voltages 6.2 Thermistors Not Supplied Exact Voltages	6. 1 Incorrect Thermistor Outputs 6.2 Slight Error in Thermistor Outputs	$\begin{aligned} & .000274 \\ & .000061 \end{aligned}$	1 2		

FAILURE MODE, EFFECT \& CRITICALITY ANALYSIS WORKSHEET

PART/COMPONENT STMBOL	FAILURE MODE ($\boldsymbol{\alpha}$)	EFFECT OF FAILURE		$\begin{aligned} & \text { FALLURE } \\ & \text { PROBABRLITY } \\ & 0 \times 10^{-5} \end{aligned}$	$\begin{aligned} & \text { CRITIC- } \\ & \text { ALITY } \end{aligned}$
		ASSEMBLY	END ITEM		
1.0 Counter Control Circuitry: NG1, NG2, HIA, H2B, Hic, Xz	1.1 Any Failure of Digital Circuitry 1.00	1.1 Loss of Control to Counters	1. 1 Counters Will Not Change State	. 005400	1
2.0 Counter Circuitry and Output Buffers H2, HIE, HIF, X4, X5, X6	2.1 Failure of Any Stage in Counters 6531 2.2 Failure of X 6 High 1.095 2.3 Failure of X6 Low 2.4 Failure of Output Buffer Gate (.211	2. 1 Higher Order Stages Will Not Change States 2.2 Overvoltage Analog Input Will Allow Counters to Overcount 2.4 One Bit Will Always Be High or Low	2. 1 Higher Order Bits Erroneous 2. 2 All Analog Inputs Over 5V will Digitally Read Less Than 5V All Others Are OK 2. 3 Counters Will Stay At Zero After Reset 2. 4 One Bit Will Be Erroneous All Others will Be OK	.004800 .000720 .000480 . 003600	1 3 4 2
3.0 Supply Decoupling R1, Cl	3.1 Open R1, Short Cl 3.2 Open C1, Short R1 (.267)	3.1 Loss of +5 V to Board 3.2 Noise on -15 V Line	3. 1 Outputs Will Appear to be All Ones. 3.2 Chance Erroneous Count	.000381 .000140	2

