Internal Memorandum

Bendix

Ann Arbor, Michigan

Date 18 March 1971

Letter No. 9753-78

To Distribution

From R. Miley

Subject ALSEP-MT-03, Flight System Familiarization Manual, Revision B, Change 1

- 1. Enclosed is a copy of Change 1 to Revision B of the subject document.
- 2. Questions or comments concerning this document are solicited and should be directed to R. Miley, TDX, Building 399, telephone 483-5067.

Enclosure

Distribution: TD5/M. vonEhrenfried TD5/J. Bates TD4/R. Moke FC6/P. Joyce FC9/R. Bradford(6) FC9/J. Saultz FC9/B. Sharpe FS2/R. Loree FS4/P. Dell'osso FS5/J. Beaves FS6/C. Stroud TI/J. Lobb ZS5/W. Remini D212/E. Carr TDX/Standard

APOLLO LUNAR SURFACE EXPERIMENTS PACKAGE (ALSEP)

FLIGHT SYSTEM FAMILIARIZATION MANUAL

(REVISION B, CHANGE 1)

APPROVED BY NASA LUNAR SURFACE PROJECT OFFICE MANNED SPACECRAFT CENTER

> THE BENDIX CORPORATION AEROSPACE SYSTEMS DIVISION

> > CONTRACT NUMBER NAS 9-5829

> > > 15 APRIL 1969 Changed 15 December 1970

CHANGE INSTRUCTION SHEET

- TO: Holders of ALSEP-MT-03, Flight System Familiarization Manual
- SUBJECT: ALSEP-MT-03 Change 1 dated 15 December 1970

INSTRUCTIONS: Replace pages of ALSEP-MT-03, Revision B, Dated 15 April 1969, with the pages provided in the subject change package as specified in the following table.

Remove Revision B	Insert Change 1
Pages	Pages
Title	Title
A	A thru B
i thru ix	i thru ix
1-3	1-3
1-5	1-5
1-7/1-8	1-7/1-8
1-15/1-16	1-15/1-16, 1-16A/1-16B
1-21	1-21 thru 1-29
2-2, 2-3	2-2, 2-3
2-5, 2-6	2-5, 2-6, 2-6A, 2-6B
2-9, 2-10	2-9, 2-10, 2-10A
2-14	2-14
2-18	2-18
2-20, 2-21/2-22, 2-23/2-24	2-20, 2-21/2-22, 2-23/2-24
2-25/2-26	2-25/2-26, 2-26A/2-26B
2-39/2-40	2-39/2-40
2-45, 2-46, 2-47	2-45, 2-46, 2-47, 2-48A/2-48E
2-49, 2-50	2-49, 2-50, 2-50A, 2-50B
2-51, 2-52, 2-53/2-54, 2-55	2-51, 2-52, 2-53/2-54, 2-55
	2-56A/2-56B
	2-60A/2-60B
2-62, 2-63/2-64, 2-65	2-62, 2-63/2-64, 2-65
2-67, 2-68	2-67, 2-68
	2-68A, 2-68B, 2-68C, 2-68D
2-71/2-72	2-71/2-72
2-75, 2-76, 2-77/2-78	2-75, 2-76, 2-77/2-78
3-3/3-4, 3-5/3-6, 3-7/3-8	3-3/3-4, 3-5/3-6, 3-7/3-8
3-9, 3-10, 3-11, 3-12	3-9, 3-10, 3-11, 3-12
3-17	3-17
3-21	3-21
3-24	3-24, 3-24A, 3-24B
3-27, 3-28	3-27, 3-28

Remove Revision B Pages	Insert Change 1 Pages
4-2, 4-3, 4-4, 4-5, 4-6	4-2, 4-3, 4-4, 4-5, 4-6
4-9	4-9
	4-10A thru 4-10G
4-11	4-11
4-14	4-14, 4-14A/4-14B
4-18	4-18
4-21	4-21
4-23	4-23
G-1, G-2	G-1, G-2
I-1 thru I-13	I-1 thru I-14
A-1 thru A-16	A-1 thru A-19/A-20
B-1 thru B-6	B-1 thru B-6, B-6A/B-6B
B-7 thru B-15	B-7 thru B-15
B-18, B-19	B-18, B-19
B-25, B-26	B-25, B-26
B-30, B-31	B-30, B-31
B-38	B-38

CHANGE INSTRUCTION SHEET (cont)

LIST OF EFFECTIVE PAGES

The total number of pages in this publication is 423, consisting of the following:

Page No.

Issue

Title	Change 1	15 December 1970
A thru B	Change 1	15 December 1970
i thru ix	Change 1	15 December 1970
1-1 thru 1-2	Revision B	15 April 1969
1-3	Change 1	15 December 1970
1-4	Revision B	15 April 1969
1-5	Change 1	15 December 1970
1-6	Revision B	15 April 1969
1-7/1-8	Change 1	15 December 1970
1-9 thru 1-14	Revision B	15 April 1969
1-15 thru 1-16A	Change 1	15 December 1970
1-17 thru 1-20	Revision B	15 April 1969
1-21 thru 1-29/1-30	Change 1	15 December 1970
2-1	Revision B	15 April 1969
2-2 thru 2-3	Change 1	15 December 1970
2-4	Revision B	15 April 1969
2-5 thru 2-6B	Change 1	15 December 1970
2-7 thru 2-8	Revision B	15 April 1969
2-9 thru 2-10A/2-10B	Change 1	15 December 1970
2-11 thru 2-13	Revision B	15 April 1969
2-14	Change 1	15 December 1970
2-15 thru 2-17	Revision B	15 April 1969
2-18	Change 1	15 December 1970
2-19	Revision B	15 April 1969
2-20 thru 2-26A/2-26B	Change 1	15 December 1970
2-27 thru 2-38	Revision B	15 April 1969
2-39/2-40	Change 1	15 December 1970
2-41 thru 2-44	Revision B	15 April 1969
2-45 thru 2-56B	Change 1	15 December 1970
2-57 thru 2-60	Revision B	15 April 1969
2-60A/2-60B	Change 1	15 December 1970
2-61	Revision B	15 April 1969
2-62 thru 2-65	Change 1	15 December 1970
2-66	Revision B	15 April 1969
2-67 thru 2-68D	Change 1	15 December 1970
2-69/2-70	Revision B	15 April 1969
2-71/2-72	Change 1	15 December 1970
2-73 thru 2-74	Revision B	15 April 1969
2-75 thru 2-78	Change 1	15 December 1970
2-79 thru 2-245	Revision B	15 April 1969
3-1 thru 3-2	Revision B	15 April 1969
3-3 thru 3-12	Change 1	15 December 1970

LIST OF EFFECTIVE PAGES

(cont)

Page No.

Issue

3-13 thru 3-16	Revision B	15 April 1969
3-17	Change 1	15 December 1970
3-18 thru 3-20	Revision B	15 April 1969
3-21	Change 1	15 December 1970
3-22 thru 3-23	Revision B	15 April 1969
3-24 thru 3-24B	Change 1	15 December 1970
3-25 thru 3-26	Revision B	15 April 1969
3-27 thru 3-28	Change 1	15 December 1970
3-28/3-29	Revision B	15 April 1969
4-1	Revision B	15 April 1969
4-2 thru 4-6	Change 1	15 December 1970
4-7 thru 4-8	Revision B	15 April 1969
4-9	Change 1	15 December 1970
4-10	Revision B	15 April 1969
4-10A thru 4-10G	Change 1	15 December 1970
4-11	Change 1	15 December 1970
4-12 thru 4+13	Revision B	15 April 1969
4-14 thru 4-14A	Change 1	15 December 1970
4-15 thru 4-17	Revision B	15 April 1969
4-18	Change 1	15 December 1970
4-19 thru 4-20	Revision B	15 April 1969
4-21	Change 1	15 December 1970
4-22	Revision B	15 April 1969
4-23	Change 1	15 December 1970
4-24 thru 4-27	Revision B	15 April 1969
G-1 thru G-2	Change 1	15 December 1970
G-3	Revision B	15 April 1969
I-1 thru I-14	Change 1	15 December 1970
A-1 thru A-19	Change 1	15 De cember 1970
B-1 thru B-6A	Change 1	15 December 1970
B-7 thru B-15	Change 1	15 December 1970
B-16 thru B-17	Revision B	15 April 1969
B-18 thru B-19	Change 1	15 December 1970
B-20 thru B-24	Revision B	15 April 1969
B-25 thru B-26	Change 1	15 December 1970
B-27 thru B-29	Revision B	15 April 1969
B-30 thru B-31	Change 1	15 December 1970
B-32 thru B-37	Revision B	15 April 1969
B-38	Change 1	15 December 1970
B-39 thru B-49	Revision B	15 April 1969

TABLE OF CONTENTS

Sect	tion			Page
I	ALSE	P MISSIC	ON DESCRIPTION	1-1
	1-1		Mission Introduction	1-1
	1-2		Mission Profile	1-1
	1-3		Mission Objectives	1-3
	1-4		System Description	1-3
		1-5	ALSEP Physical Description	1-3
		1-6	ALSEP Functional Description	1-6
	1-20		Principal Investigators	1-19
	1-21		ional Experience	1-17
		1-22	EASEP Operational Experience	1-21
		1-25	ALSEP 1 Operational Experience	1-24
п	ALCE		STEM DESCRIPTION	
ш	Z-1			2-1
			Subsystem Introduction	2-1
	2-2		re/Thermal Subsystem	2-1
		2-3	Structure/Thermal Subsystem Physical	
		2.4	Description	2-1
		2-4	Structure/Thermal Subsystem Functional	100
		2.10	Description	2-3
		2-10	Dust Detector Description	2-7
		2-12A	Dust, Thermal, and Radiation Engineering	
		-	Measurements Package Description	2-9
	2-13		ical Power Subsystem	2-11
		2-14	EPS Physical Description	2-11
		2-20		2-11
	2.24	2-21	EPS Detailed Functional Description	2-14
	2-24		ibsystem	2-17
		2-25	Data Subsystem Physical Description	Z-18
		2-27		2-27
		2-31	Data Subsystem Diplexer	2-30
		2-34	Data Subsystem Command Receiver	2-33
		2-37	Data Subsystem Command Decoder	2-35
		2-41	Data Subsystem Central Station Timer	2-47
		2-43A	Data Subsystem Resettable Solid State Timer	2-50
		2-44	Data Subsystem Data Processor	2-50
		2-49	Data Subsystem Transmitter 2330527	2-62
		2-51A	Data Subsystem Transmitter 2345250	2-68
		2-52	Data Subsystem Power Distribution Unit	2-68D
	2-58		e Seismic Experiment (PSE) Subsystem	2-79
		2-59	PSE Physical Description	2-80
		2-65	PSE Functional Description	2-84
		2-69	PSE Detailed Functional Description	2-90
	2-79		tometer Experiment (ME) Subsystem	2-107
		2-80	ME Physical Description	2-107
		2-81	ME Functional Description	2-108
	2	2-82	ME Detailed Functional Description	2-111
	2-92		Wind Experiment (SWE) Subsystem	2-125
		2-93	SWE Physical Description	2-126
		2-99	SWE Functional Description	2-128

Changed 15 December 1970 i

TABLE OF CONTENTS (cont)

Secti	ion		Page
		2-100 SWE Detailed Functional Description	2-131
	2-145	Suprathermal Ion Detector Experiment (SIDE)	
		Subsystem	2-147
		2-146 Side Physical Description	2-149
		2-147 Side Functional Description	2-150
		2-148 Side Detailed Functional Description	2-151
	2-153	Active Seismic Experiment (ASE) Subsystem	2-161
		2-154 ASE Physical Description	2-162
		2-163 ASE Functional Description	2-166
		2-167 ASE Detailed Functional Description	2-167
		2-173 Safety Features	2-175
	2-176	Heat Flow Experiment (HFE) Subsystem	2-179
		2-177 HFE Physical Description	2-179
		2-178 HFE Functional Description	2-181
		2-179 HFE Detailed Functional Description	2-183
	2-191	Charged Particle Lunar Environment Experiment (CPL	EE)
		Subsystem	2-199
		2-192 CPLEE Physical Description	2-200
		2-193 CPLEE Functional Description	2-202
		2-194 CPLEE Detailed Functional Description	2-204
	2-202	Cold Cathode Gauge Experiment (CCGE) Subsystem	2-213
		2-203 CCGE Physical Description	2-213
		2-208 CCGE Functional Description	2-215
		2-209 CCGE Detailed Functional Description	2-217
	2-216	Apollo Lunar Hand Tools (ALHT) Subsystem	2-229
		2-217 ALHT Description	2-229
	2-218	Apollo Lunar Surface Drill (ALSD)	2-237
		2-219 ALSD Physical Description	2-237
		2-224 ALSD Functional Description	2-243
		2-225 ALSD Detailed Functional Description	2-243
III	MAINT	ENANCE	3-1
	3-1	Maintenance Concept	3-1
		3-2 Maintenance Level A (System)	3-2
		3-5 Maintenance Level B (Specialized)	3-11
	3-6	Ground Support Equipment (GSE)	3-11
		3-7 GSE Electrical	3-12
		3-8 GSE Mechanical	3-12
		3-9 Tools and Test Equipment	3-12
		3-10 Transportation Equipment	3-27
		3-13 ALSEP Support Manuals	3-28
IV	OPERA	ATIONS	4-1
	4-1	Operations, General	4-1
	4-2	KSC Prelaunch Checkout and Installation	4-1
		4-3 KSC Inspection and Checkout	4-2
		4-8 KSC ALSEP Installation	4-2

Section

TABLE OF CONTENS (cont)

Sectio	on	Page
	 4-13 Lunar Surface Operations 4-14 Flight Mode 4-15 Post-Landing Operations 4-17 Predeployment 4-22 Deployment 4-27 Post-Deployment Operations 4-28 Manned Space Flight Network (MSFN) 	4-5 4-6 4-7 4-8 4-9 4-23 4-25
GLOS	SARY	G-1
INDE	X	I-1
APPE	ENDIX A COMMAND LIST	A-1
APPE	NDIX B MEASUREMENT REQUIREMENTS DOCUMENT	B - 1
	LIST OF ILLUSTRATIONS	
Figur	e	Page
1-1 1-2 1-3 1-4 1-5 1-6 1-6A 1-7 1-8 1-9 1-10 2-1 2-2 2-2A 2-2B 2-2C 2-3 2-4 2-5	ALSEP/LM Interface ALSEP Subpackage No. 1 (Flight 1 and Array A-2) ALSEP Subpackage No. 2 (Flights 1, 2 and 4) ALSEP Subpackage No. 1 (Flight 3) ALSEP Subpackage No. 2 (Flight 3) ALSEP Subpackage No. 2 (Flight 4) ALSEP Subpackage No. 2 (Array A-2) ALSEP System, Simplified Block Diagram EASEP Deployed on the Lunar Surface ALSEP 1 Deployed on the Lunar Surface ALSEP 1 Lunar Day No. 12 Structure, Subpackage No. 2 (Flights 1, 2, and 4) Structure, Subpackage No. 2 (Flight 3) Structure, Subpackage No. 2 (Array A-2) Dust Covers Fuel Cask Structure Assembly Handling Tools Antenna Mast Sections	1-2 1-7 1-9 1-11 1-13 1-15 1-16A 1-17 1-23 1-24 1-26 2-4 2-5 2-5 2-6 2-6B 2-6B 2-6B 2-7
2-6	Dust Detector	2-8
2-7	Dust Detector, Simplified Block Diagram	2-9
2-7A	Dust, Thermal and Radiation Engineering Measurements Package	2-10A
2-7B	Dust, Thermal and Radiation Engineering Measurements Package, Simplified Block Diagram	2-10A
2-8	Electrical Power Subsystem	2-12 2-14
2-9 2-10	Electrical Power Subsystem, Functional Block Diagram EPS Power Generation Function, Block Diagram	2-14 2-15
2-10	EPS Power Generation Function, Block Diagram EPS Power Regulation Function, Block Diagram	2-15
2-12	Data Subsystem, Simplified Block Diagram	2-17
2-12	Data Subsystem, Simplified Block Diagram	2-19

Changed 15 December 1970 iii

Figure		Page
2-14	Data Subsystem (Flight 1 Configuration), Functional	
	Block Diagram	2-21
2-15	Data Subsystem (Flight 3 Configuration), Functional Block	
1.100	Diagram	2-23
2-16	Data Subsystem (Flight 4 Configuration), Functional Block	
2-02.5	Diagram	2-25
2-16A	Data Subsystem (Array A-2) Functional Block Diagram	2-26A
2-17	Antenna and Aiming Mechanism	2-28
2-18	Data Subsystem Diplexer Filter	2-30
2-19	Data Subsystem Diplexer Switch	2-31
2-20	Data Subsystem Diplexer Switch Diagram	2-31
2-21	Data Subsystem Command Receiver	2-33
2-22	Data Subsystem Command Receiver Block Diagram	2-36
2-23	Data Subsystem Command Receiver Output Signal	
	Characteristics	2-37
2-24	Data Subsystem Command Decoder	2-38
2-25	Data Subsystem Command Decoder, Functional Block Diagram	2-39
2-26	Data Subsystem Command Decoder Flow Diagram	2-43
2-27	Data Subsystem Delayed Command Sequence, Functional Flow	
	Chart	2-48
2-27A	Data Subsystem Delayed Command Sequence, Functional	
	Flow Chart (Array A-2)	2-48A
2-28	Data Subsystem Central Station Timer	2-49
2-29	Data Subsystem Central Station Timer, Block Diagram	2-50
2-29A	Resettable Solid State Timer	2-50A
2-29B	Resettable Solid State Timer, Block Diagram	2-50B
2-30	Data Subsystem Digital Data Processor	2-52
2-31	Data Subsystem Analog Data Multiplexer/Converter	2-52
2-32	Data Subsystem Data Processor, Functional Block Diagram	2-53
2-33	Data Subsystem Analog Multiplexer (of 2330524), Block Diagram	2-55
2-33A	Data Subsystem Dual Analog Multiplexer (of 2338900), Block	
	Diagram	2-56A
2-34	ALSEP Telemetry Frame Format	2-58
2-34A	ALSEP Telemetry Frame Format	2-60A
2-35	ALSEP Telemetry Control Word Bit Assignments	2-61
2-36	Data Subsystem Data Processor Flow Chart	2-63
2-37	Data Subsystem Transmitter 2330527	2-65
2-38	Data Subsystem Transmitter 2330527, Block Diagram	2-67
2-38A	Data Subsystem Transmitter 2345250	2-68A
2-38B	Data Subsystem Transmitter 2345250, Block Diagram	2-68B
2-39	Data Subsystem Power Distribution Unit	2-68D
2-40	Data Subsystem Power Distribution Unit, Block Diagram	2-71
2-41	Data Subsystem Transmitter Power Control	2-75
2-42	Command Receiver and Data Processor Power Control	2-77

Figur	e	Page
2-43	Passive Seismic Experiment Subsystem	2-81
2-44	Passive Seismic Experiment, Functional Block Diagram	2-85
2-45	PSE Long Period Seismic Activity Monitoring Function,	
	Block Diagram	2-91
2-46	PSE Short Period Seismic Activity Monitoring Function,	
	Block Diagram	2-93
2-47	PSE Data Handling Function, Block Diagram	2-95
2-48	PSE Data Word Assignments in ALSEP Telemetry Frame	2-97
2-49	PSE Uncaging and Leveling Function, Block Diagram	2-99
2-50	PSE Thermal Control Function, Block Diagram	2-105
2-51	PSE Power Converter Function, Block Diagram	2-105
2-52	Magnetometer Experiment	2-108
2-53	Magnetometer Experiment, Functional Block Diagram	2-110
2-54	Electromagnetic Measurement and Housekeeping Function,	
	Block Diagram	2-112
2-55	ME Calibration and Sequencing Function, Block Diagram	2-114
2-56	ME Sensor Orientation Function, Block Diagram	2-117
2-57	ME Site Survey Sensor Gimbal and Flip Sequence	2-118
2-58	ME Data Handling Function, Block Diagram	2-120
2-59	ME Thermal Control Function, Block Diagram	2-121
2-60	ME Power Control and Timing Function, Block Diagram	2-122
2-61	Solar Wind Experiment Subsystem	2-126
2-62	SWE, Functional Block Diagram	2-130
2-63	SWE Measurement Function, Block Diagram	2-132
2-64	SWE Faraday Cup Diagram	2-133
2-65	SWE Modulation Function, Block Diagram	2-135
2-66	SWE Sequencing Function, Block Diagram	2-139
2-67	SWE Data Handling Function, Block Diagram	2-141
2-68	SWE Power Supply, Block Diagram	2-144
2-69	Suprathermal Ion Detector Experiment Subsystem	2-148
2-70	Suprathermal Ion Detector Experiment, Functional Block	
	Diagram	2-151
2-71	SIDE Command Function, Block Diagram	2-152
2-72	SIDE Programmer Function, Block Diagram	2-154
2-73	SIDE Ion Detection Function, Block Diagram	2-155
2-74	SIDE Data Handling Function, Block Diagram	2-159
2-75	Active Seismic Experiment (ASE) Subsystem	2-163
2-76	Active Seismic Experiment (ASE) Subsystem Functional	7 1/7
0.99	Block Diagram	2-167
2-77	ASE Seismic Signal Generation Function, Block Diagram	2-169 2-171
2-78	ASE Seismic Signal Detection Function, Block Diagram	2-171
2-79	ASE Timing and Control Function, Block Diagram	2-172
2-80	ASE Data Handling Function, Block Diagram	2-175
2-81 2-82	ASE Power Control Function, Block Diagram	2-175
	Heat Flow Experiment (HFE) Subsystem Heat Flow Experiment, Functional Block Diagram	2-180
2-83 2-84	HEE Command Processing Function, Block Diagram	2-184
2-85	HFE Timing and Control Function, Block Diagram	2-190
6-00	THE THINK GIVE OUTFOUT THISTORY STOCK PROFICING	V.C.

Figure		Page
2-86	HFE Temperature Measurement Function, Block Diagram	2-190
2-87	HFE Conductivity Heater Function, Block Diagram	2-193
2-88	HFE Data Handling Function, Block Diagram	2-194
2-89	HFE Power and Electronics Thermal Control Function,	
	Block Diagram	2-195
2-89A	HFE Measurement Digital Data Format	2-196
Z-90	Charged Particle Lunar Environment Experiment Subsystem	2-200
2-91	CPLEE Major Components	2-201
2-92	CPLEE, Functional Block Diagram	2-202
2-93	CPLEE Charged Particle Detection Function, Block Diagram	2-205
2-94	Channeltron 🕲 Detector Typical Electron Gain	2-206
2-95	CPLEE Physical Analyzer Major Components	2-207
2-96	CPLEE Discrimination and Programming Function,	
- /0	Block Diagram	2-208
2-97	CPLEE Data Handling Function, Block Diagram	2-209
2-98	CPLEE Power Supply Function, Block Diagram	2-210
2-99	Cold Cathode Gauge Experiment (CCGE) Subsystem	2-214
2-100	Cold Cathode Gauge Experiment, Functional Block Diagram	2-216
2-101	CCGE Measurement Function, Block Diagram	2-218
2-102	CCGE Timing and Control Function, Block Diagram	2-221
2-103	CCGE Command Function, Block Diagram	2-223
2-104	CCGE Data Handling Function, Block Diagram	2-225
2-105	CCGE Power Function, Block Diagram	2-226
2-106	CCGE Thermal Control Function, Block Diagram	2-227
2-107	Apollo Lunar Hand Tools Subsystem Deployed	2-233
2-108	ALHT Subsystem Front and Rear Views of Flight Configuration	2-234
2-109	ALHT Subsystem Brush/Scriber/Hand Lens, Scoop, and Staff	2-235
2-110	Apollo Lunar Surface Drill (ALSD)	2-238
2-111	ALSD, Partially Exploded View	2-239
2-112	ALSD, Power Head, Simplified Cutaway View	2-244
3-1	ALSEP Flight System Maintenance Flow Diagram	3-3
3-2	Level A Maintenance Flow Diagram	3-5
3-3	ALSEP System Test Set	3-13
3-4	Magnetometer Flux Tanks (Configuration B)	3-13
3-5	Gamma Control Console	3-14
3-6	Integrated Power Unit Test Set	3-14
3-7	Environmental Test Chamber	3-15
3-8	IPU Breakout Box	3-15
3-9	RTG Simulator	3-16
3-10	Grenade Launch Assembly Test Set	3-16
3-11	Active Seismic Sensor Simulator	3-17
3-12	Passive Seismic Sensor Excitor	3-17
3-13	Heat Flow Sensor Simulator	3-18

Figur	a	Page
3-14	ALSD Pressurization Unit	3-18
3-15	ALSD Battery Charging Unit	3-19
3-16	Electric Fuel Capsule Simulator	3-19
3-17	Antenna Cap Fixture	3-20
3-18	Subpackage Handling GSE	3-22
3-19	Boyd Bolt Tools	3-23
3-20	GLA Test Fixture	3-23
3-20A	Cask Assembly Protective Cover	3-24
	SLA Installation GSE	3-24A
3-21	Fuel Cask/Structure Assembly Handling Equipment	3-25
3-22	Fuel Capsule Handling Equipment	3-26
3-23	ALSEP Containers	3-29
4-1	Barbell Carry Mode	4-10
4-1A	Deployment Decals	4-10
4-1B	ALSEP Array A-2 Alignment and Leveling Devices	4-10A
4-2	Deployment Arrangement Flight 1 (actual)	4-11
4-3	Deployment Arrangement Flight 3, Typical	4-12
4-4	Deployment Arrangement Flight 4, Typical	4-13
4-4A	Deployment Arrangement Array A-2, Typical	4-14
4-5	PSE Shroud Deployment and Experiment Leveling	4-14A
	Central Station Erected	4-15
4-7	Antenna Aiming Mechanism Alignment	4-16
4-8	ME Deployment	4-17
4-9	ALSD Use in HFE	4-19
4-10	HFE Probe Emplacement	4-20
4-11	Antenna Aiming Mechanism	4-22
4-12	Antenna Aiming Table (Sample)	4-24
4-13	MSFN Functional Block Diagram	4-26
		1-00
	LIST OF TABLES	
Table		Page
1-1	ALSEP Scientific Objectives	I - 4
1-2	ALSEP Experiment Subsystem Flight Assignments	1-5
1-3	ALSEP Principal Investigators	I-20
1-4	EASEP Operating Experience	1-22
1-5	ALSEP 1 Experiment Temperature Extremes	1-27
2-1	Structure/Thermal Subsystem Leading Particulars	2-2
2-2	Electrical Power Subsystem Leading Particulars	2 - 13
2-3	Data Subsystem Component Function	2-18
2-4	ALSEP Commands	2-20
2-5	Antenna Leading Particulars	2-29
2-6	Data Subsystem Diplexer Filter Leading Particulars	2-32
2-7	Data Subsystem Diplexer Switch Leading Particulars	2-32
2-8	Data Subsystem Command Receiver Leading Particulars	2-34
2-9	Data Subsystem Command Decoder Leading Particulars	2-38

LIST OF TABLES (cont)

Table		Page
2-10	Data Subsystem Delayed Command Functions (Flights 1, 3, and	4) 2-47
2-10A	Data Subsystem Delayed Command Functions (Array A-2)	2-47
2-11	Data Subsystem Data Processor Leading Particulars	2-55
2-12	Data Subsystem Timing and Control Pulse Characteristics	
	in Normal ALSEP Data Mode	2-56
2-13	Data Subsystem Transmitter 2330527 Leading Particulars	2-65
2-13A	Data Subsystem Transmitter 2345250, Leading Particulars	2-68C
2-14	Data Subsystem Power Distribution Unit Leading Particulars	2-69
2-15	PSE Leading Particulars	2-83
2-16	PSE Command Functions	2-88
2-17	PSE Measurements	2-98
2-18	ME Leading Particulars	2-109
2-19	ME Command List	2-112
2-20	SWE Leading Particulars	2-127
2-21	SIDE Leading Particulars	2-150
2-22	SIDE/CCIG Commands	2-153
2-23	ASE Leading Particulars	2-165
2-24	ASE Measurements	2-174
2-25	HFE Leading Particulars	2-181
2-26	HFE Command List	2-183
2-27	HFE Measurements	2-184
2-28	HFE Analog Housekeeping Datums	2-197
2-29	CPLEE Leading Particulars	2-201
2-30	CPLEE Command List	2-203
2-31	CCGE Leading Particulars	2-215
2-32	Apollo Lunar Hand Tools	2-229
2-33	ALSD Leading Particulars	2-240
3 - 1	ALSEP Hardware Categories	3-1
3-2	ALSEP Flight Article Spares	3-9
3-3	Electrical Ground Support Equipment	3-12
3-4	Mechanical Ground Support Equipment	3-20
3-4A	SLA Installation Ground Support Equipment	3-24
3-5	Fuel Cask/Structure Assembly Handling Equipment	3-24B
3-6	Fuel Capsule Handling Equipment	3-24B
3-7	Standard Tools, Test Equipment, Facilities, and Supplies	3-27
3-8	ALSEP Support Manuals	3-28
4-1	ALSEP Operations Locations	4 - 1
4-2	KSC Inspection	4-3
4-3	KSC GSE Calibration	4-4
4-4	KSC ALSEP Equipment Checkout	4-4
4-5	KSC Fit Checks	4-5
4-6	Subpackage Configuration, Flight 1	4-6
4-7	Deployment Tools	4-7
4-8	Predeployment Events	4-8

INTRODUCTION

The Apollo Lunar Surface Experiments Package (ALSEP) will be used to obtain long-term scientific measurements of various physical and environmental properties of the Moon consistent with the scientific objectives of the Apollo Program. The ALSEP comprises scientific experiment packages with supporting subsystems. ALSEP will be transported to the lunar surface aboard the Apollo Lunar Module (LM). The ALSEP will remain on the lunar surface after the return of the astronauts and will transmit scientific and engineering data to the Manned Space Flight Network (MSFN).

The purpose of the ALSEP Flight System Familiarization Manual is to familiarize the reader with the scientific objectives of ALSEP, equipment make-up, system deployment, and operation. This manual describes the ALSEP mission and system in Section I, subsystems in Section II, maintenance in Section III, and operations in Section IV. Supplementary command and measurement data are provided in the Appendices. ALSEP Flight 2 subpackages have been used in the Early Apollo Scientific Experiments Package (EASEP) Program. Consequently, any reference to Flight 2 in this manual is no longer applicable.

The information contained in this change of the ALSEP Flight System Familiarization Manual includes formalized data released and available prior to the publication date, 15 December 1970.

1-3. ALSEP MISSION OBJECTIVES

Major objectives of lunar exploration include determination of:

a. The structure and state of the lunar interior

b. The composition and structure of the lunar surface and modifying processes.

c. The evolutionary sequence of events leading to the present lunar configuration.

To initiate partial attainment of these objectives the ALSEP includes eight experiments in varying combinations to measure a number of geophysical characteristics. The various physical and environmental properties to be measured, applicable experiment, and method of measurement are listed in Table 1-1.

1-4. ALSEP SYSTEM DESCRIPTION

The ALSEP is a self-contained package of scientific instruments and supporting subsystems designed to acquire lunar physical and environmental data and transmit the information to Earth. The ALSEP is deployed on the lunar surface by the Apollo crewmen as described in Section IV of this manual. Different configurations of the ALSEP will be used on the different Apollo flights as specified in Table 1-2.

1-5. ALSEP PHYSICAL DESCRIPTION

The ALSEP consists of the following subsystems:

- a. Structure/thermal subsystem
- b. Electrical power subsystem
- c. Data subsystem
- d. Apollo lunar hand tools

e. Eight experiment subsystems in varying combinations for each of the flights as presented in Table 1-2.

The experiment and support subsystems of the ALSEP system are mounted in two subpackages as shown in Figure 1-1 for storage and transportation in the LM. The fuel cask (part of the electrical power subsystem) is attached to the LM.

Subpackage No. 1 for Flight 1 and Array A-2 consists of the central station (data subsystem, power conditioning unit, and experiment electronics), the antenna, the passive seismic (PSE), magnetometer (ME), and solar wind (SWE) experiments as shown in Figure 1-2. Subpackage No. 2 for Flights 1 and 4 consists of the radioisotope thermoelectric generator (RTG), suprathermal ion detector experiment (SIDE), Apollo lunar hand tools (ALHT), handling tools, and the antenna mast as shown in Figure 1-3. Similar configurations of the subpackages incorporating different combinations of experiments as shown in Figure 1-4, 1-5, 1-6, and 1-6A will be employed in Flights 3 and 4, and Array A2. The ALSEP Array A2 packages, including fuel capsule and cask, weigh approximately 283.8 pounds and, excluding the fuel capsule and cask, occupy approximately 15 cubic feet.

Measurement Objective	Experiment/Measurement Method		
Natural seismology (meteoroid impacts and moonquakes). Properties of lunar interior (existence of core, mantle)	Passive Seismic Experiment - Uses three long period sensors in an orthogonal arrangement and one vertical short period sensor.		
Magnetic field and its tem- poral variations at the lunar surface.	Magnetometer Experiment - Uses tri-axis flux-gate magnetometer instru- ment. Three booms, each with flux- gate sensors, are separated to form a rectangular coordinate system and gimballed to allow alignment in par- allel or orthogonal configurations.		
Interaction of solar wind and Moon (temporal, spectral, and directional characteristics).	Solar Wind Experiment - Detects and monitors particles using exposed collection cups (sensors).		
Lunar ionosphere positive ion detection, (flux, energy, and velocity of positive ions). Also pressure of lunar atmosphere and rate loss of contaminants left by astronauts and the LM.	Suprathermal Ion Detector Experiment- Detects positive ions in lunar iono- sphere and thermalized solar wind using a curved plate analyzer as de- tector device. Velocity selector analyzer used to determine particle velocities and energies. Cold cathode ion gauge is used to determine density of lunar atmosphere.		
Physical properties of lunar materials at shallow depths (elastic properties of lunar near-surface materials).	Active Seismic Experiment - Uses artificial seismic energy sources (grenade launcher assembly and thumper device) and detection equip- ment (geophones and amplifiers).		
Rate of heat flow through lunar sur- face that, together with information from other sources, will refine hy- potheses concerning: a. the physical and chemical com- position of the lunar surface, b. the thermal distribution of the Moon. c. the radioactivity of material at various lunar depths, and	<u>Heat Flow Experiment</u> - Uses two heat flow probe assemblies, em- placed in lunar crust. Probes con- tain temperature sensors and heating elements.		

Table 1-1. ALSEP Scientific Objectives

Measurement Objective	Experiment/Measurement Method		
Composition of lunar atmosphere	Charged-Particle Lunar Environment		
(electron/proton energies)	Experiment - Detects and monitors		
	particle energy levels using two		
	sensor assemblies (analyzers).		
Pressure of ambient lunar atmos-	Cold Cathode Gauge Experiment -		
phere including temporal varia-	Senses lunar atmospheric density		
tions either random or associated	variations using a transducer to		
with lunar local time or solar	effect conversion of particle quan-		
activity.	tity to direct current.		

Table 1-1. ALSEP Scientific Objectives (cont)

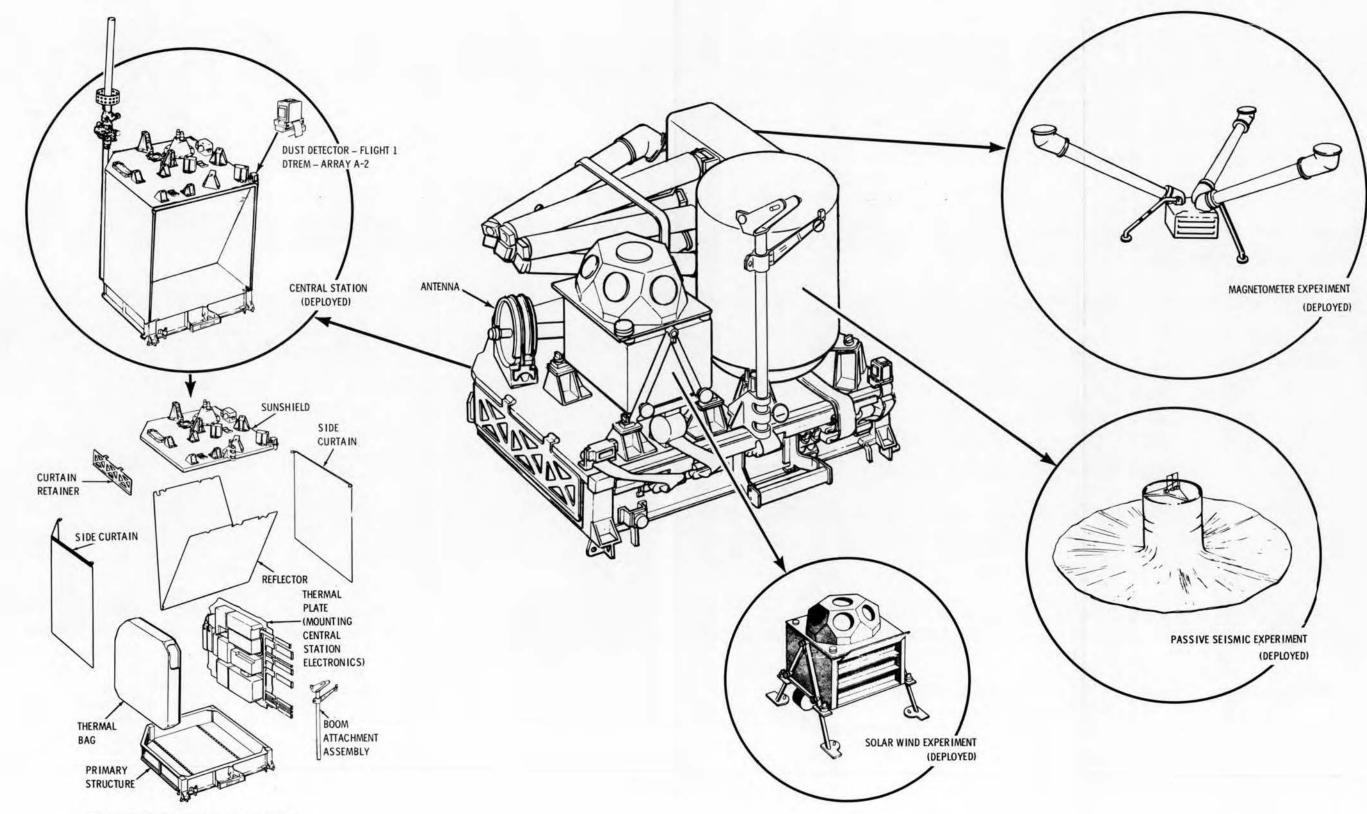
Table 1-2. ALSEP Experiment Subsystem Flight Assignments

Experiment	Flight 1	Flight 3	Flight 4	Array A-2
Passive seismic	х	х	х	х
Magnetometer	x			x
Solar wind	x			x
Suprathermal ion detector	x		x	x
Active seismic			x	
Heat flow		X		x
Charged particle lunar environment		x	x	
Cold cathode gauge		Х —		

1-6. ALSEP FUNCTIONAL DESCRIPTION

The ALSEP objective of obtaining lunar physical and environmental data is accomplished through employment of the various experiment combinations, the supporting subsystems, and the manned space flight network (MSFN).

The MSFN stations, such as those at Goldstone California, Carnarvon and Canberra Australia, Ascension Island, Hawaii, Guam, Madrid Spain, and KSC Florida, are the Earth terminals for ALSEP communications. Mission Control Center (MCC) participates in the network for activation of the experiments, initial calibration sequences, and for the duration of the mission. Communications consist of an uplink (Earth-Moon) for command transmissions to control the ALSEP functions, and a downlink (Moon-Earth) for transmission of scientific experiment and engineering housekeeping data. The MSFN stations will record the downlink data.

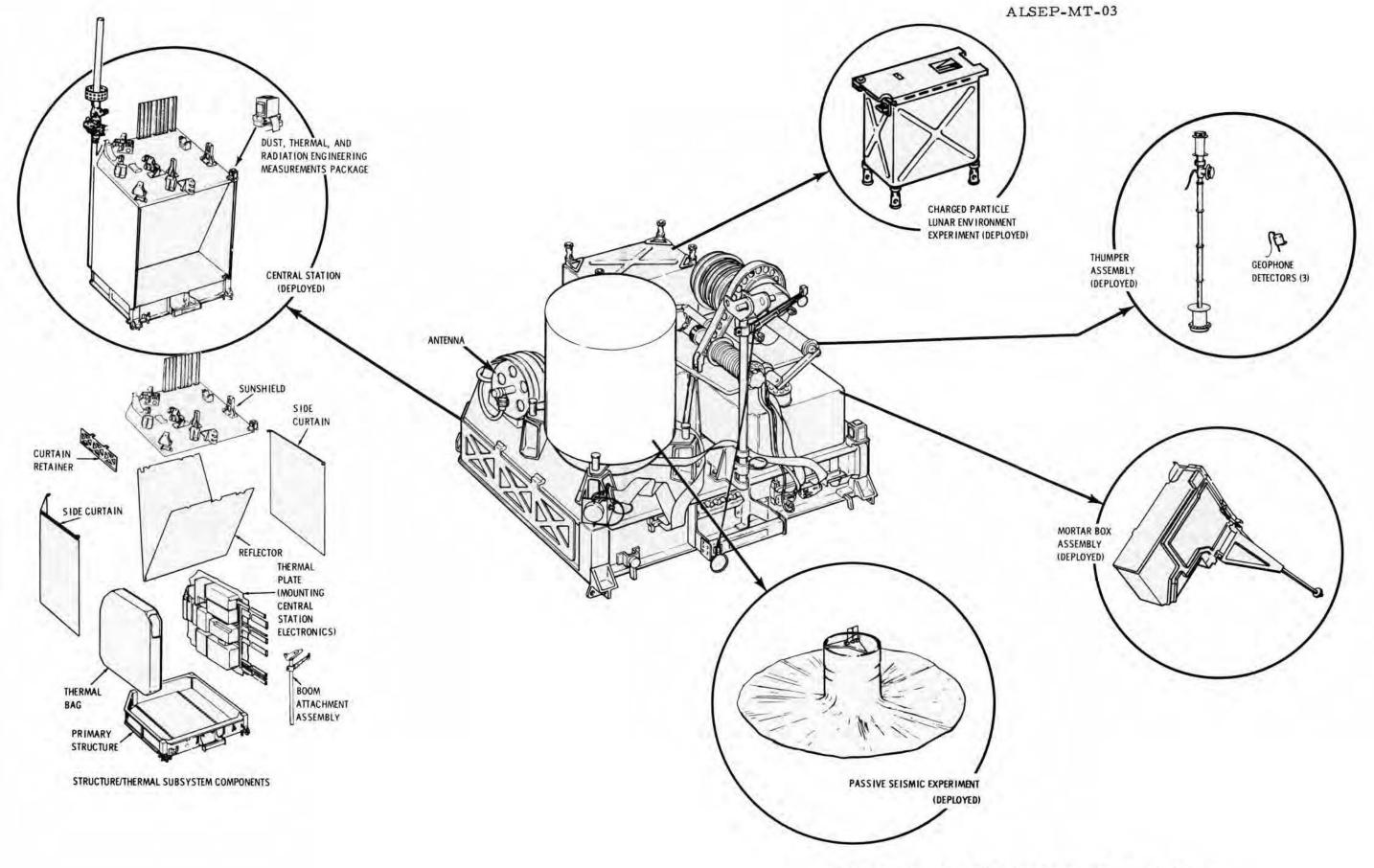

As many as three separate ALSEP systems may be operating on the Moon simultaneously. The downlink telemetry of each of these will operate at a different frequency (2278.5 MHz, 2276.5 MHz, 2275.5 MHz, or 2279.5 MHz). The uplink frequency for all systems is 2119 MHz. The command format addresses each ALSEP specifically, precluding inadvertent activation of the other systems.

The functional operation of ALSEP is illustrated in Figure 1-7. The following paragraphs describe the function, on a system level, of the ALSEP subsystems.

1-7. <u>Structure/Thermal Subsystem</u>. The structure/thermal subsystem provides structural integrity and thermal protection of the ALSEP equipment and LM in transport and in the lunar environment (-300°F to +250°F). This includes packaging, structural support, and isolation from heat, cold, shock, and vibration. A dust detector monitors accumulation of lunar dust.

1-8. Electrical Power Subsystem. The electrical power subsystem generates 63 to 74 watts of electrical power for operation of the ALSEP system. The power is developed by a thermopile system which is heated by a radioisotope fuel capsule. The power is regulated, converted to the required voltage levels, and supplied to the data subsystem for distribution to the support and experiment subsystems. Analog housekeeping data from the electrical power system is supplied to the data subsystem for downlink telemetry.

1-9. Data Subsystem. The data subsystem receives, decodes, and applies discrete logic commands from the MSFN to the deployed units of ALSEP. These commands are used to perform power switching, thermal control, operating mode changes and experiment control. The data subsystem accepts and processes scientific data from the experiments, engineering status data from itself and all the subsystems, and transmits the data to the MSFN receiving stations. The data subsystem also performs the function of switching and distributing operating power to the experiment and support subsystems.


STRUCTURE/THERMAL SUBSYSTEM COMPONENTS

0

ALSEP-MT-03

Figure 1-2. ALSEP Subpackage No. 1 (Flight 1 and Array A-2)

Changed 15 December 1970 1-7/1-8

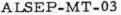


Figure 1-6. ALSEP Subpackage No. 1 (Flight 4)

Changed 15 December 1970 1-15/1-16

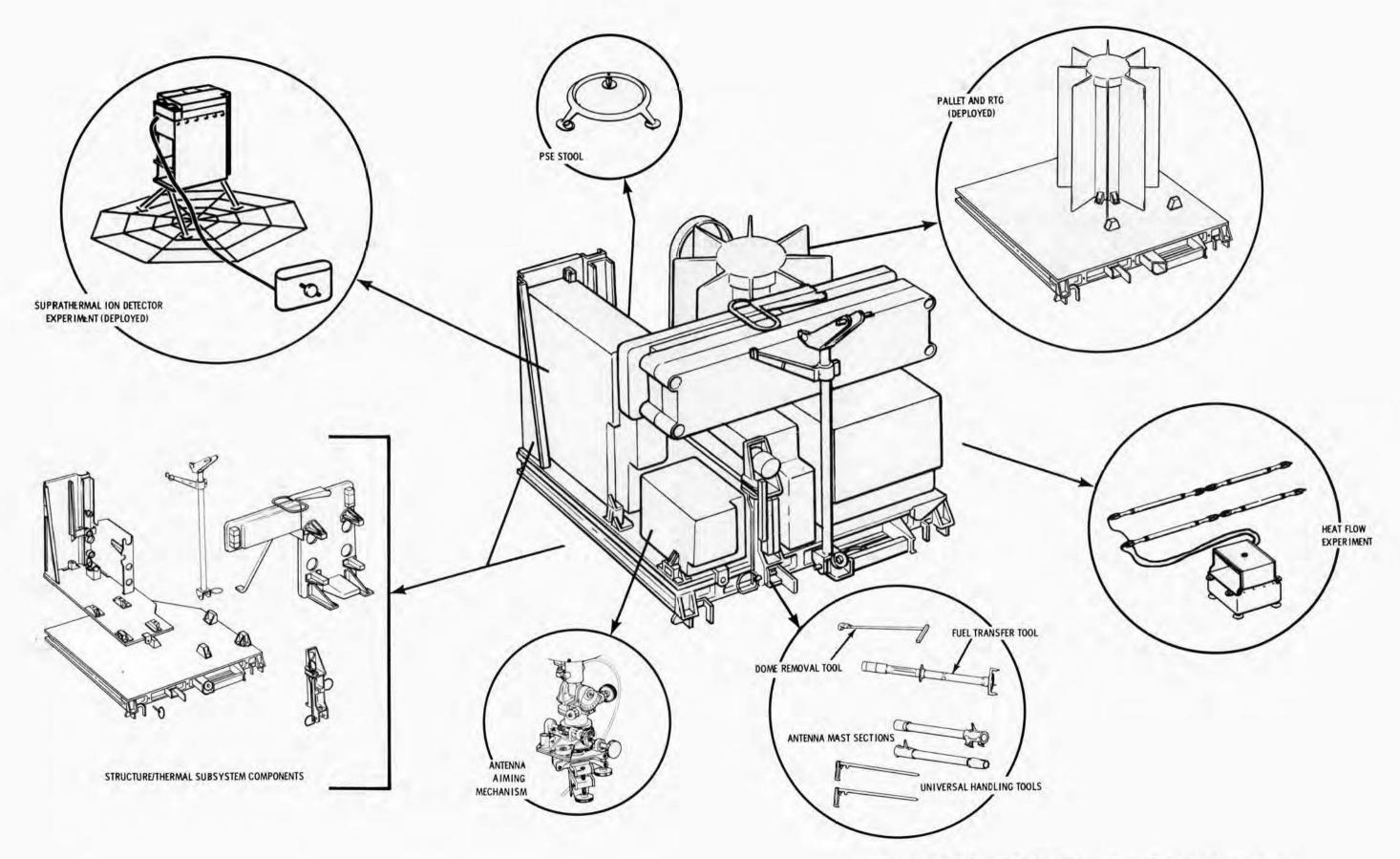


Figure 1-6A. ALSEP Subpackage No. 2 (Array A-2)

Changed 15 December 1970 1-16A/1-16B

Experiment	GFE or CFE	Principal Investigator and Co-Investigators
Charged particle lunar environment	CFE	Dr. Brian J. O'Brien - Rice University
Cold cathode gauge	GFE	Dr. Francis Johnson - University of Texas, Dallas Mr. Dallas Evans - NASA-Manned Spacecraft Center

Table 1-3. ALSEP Principal Investigators (cont)

1-21, OPERATIONAL EXPERIENCE

The crew of Apollo 11 put the Early Apollo Scientific Experiments Package (EASEP), described in EASEP-MT-01, into operation at Tranquillity Base in Mare Tranquillitatis on 21 July 1969. The ALSEP Flight 1 system (ALSEP 1) was deployed by the crew of Apollo 12, and began operating on 19 November 1969 from the site of Surveyor 3 in Oceanus Procellarum.

The receipt of live data from moon-based science equipment is now a routine reality. For more than a year there has been a continuous flow of measurements transmitted to Earth from these lunar laboratories. During this period the Manned Space Flight Network has recorded the data transmissions and the Mission Control Center of NASA has monitored and controlled the performance of the equipment.

These paragraphs summarize the operational experience accumulated with these lunar-based systems. The following documents contain comprehensive descriptions of EASEP and ALSEP 1 operating experiences:

- a. Apollo 11 Preliminary Science Report, NASA SP-214
- b. Science, Vol. 167, No. 3918 (30 January 1970)
- c. Apollo 12 Preliminary Science Report, NASA SP-235

1-22. EASEP OPERATIONAL EXPERIENCE

EASEP is a modified version of ALSEP which was prepared for the Apollo 11 mission. The operating lifetime and scientific scope were reduced to obtain a minimum deployment time. The two subpackages of ALSEP were modified to each carry an experiment. Subpackage 1, the Passive Seismic Experiment Package (PSEP), comprised a passive seismic sensor and a solar-powered central station.

Subpackage 2 comprised a Laser Ranging Retro-Reflector (LRRR) which is electrically passive. Both packages met their operational requirements as shown in Table 1-4.

1-23. <u>PSEP Operation</u>. The Passive Seismic Experiment Package was deployed 70 feet from the LM as shown in Figure 1-8. Immediately after the solar panels were unfolded the system was electrically activated and a downlink signal was detected by the MSFN. During the next five lunations, PSEP transmitted data to Earth when the sun was shining on the panels. The solar panels provided the equipment with almost exactly the design values of electrical power throughout the operating periods. These values were well above the minimum power required for normal operation of the equipment.

An abnormally high rate of rise of central station temperature was detected shortly after LM lift-off, and it became evident that the equipment would be subjected to very high temperatures during lunar noon operation. The electronic units operated at temperatures up to 50°F above the design limit value.

All functions performed normally throughout the first lunar day. The system was commanded off at sunset, and was dormant throughout the lunar night. When reactivated at lunar dawn, the system provided full performance until noon of that lunar day when the command decoder failed to respond to uplink command. The net result of the loss of the command link was (1) inability to level the seismometer or to reactivate it when placed in STANDBY mode by the "ripple" circuit during a power dip, (2) inability to re-activate DTREM I which was turned off when the sun went down on the second lunar day, and (3) inability to exercise thermal control through use of the power dump resistors.

	Deployment Time		Operating Time	
	Req'd	Actual	Req'd	Actual
LRRR	5 minutes	3 minutes	l year	still functioning
PSEP	5 minutes	4 minutes	first lunar daytime	thru noon 2nd lunar day*

TABLE 1-4. EASEP Operating Experience

* Complete engineering data thru dawn on 6th lunar day

Temperature, voltage, current, and calibration status data was transmitted throughout the next five lunar daytime periods from all sensors except those associated with the seismometer and the DTREM I. This data has been used to evaluate the operation of the equipment in the harsh extremes of the lunar environment.

The PSEP system executed 916 commands during the first lunar day operation. Another 615 commands were implemented on the second day before loss of uplink capability. All redundant facilities (data processors, power converters, transmitters, and command decoders) built into the central station were exercised successfully. Over 800 more commands were directed at PSEP throughout the remaining operational period to determine if the uplink had recovered.

At 10:14 CST on 14 December 1970 (90 minutes after sunrise on the 6th lunar day) the downlink signal from PSEP was lost and has not been detected since.

1-24. <u>LRRR Operation</u>. The LRRR was deployed 55 feet from the LM as shown in Figure 1-8. It was aligned with the sun and leveled with precision sufficient to provide overall pointing of the array to within one degree of the center of the Earth libration pattern.

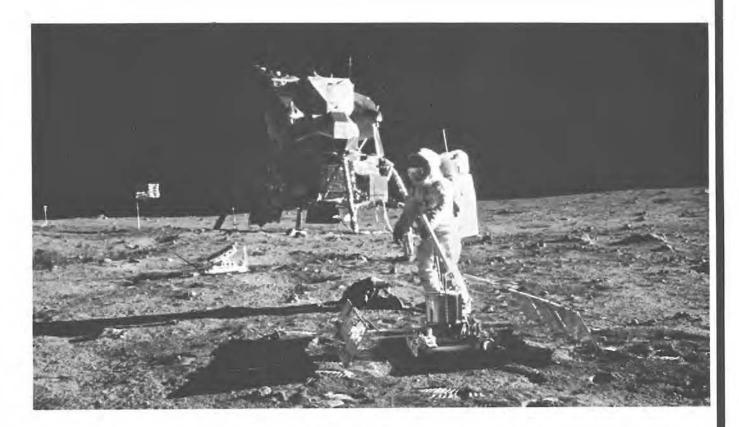


Figure 1-8. EASEP Deployed on Lunar Surface

Reflected signals from the LRRR were first acquired with the 120-inch telescope of the Lick Observatory at Mount Hamilton, California on 1 August 1969. Initial acquisition with the 107-inch telescope of the McDonald Observatory at Mount Locke, Texas was on 20 August 1969.

These, and subsequent observations demonstrated that the LRRR did not suffer major degradation from debris generated during lift-off of the LM. Continued observations at the McDonald Observatory have demonstrated the successful performance of the LRRR at several sun illumination angles, as well as during and after lunar night.

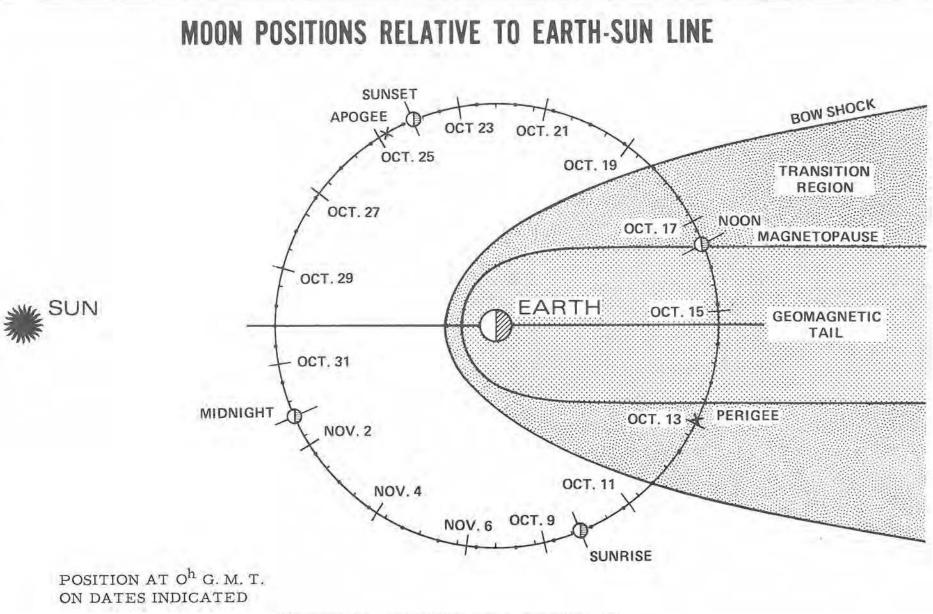
1-25. ALSEP OPERATIONAL EXPERIENCE

ALSEP 1 was carried approximately 600 feet from the Apollo 12 LM and deployed on the lunar surface as shown in Figure 1-9. The deployment operation required 90 minutes from opening the LM SEQ bay until data was being received by the MSFN on Earth. This was 13 minutes longer than nominal, but did not exceed the 18-minute buffer period scheduled into the timeline for deployment uncertainties. Some difficulty was encountered with releasing the fuel capsule from the cask assembly, and with the deployment of the CCIG and the PSE shroud. Also, the lunar dust posed some problems during the deployment operation. Design changes have been incorporated in subsequent systems as a result of these experiences.

Figure 1-9. ALSEP 1 Deployed on Lunar Surface

1-26. <u>System Operation</u>. During the first full year of operation of the ALSEP 1 lunar laboratory, over 3 billion measurements from the moon were recorded on magnetic tape as they were received at each station of the MSFN. These measurements were made during 12 complete traverses of the moon through the geomagnetic tail of the earth (Figure 1-10), 12 complete day-night cycles of the thermal environment of the moon, and the seasonal thermal variations caused by the change in distance from the Sun throughout the year. The measurements provided a detailed record of the solar change and thermal transients at the lunar surface during two solar eclipses.

The only breaks in the continuous flow of this data occurred during the two solar eclipses which were viewed from Earth on 7 March and 31 August 1970. During these solar eclipses the MSFN antennas pointed at ALSEP looked into the sun which is a strong source of noise. During these periods (about 3 hours) the network receivers were unable to discriminate the ALSEP signal from the solar noise and the measurement data were lost.


The MSFN stations have consistently reported the downlink signal strength to be $-139 (\pm 1)$ dbm. Downlink signal strength variations attributable to lunar librations have not been detected.

During the year, over 6,500 functional changes were initiated by command from the mission control center at Houston as part of the operation and calibration of the laboratory. Over 97% of these functional changes were made in the performance of the scientific experiments. The remainder were made in the process of normal laboratory housekeeping.

The facilities of the mission control center were mobilized continuously during the first 45 days of operation to monitor the data in "real" time as it was received from the Moon, and to control the operation of the instruments. After the first 45 days the mission control center was mobilized for a minimum of 2 hours per day during lunar daytime periods, 1 hour every other day during lunar nighttime periods, and for 24 hours during terminator crossings. Support was also provided during periods of special interest such as lunar noon and solar eclipse.

The central station timer failed after 2200 hours of operation. This required ground commands to perform functions normally initiated by the 12-hour pulse. System operation was otherwise uneffected except that the end-of-mission signal will not occur.

The electrical performance of the RTG has been remarkably stable in spite of the severe temperature excursions of the lunar surface. The day-night power output variations were less than 0.5 watt. The output dropped only 2 watts, from 74 to 72 watts, during the first year (8, 780 hours) of operation.

The thermal control of the ALSEP 1 equipment was generally acceptable during the year. The central station electronics units were designed to operate at temperatures between 0°F and 125°F. Their average temperature has been maintained between 20°F and 100°F. The PSE sensor temperatures have been higher than expected around lunar noon, and required heater augmentation to maintain the nighttime minimum temperature. The temperature excursions of the experiments are shown in Table 1-5.

The Dust Detector has not as yet provided evidence of appreciable dust accretion. It has provided a sensitive indication of lunar sunrise and sunset as an on-site measurement. These events are significant in the functional and operational control of ALSEP and serve to permit accurate correlation from lunation to lunation of data which are sun-angle dependent.

1-27. <u>PSE Operation</u>. The PSE operation during the first year was nominal except for low sensitivity of the short period seismometer, and above normal sensor temperatures during high sun-angle periods (145°F, rather than the desirable 126°F). This has had no impact on instrument functioning, but has made the interpretation of the tidal information more difficult. The Z axis sensor leveling motor has been used as an additional heat source during lunar night to maintain the sensor temperature at 126°F.

Data from the PSE has revealed that the Moon is an extremely quiet and stable body as compared to the Earth. The data indicates that the Moon is not stratified like the Earth, but is a rubble of rock clumps which have not congealed.

Equipment	Nighttime Minimum (^o F)	Daytime Maximum (^o F	
Magnetometer Electronics	-20	+165	
Solar Wind Spectrometer Electronics	5	140	
SIDE Electronics	50	130	
PSE Sensor Assembly	126	145	

Table 1-5. ALSEP 1 Experiment Temperature Extremes

The two major seismic events recorded by the PSE were the impacts of the Apollo 12 LM and the Apollo 13 S-IVB stage. The S-IVB impact signal was the largest event recorded. It continued for approximately four hours. Many meteroid impacts were recorded during the year. Analysis of this data eventually will lead to a quantitative estimate of numbers and masses of such pieces of rock material in near lunar space.

Analysis of the data has identified nine types of seismic events which occur every month at or near the time the Moon comes nearest the Earth in its monthly orbital cycle. These events are believed to be moonquakes triggered by tidal strain. All events within a type are identical in every aspect throughout the length of the record. This indicates that each type of event originates at a specific point on the lunar surface.

1-28. <u>SWE Operation</u>. The SWE operation was normal throughout the year, with no indication of degradation. The SWE detected solar wind plasma striking the Moon during all the times that it would be expected to do so. (See Figure 1-10.) The plasma density is very small, with measurements ranging from 1 to 25 particles per cubic centimeter. The solar wind is seldom the same for more than a few minutes at a time.

The Moon does not appear to have a major effect on the solar wind. The plasma sweeps in, impacts the Moon, and is absorbed by the surface.

The SWE detected a complicated gas flow pattern resulting from the impact of the Apollo 13 S-IVB stage. Particle energies of about 35 to 50 electron volts were measured.

1-29. <u>ME Operation</u>. The ME operated normally during lunar daytime periods, returning 2 million bits of data during the first year. This data is analyzed in reference to data from Explorer 35 which was in lunar orbit. The ME has stopped processing data following each lunar sunset when the internal temperature of the instrument drops. Operation returns to normal when the internal temperature rises after lunar sunrise. The ME remains fully operational throughout the periods of maximum solar wind activity.

The sensors detected magnetic field intensities in the 100 gamma and the 200 gamma sensitivity ranges. No field intensities were detected in the 400 gamma range.

The ME detected a steady magnetic field of about 35 gammas immediately after deployment. The data indicates that this is a localized, probably fossil, field located from 0.2 to 200 kilometers from the ME.

The solar wind magnetic field measurement data from the ME has provided evidence that solar wind harmonic wave spectrum is amplified by as much as a factor of five at the lunar surface, and that the lunar electrical conductivity is variable dependent upon the material temperature and chemical composition. The conductivity increases by a factor of one million in going from the surface to a depth of about 200 kilometers. The heat flux of the moon is in the range of two-tenths to three-tenths of a microcalorie per square centimeter per second. The interior temperature of the moon is approximately 800 to 1,000 degrees centigrade.

1-30. <u>SIDE Operation</u>. The SIDE has operated normally, except for a temperaturedependent mode change characteristic, with no indication of degradation of performance or of thermal control capabilities. The mode changes are typical of high voltage arcing effects, and occurred when the instrument internal temperature reached approximately 55°C. The mode changes have been corrected by command after each occurrance. The SIDE operates throughout the lunar night, and during lunar daytime for periods of two hours followed by periods of power off to allow for cooling.

Mass spectra of 50 ev ions were detected soon after deployment. These showed concentrations of ions in the 18 to 50 amu/q mass-per-charge range. Clouds of 10 to 250 ev ions have been detected, as well as other events, which suggest the operation of a general acceleration mechanism. Solar wind energy ions are detected several days before sunrise at the ALSEP site. Ions of 250 to 3,000 ev, presumed to be protons which escaped from the bow shock, are observed in the time period between lunar sunset and midnight. The SIDE detected ions of 250 to 500 ev from the impact of the Apollo 12 LM. It detected ions of 50 to 70 ev with a large number of ions of mass about 10 to 80 amu/q resulting from the impact of the Apollo 13 S-IVB.

The CCIG operated for approximately 14 hours after it was deployed on the lunar surface. It was shut off by apparent arcing in its 4500 volt power supply due to outgassing in the electronics as it became heated in the hot vacuum environment of the lunar day. During its operation, the CCIG detected a natural lunar atmospheric pressure of 9×10^{-9} torr. Measurements indicated that contaminant gases from the landing operation did not raise the local atmospheric pressure above 9×10^{-9} torr. The gas cloud around an astronaut exceeded the upper range of the gage (approximately 10^{-6} torr) as far as several yards from the astronaut. No perceptible residual contamination at the 10^{-8} torr level remained around the gage for longer than a few minutes after astronaut departure.

SECTION II

ALSEP SUBSYSTEM DESCRIPTION

2-1. ALSEP SUBSYSTEM INTRODUCTION

This section describes the thirteen (eight experiment and five support) subsystems which comprise the total ALSEP system. A listing of the subsystems follows:

- a. Structure/thermal subsystem
- b. Electrical power subsystem (EPS)
- c. Data subsystem (DS/S)
- d. Passive seismic experiment subsystem (PSE)
- e. Magnetometer experiment subsystem (ME)
- f. Solar wind experiment subsystem (SWE)
- g. Suprathermal ion detector experiment subsystem (SIDE)
- h. Active seismic experiment subsystem (ASE)
- i. Heat flow experiment subsystem (HFE)
- j. Charged particle lunar environment experiment subsystem (CPLEE)
- k. Cold cathode gauge experiment subsystem (CCGE)
- 1. Apollo lunar hand tools subsystem (ALHT)
- m. Apollo lunar surface drill (ALSD)

All subsystems are described in terms of their physical characteristics, functional operation, and system interfaces.

2-2. STRUCTURE/THERMAL SUBSYSTEM

The structure/thermal subsystem provides the structural integrity and passive thermal protection required by the ALSEP experiment and support subsystems to withstand the environments encountered in storage, transportation and handling, testing, loading on LM, space flight, and lunar deployment. During operation on the Moon, the structure/thermal subsystem will continue to provide structural support and thermal protection to the data subsystem in the central station and to the electrical power subsystem.

2-3. STRUCTURE/THERMAL SUBSYSTEM PHYSICAL DESCRIPTION

The structure/thermal subsystem includes the basic structural assembly of the ALSEP system subpackages, the fuel cask structure assembly, handling tools, antenna mast, and a dust detector. Structure/thermal subsystem leading particulars are provided in Table 2-1.

Component	Characteristic	Value
Subpackage No. 1	Size (inches)	L 26.75
Structure		W 27.37
		H 6.87
	Weight (pounds)	24.86
Subpackage No. 2	Size (inches)	L 25.87
	bize (menes)	W 27.14
Structure		H 3.37
	Weight (pounds)	25.15
Fuel Cask Support	Size (inches)	Н 28.86
		D 12.25
	Weight (pounds)	19.60
FTT	Length (inches)	24.12
1.300 C	Weight (pounds)	1.51
UHT	Length (inches)	26.50
SIII	Weight (pounds)	0.82
	weight (pounds)	0.02
DRT	Length (inches)	23.67
	Weight (pounds)	0.65
Antenna Mast	Section length (inches)	20.75
(two sections)	Basic diameter (inches)	1,75
	Weight (pounds)	1.30
Dust Detector	Power Requirements	
5400 2000000	On mode	540 mw maximum,
	on mode	+ and -12 vdc.
	Off mode	70 mw maximum,
	off mode	+ and -12 vdc.
	Analog Outputs	0 to +5 vdc.
Sensor Package	Size (inches	1.75 x 1.75 x 1.75
Jensor rackage	Weight (pounds)	0.35
	wergur (bounds)	0.35
Circuit Board	Size (inches	$3.3 \ge 6.1$
the second second second	Weight (pounds)	0.26
Dust, Thermal, and	Power Requirements	
Radiation Engineering	On Mode	245 mw maximum,
Measurements		+ and -12 vdc.
Package	Off Mode	45 mw maximum,
	Apples Output	+ and -12 vdc.
	Analog Outputs	0 to +5 vdc.

Table 2-1. Structure/Thermal Subsystem Leading Particulars

2-2 Changed 15 December 1970

2-4. STRUCTURE/THERMAL SUBSYSTEM FUNCTIONAL DESCRIPTION

2-5. <u>Subpackage No. 1 Structure/Thermal.</u> The structure/thermal portion of subpackage No. 1 consists of a primary structure, boom attachment assembly, thermal plate, sunshield, side curtains, reflector, and thermal bag as shown in Figure 2-1. The primary structure provides tie points for securing the subpackage in the SEQ bay of the LM. It is recessed to receive the central station electronics which are mounted on the thermal plate. The sunshield provides tie points for mounting the boom attachment assembly, experiment subsystems, and associated equipment. The sunshield, side curtains, and reflector are raised during deployment to provide thermal protection for the central station electronics.

Thermistor temperature detectors monitor thermal bag, primary structure, and sunshield temperatures during operation. These temperature signals are supplied to the data subsystem for insertion into the ALSEP telemetry data.

2-6. <u>Subpackage No. 2 Structure/Thermal</u>. The structure/thermal portion of subpackage No. 2 consists of boom attachment assembly, pallet, and subpallet as shown in Figures 2-2, 2-2A, and 2-2B. It provides the points to mount experiment and support subsystems, and to secure the subpackage in the SEQ bay of the LM. The pallet assembly protects the astronaut from the electrical power subsystem components during deployment, and serves as a base for that subsystem during operation.

2-6A. <u>Dust Covers</u>. Dust covers have been added to the Flight 4 and Array A-2 systems to protect mechanisms and thermal coatings from lunar dust during the deployment operations. The dust covers (Figure 2-2C) are installed during the preparation for flight operations at KSC. They are removed by the astronauts during the lunar deployment operations.

2-7. <u>Fuel Cask Structure Assembly</u>. The fuel cask structure assembly consists of the structure, thermal shield, cask bands, and cask guard as shown in Figure 2-3. The structure provides tie points for attachment of the fuel cask to the exterior of the LM, and provides the thermal shield to reflect fuel capsule thermal radiation away from the LM. The cask bands are clamped onto the cask, and provide tie points for attachment to the structure. The lower band includes a mechanism to tilt the fuel cask for access to the fuel capsule. The guard is provided to prevent astronaut contact with the cask during deployment.

Two temperature transducers monitor thermal shield temperature. The temperature measurements are included in the Apollo telemetry data.

2-8. <u>Handling Tools</u>. The handling tools consist of a dome removal tool (DRT), two universal handling tools (UHT), and a fuel transfer tool (FTT) as shown in Figure 2-4. These tools are used by the astronaut to deploy the ALSEP system on the lunar surface.

The DRT is used to remove and handle the dome of the fuel cask. The tool engages, locks in, and unlocks a nut on the dome. Rotation of the nut releases the dome.

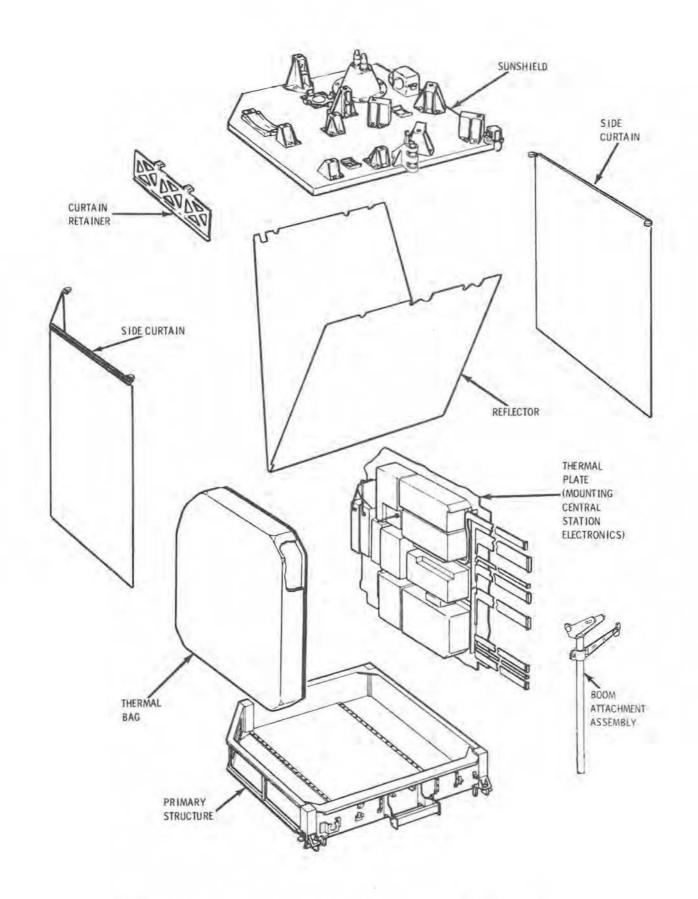
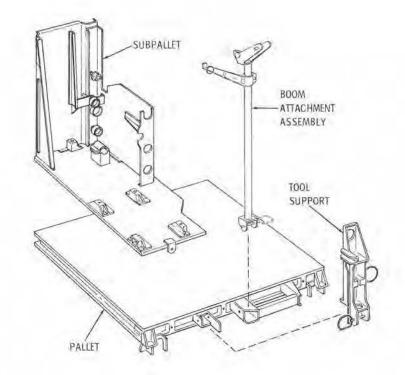
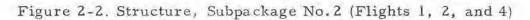




Figure 2-1. Structure, Subpackage No. 1 (Typical)

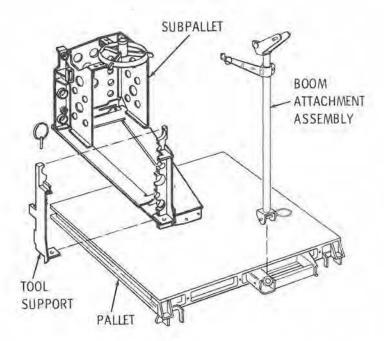


Figure 2-2A. Structure, Subpackage No. 2 (Flight 3)

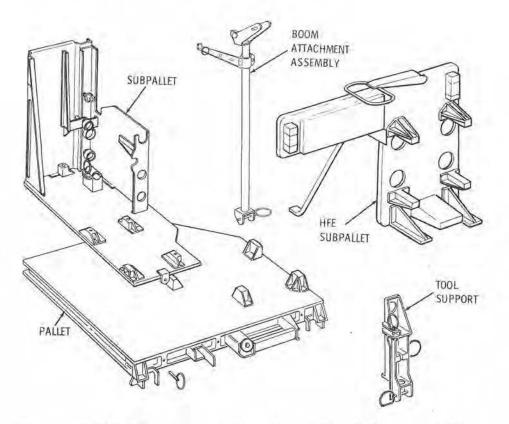


Figure 2-2B. Structure, Subpackage No. 2 (Array A-2)

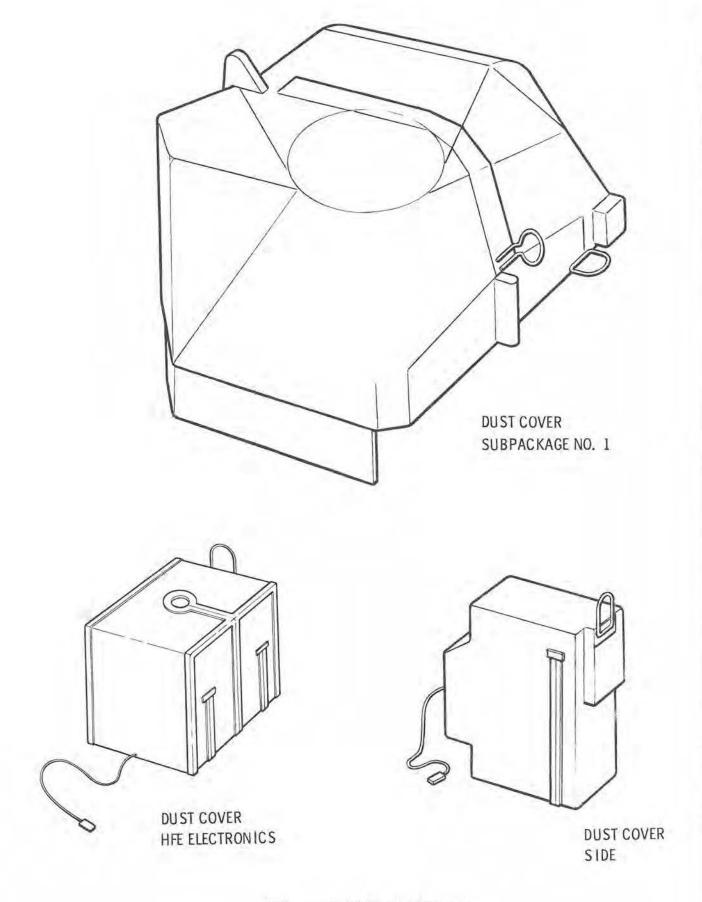


Figure 2-2C Dust Covers

ALSEP-MT-03

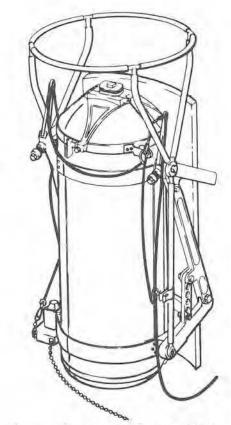
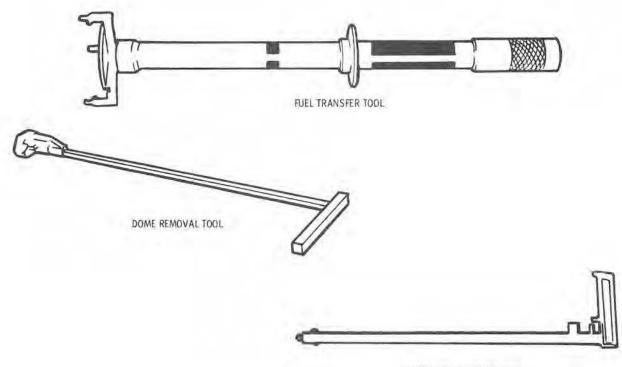
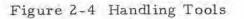




Figure 2-3 Fuel Cask Structure Assembly

UNIVERSAL HANDLING TOOL

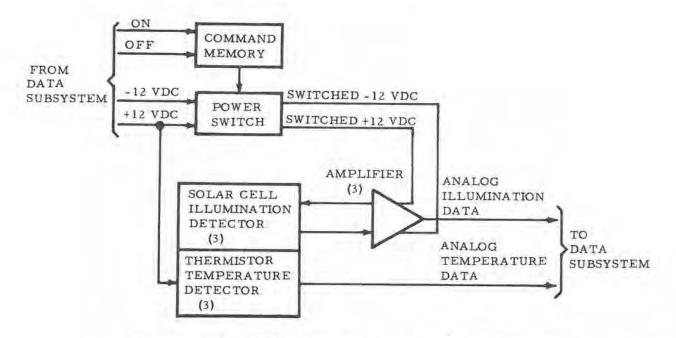


Figure 2-7. Dust Detector, Simplified Block Diagram

2-12A. DUST, THERMAL, AND RADIATION ENGINEERING MEASUREMENTS PACKAGE DESCRIPTION

The modified dust, thermal, and radiation engineering measurement package (DTREM II), part no. 2341440, will be used on ALSEP Flight 4 and Array A-2 to obtain data for assessment of dust accretion, the lunar radiation environment, and the lunar surface brightness temperature.

2-12B. <u>DTREM II Physical Description</u>. The DTREM II has two components; a sensor package (Figure 2-7A), and a printed circuit board. The sensor package is mounted on the subpackage no. 1 sunshield. It has three 1-cm by 2-cm solar cells located on the top horizontal surface. Two cells are protected by a 6-mil fused silica filter cover glass, and one cell is bare. The sensor package has three temperature sensors; one is attached to the underside of the center solar cell, one is attached to the inside surface, and one to the outside surface of the side (surface 3) of the package. The sensor package is connected through an H-film cable to the printed circuit board which is located in the power distribution unit of the data subsystem. 2-12C. <u>DTREM II Functional Description</u>. Dust accretion on the solar cells will reduce the intensity of solar radiation reaching the three cells. This can be measured by an equal reduction in output from the cells as a function of the amount of dust.

The radiation environment will be measured by comparing the reduction of the solar cell output voltages due to radiation degradation of the cells. Cover glass radiation shields on two of the cells reduce the amount of radiation reaching the cells. The third cell has no radiation protection. One of the protected cells has been irradiated to reduce its sensitivity to the radiation environment. Its output will be used as a base in measurement analysis. The different degrees of sensitivity and protection of the three cells enable them to form a simple spectrometer which measures proton dose in two energy intervals. The thermistor attached to the underside of the center solar cell provides a measure of the solar cell temperature.

The resistive temperature sensor on the outside of surface 3 is insulated from the DTREM II structure so that its temperature is determined mainly by the thermal radiative exchange with the lunar surface and deep space. The resistive temperature sensor on the inside of surface 3 provides the DTREM II structure temperature data needed to quantitatively define the heat leaks to the outside temperature sensor. The lunar surface brightness temperature will be derived from these measurements in conjunction with the data derived from the ALSEP sunshield, thermal plate, and electronics temperature measurements.

The outputs of the solar cells are applied to three amplifiers which condition the signals and apply them to three subcommutated analog data channels of the data subsystem. (See Figure 2-7B.) The temperature sensor outputs are also applied to three subcommutated analog data channels of the data subsystem.

DTREM II solar cell measurements are controlled by on and off commands from Earth. These commands are applied to the command memory through the data subsystem. The command memory stores the command and controls the operation of the power switches in accordance with the command. The two solid state switches control the application of +12 VDC and -12 VDC operating power from the data subsystem. Individual fusing protection is provided on each of the two voltages.

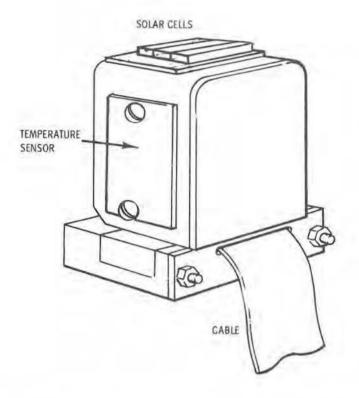


Figure 2-7A. Dust, Thermal, and Radiation Engineering Measurements Package

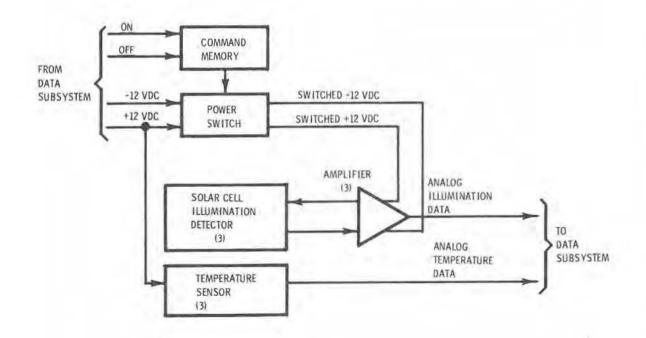


Figure 2-7B. Dust, Thermal, and Radiation Engineering Measurements Package, Simplified Block Diagram

Changed 15 December 1970 2-10A/2-10B

Component	Characteristic	Value
Radioisotope	Output power	63 to 74 watts
Thermoelectric	Output voltage	$16.1 \pm 0.5 vdc$
Generator	Hot junction	
	temperature,	
	lunar day	900 to 1100 deg. F
	Cold junction	
	temperature,	
	lunar day	350 to 550 deg. F
	Length	18.12 inches
	Diameter	16 inches
	Weight	28 pounds maximum
Fuel Capsule	Length	16.92 inches
	Diameter	2.6 inches (except end
	1 2 2 3 2 3 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1	plate)
	Weight	15.46 pounds maximum
	Thermal output	1430 to 1520 watts
Power Conditioning		
Unit	Nominal outputs	+29 vdc at 1.19 amps
		+15 vdc at 0.08 amp
		+12 vdc at 0, 30 amp
		+5 vdc at 0,90 amp
		-6 vdc at 0.05 amp
		-12 vdc at 0.15 amp
	Output voltage regulation	±1 percent
	Length	8.36 inches
	Width	4.14 inches
	Height	2.94 inches
	Weight	4.5 pounds
Fuel Cask	Length	23 inches
	Diameter	8.0 inches
	Weight	25.0 pounds nominal

Table 2-2. Electrical Power Subsystem Leading Particulars

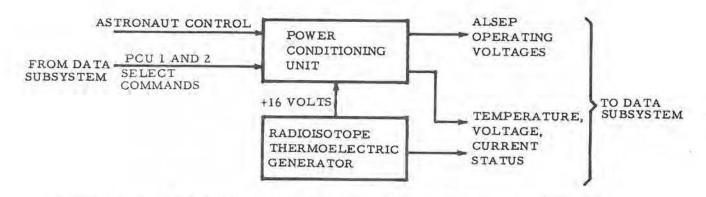


Figure 2-9. Electrical Power Subsystem, Functional Block Diagram

A manual control switch is provided as a back-up signal to allow the astronaut to start the PCU. PCU #1 and PCU #2 select commands from the data subsystem activate control circuits that switch the redundant circuits of the PCU.

Analog voltages from the RTG and PCU provide temperature, voltage, and current status to the data subsystem.

2-21. EPS DETAILED FUNCTIONAL DESCRIPTION

2-22. <u>EPS Radioisotope Thermoelectric Generator</u>. The operation of the RTG is illustrated in the block diagram of Figure 2-10. A radioisotope source (fuel capsule) develops thermal energy that is applied to the hot frame (inner case). The difference in temperature between the hot frame and the cold frame causes the thermoelectric couple assembly (thermopile) to develop electrical energy through thermoelectric action. The electrical energy produced by the thermopile provides a minimum of 63 watts at 16 volts to the power conditioning unit.

Excess heat from the thermopile is conducted through a cold frame (outer case) to a thermal radiator (heat rejection fins) for dissipation into the lunar environment. This maintains the cold frame at a lower temperature than the hot frame so that thermoelectric action is maintained.

Temperatures are monitored at three cold frame and at three hot frame locations to provide six temperature signals to the data subsystem.

2-23. <u>EPS Power Conditioning Unit.</u> The power conditioning unit performs three major functions:

- a. Voltage conversion
- b. Voltage regulation
- c. RTG protection.

The PCU contains redundant power conditioners. As shown in Figure 2-11, each power conditioner consists of a dc-to-dc power converter (inverter and rectifiers), which converts the RTG 16-volt input to the six operating voltages, and a shunt voltage regulator to maintain the output voltages within approximately $\pm 1\%$. The input voltage is also regulated by this action because of the fixed ratio converter. It is necessary to keep a constant load on the generator to prevent generator overheating.

2-14 Changed 15 December 1970

2-24. DATA SUBSYSTEM

The data subsystem is the focal point for control of ALSEP experiments and the collection, processing, and transmission of scientific data and engineering status data to the Manned Space Flight Network (MSFN). To accomplish the basic functions of (a) reception and decoding of uplink (Earth-to-Moon) commands (b) timing and control of experiment subsystems, and (c) the collection and transmission of downlink (Moon-to-Earth) scientific and engineering data, the data subsystem consists of an integration of units interconnected as shown in Figure 2-12. The uplink shown in Figure 2-12 requires the antenna, diplexer, command receiver, and command decoder components of the data subsystem. The downlink requires the data processor, transmitter, diplexer and antenna components. The major components of the data subsystem and associated functions are listed in Table 2-3.

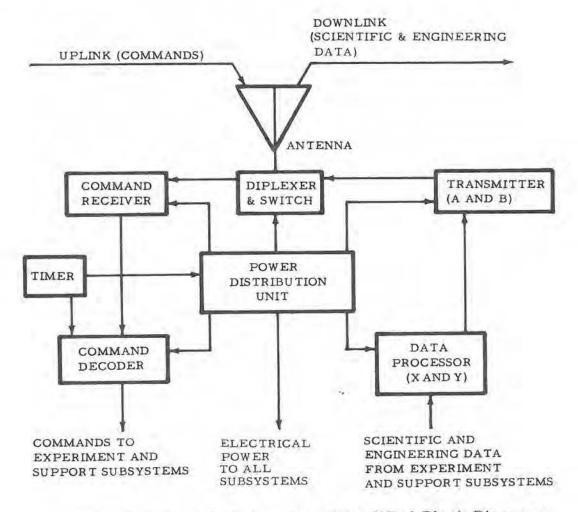
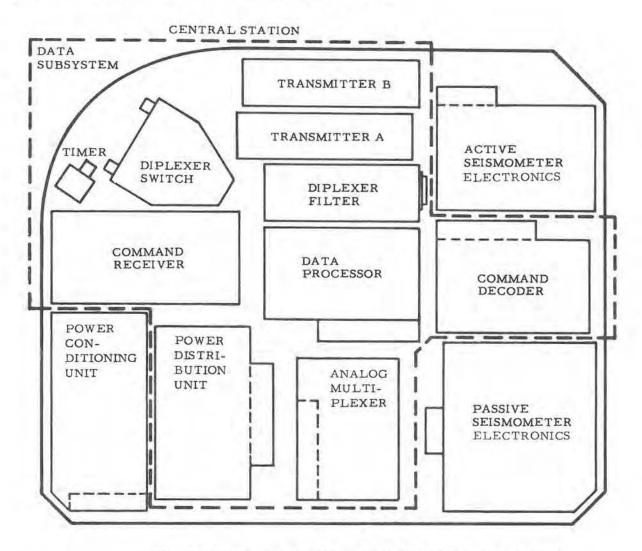


Figure 2-12. Data Subsystem, Simplified Block Diagram

Table 2-3. Data Subsystem Component Functions


Component	Function	
Antenna	Provides simultaneous uplink reception and downlink transmission of ALSEP signals.	
Diplexer switch	Connects either transmitter to the antenna.	
Diplexer filter	Connects receiver input and transmitter output to the antenna.	
Transmitter	Transmits Moon-to-Earth downlink signals.	
Command receiver	Accepts Earth-to-Moon uplink signal.	
Command decoder	Decodes received command signals and issues commands to the system.	
Central station timer	Provides timing signals used to initiate periodic automatic functions, and switch off transmitter after 720 (± 30) days.	
Resettable solid state timer 2338511	Provides timing signals to initiate periodic automatic functions, and switch off transmitter after 97 (\pm 5) days. Reset by command	
Data processor	Collects and formats scientific data inputs from the experiments. Collects and converts analog housekeeping data into binary form.	
Power distribution	Controls power switching and conditions engineering status data.	

2-25. DATA SUBSYSTEM PHYSICAL DESCRIPTION

The data subsystem components are mounted on a 23.25-inch by 20-inch section of the central station thermal plate. Figure 2-13 shows data subsystem component location within the central station. A pre-formed harness electrically connects the components. The harness is attached to each component with a multi-pin connector. Power for each unit and electrical signals are conducted to and from each component via the harness. Coaxial cables connect the command receiver and transmitters to the diplexer switch and thence to the antenna.

Other items installed within the central station include central station temperature sensors, manual control switches, transmitter and receiver heaters, central station backup heaters, and a central station thermostat. Five thermal plate sensors are placed throughout the central station to monitor engineering temperature status data. Manual control switches are provided as a backup to permit the astronaut to start system operation in the event of uplink failure.

The overall weight of the data subsystem is approximately 25 pounds and the power consumption is approximately 20 watts.

2-26. DATA SUBSYSTEM FUNCTIONAL DESCRIPTION

Uplink command data transmitted from the MSFN is received by the data subsystem antenna, routed through the diplexer, demodulated by the command receiver, decoded by the command decoder, and applied to the experiment and support subsystems as discrete commands. The discrete commands control experiment and support subsystem operations and initiate command verification functions. Table 2-4 lists the uplink commands by subsystem termination.

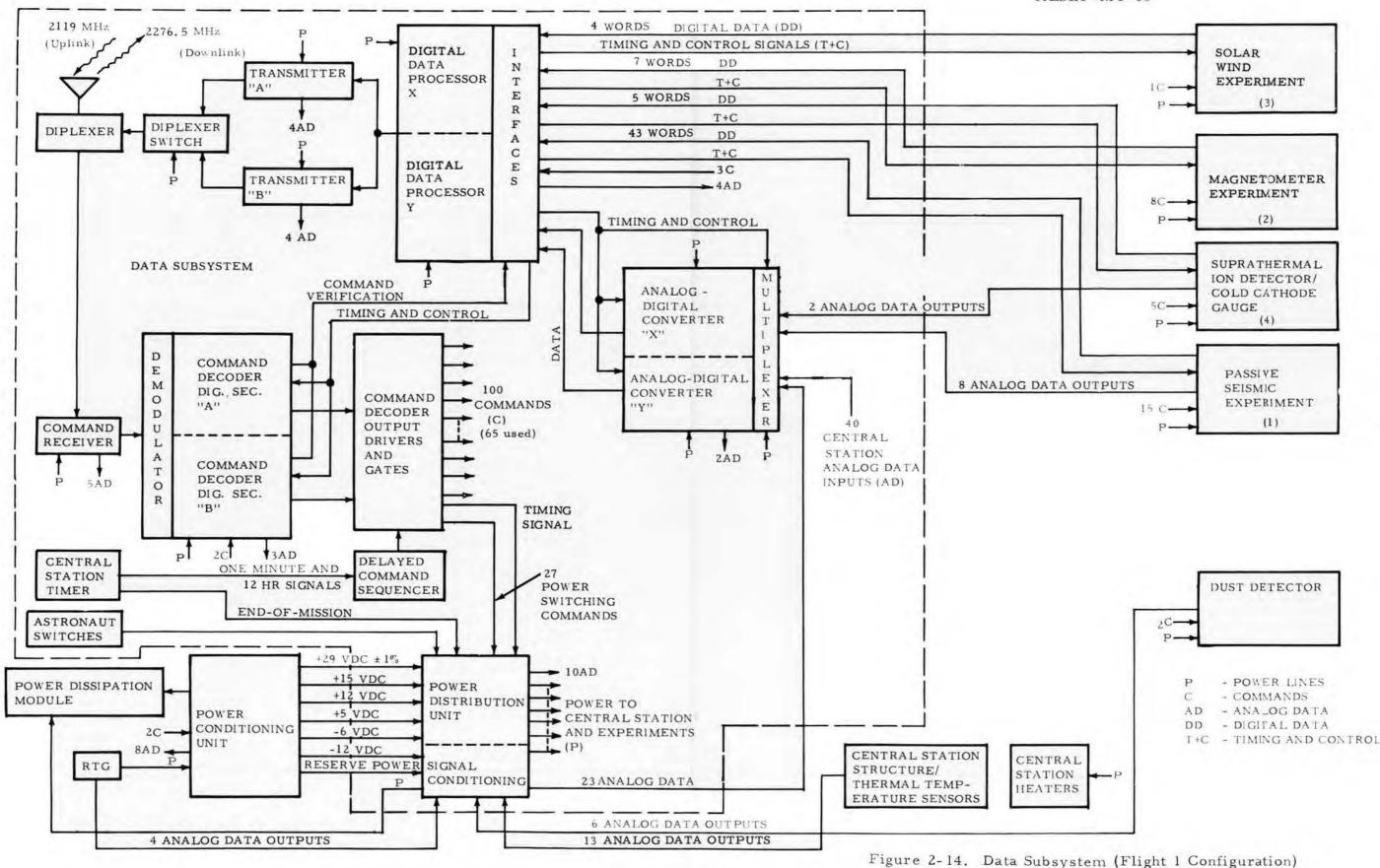
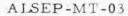
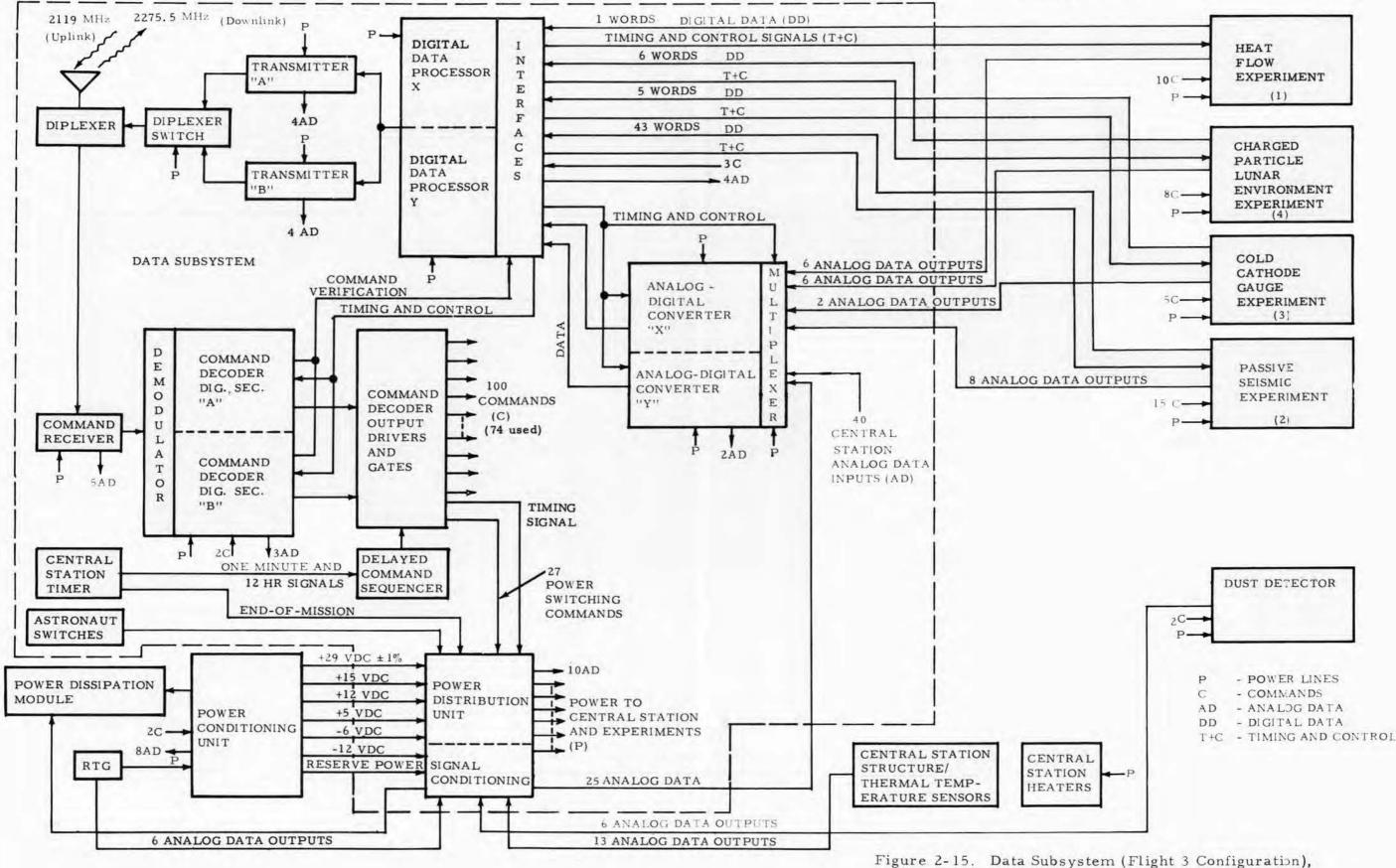

Command Usage	Number
Active seismic experiment	7
Passive seismic experiment	15
Heat flow experiment	10
Magnetometer experiment	8
Charged particle experiment	8
Suprathermal ion detector experiment	5
Solar wind experiment	1
Command decoder	2
Data Processor	5
Power distribution unit	29
Power conditioning unit	2
Timer (Array A-2 only)	1

Table 2-4. ALSEP Commands

Downlink data consists of analog and digital data inputs to the data processor from the experiment and support subsystems in response to periodic demands from the data processor. Scientific inputs to the data processor from the experiment subsystem are primarily in digital form. Engineering data is usually analog and consists of status and housekeeping data such as temperatures and voltages which reflect operational status and environmental parameters. The data processor accepts binary and analog data from the experiment and support subsystems. It generates timing and synchronization signals, converts analog data to digital form, formats digital data, and provides data in the form of a split-phase modulated signal to the transmitter. The transmitter generates the downlink transmission carrier and phase modulates that carrier with the signal from the data processor. The transmitter signal is selected by the diplexer switch and routed to the antenna for downlink transmission to the MSFN.


Figure 2-14 shows a functional diagram of the data subsystem and its interfaces with other ALSEP subsystems for Flight 1. Figures 2-15, 2-16, and 2-16A show functional block diagrams of the Flight 3, Flight 4, and Array A-2 ALSEP systems. The later flight configurations are similar to the Flight 1 configuration except for the selection of experiments. Redundant channels are provided for the transmitter and portions of the command decoder and data processor to improve system reliability.


The uplink transmission from MSFN is a 2119 MHz RF carrier with a 2 KHz data subcarrier modulated to a 1 KHz synchronizing subcarrier. The command receiver demodulates the carrier and provides the composite 2 KHz and 1 KHz subcarrier to the command decoder. The command decoder demodulator section detects the 2 KHz command data subcarrier and 1 KHz timing signal and applies both to the redundant digital decoder sections (A and B) of the command decoder. The digital decoder sections identify correct address codes, decode the digital

Functional Block Diagram

Changed 15 December 1970 2-21/2-22

Functional Block Diagram

Changed 15 December 1970 2-23/2-24

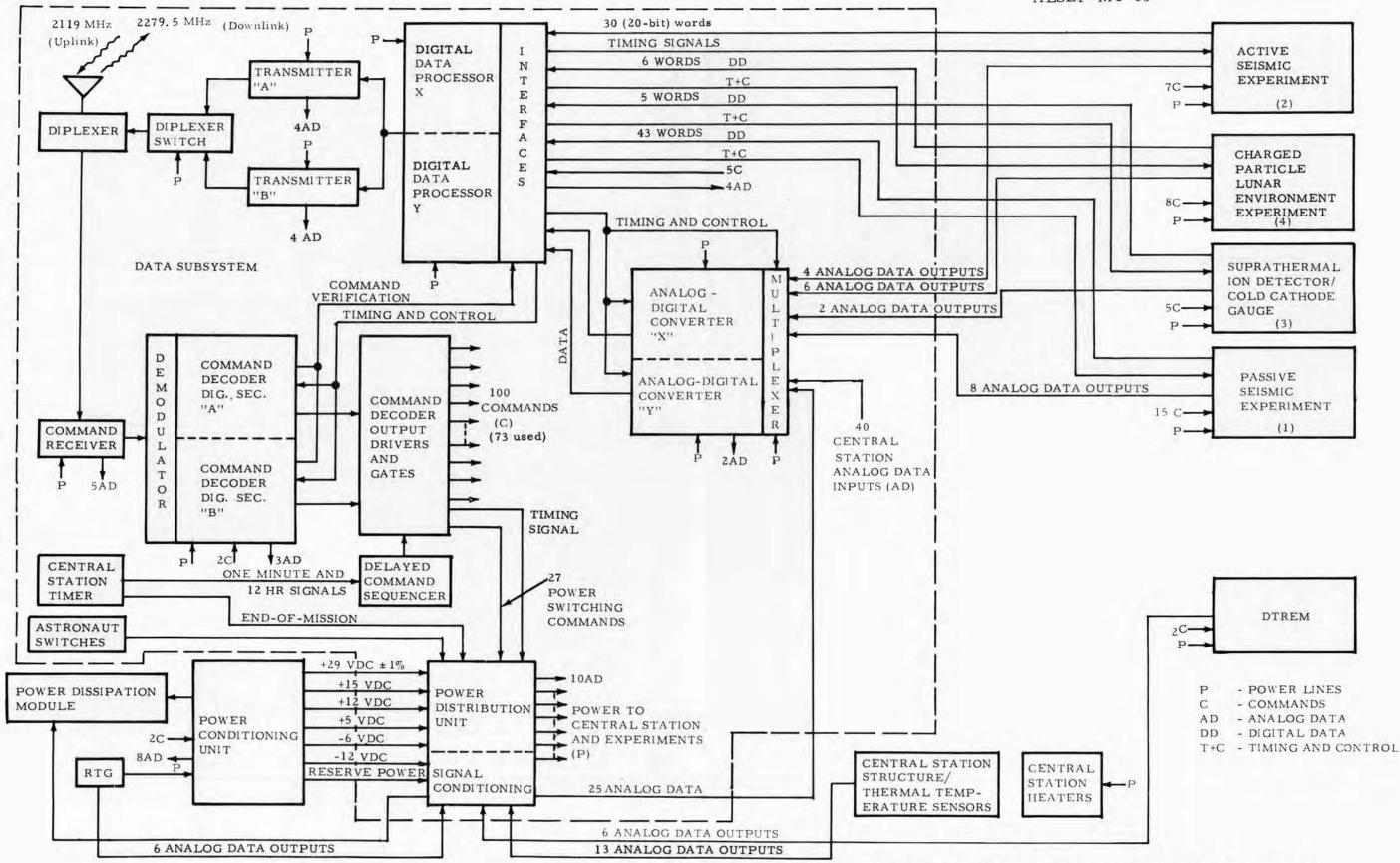


Figure 2-16. Data Subsystem (Flight 4 Configuration),

Functional Block Diagram

Changed 15 December 1970 2-25/2-26

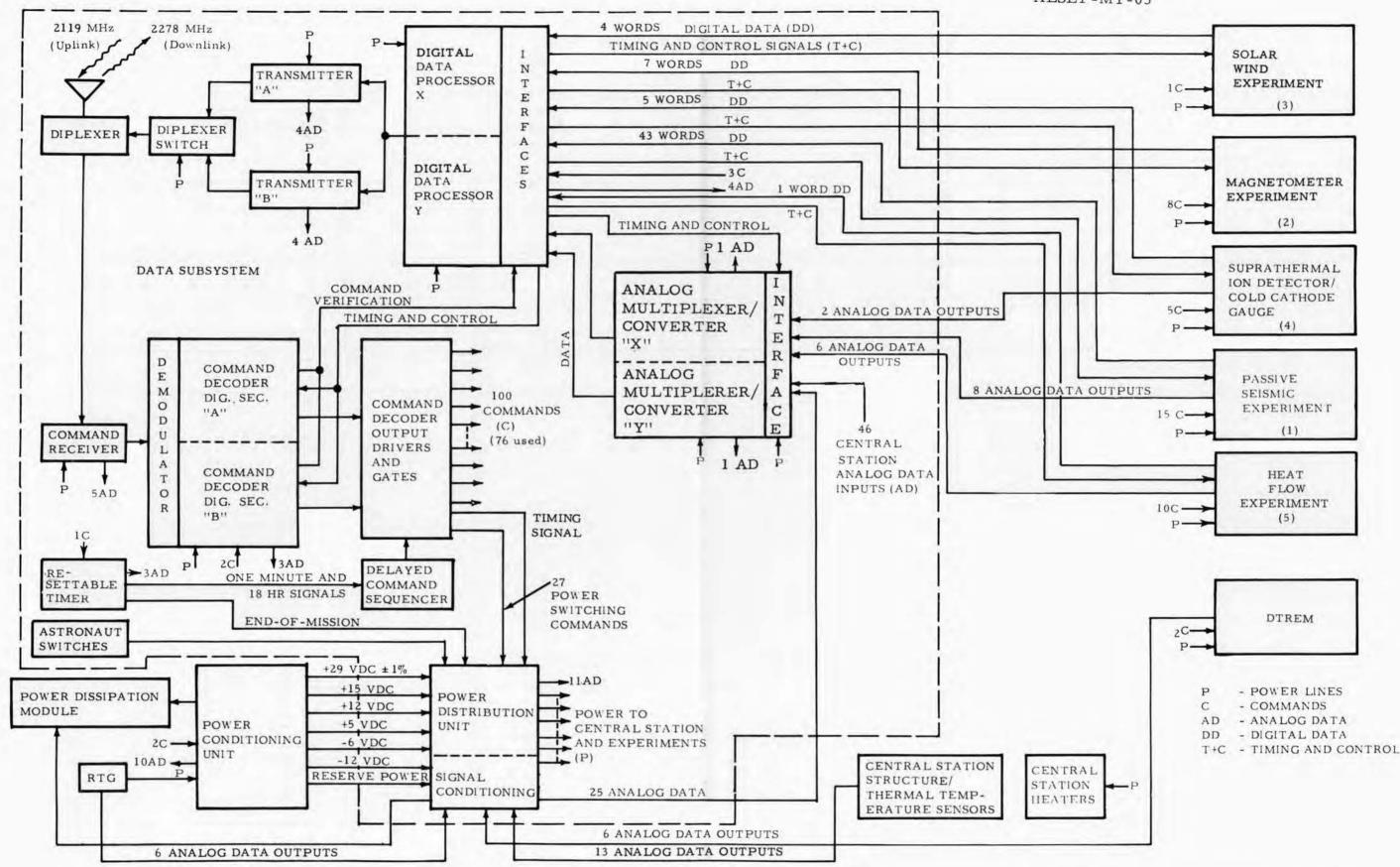


Figure 2-16A. Data Subsystem (Array A-2), Functional Block Diagram

ALSEP-MT-03

Changed 15 December 1970 2-26A/2-26B

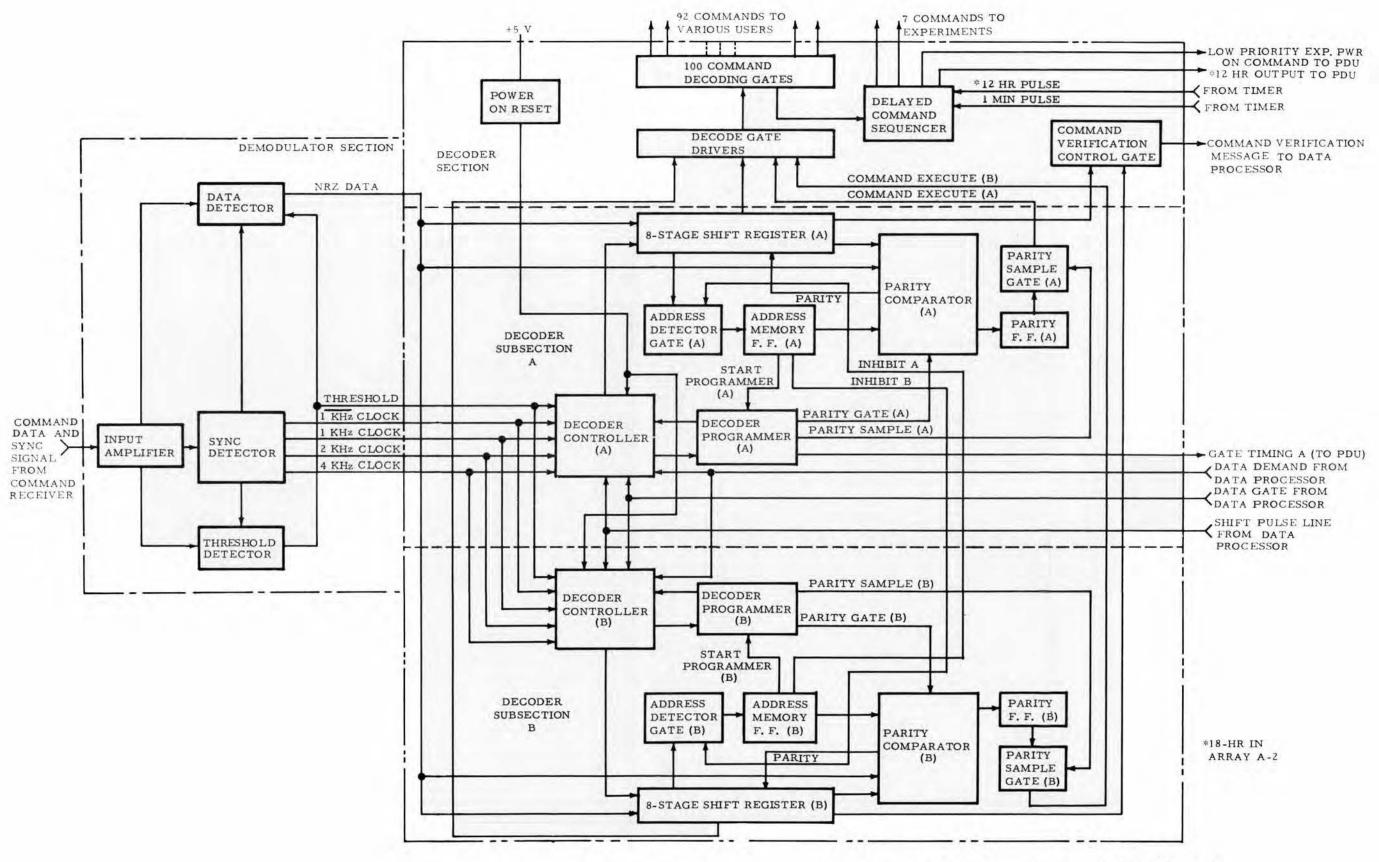


Figure 2-25. Data Subsystem Command Decoder, Functional Block Diagram

Normally at this time, shift register A contains the seven bit command and the parity information. This information, named the command verification message, stays in the register until the data processor requests transfer (data demand) of this data. As soon as the transfer takes place, a master reset signal returns the command decoder to the search mode. Likewise, the command verification message is inhibited if the data demand is not activated during the following two-second timing interval.

In contrast to the normal mode of operation, the active seismic mode inhibits the command verification message from reaching the data processor. The command decoder receives an active seismic ON command to operate in this mode and an active seismic OFF command to operate in the normal mode. The foregoing description applies equally to subsection B whenever address gate B detects its own address.

2-40. Data Commands - Commands are transmitted as a 61-bit message with the following format:

a.	Preamble	20 bit minimum (all zeros or all ones for synchronization)
ь.	Decoder address	7 bits (selects decoder subsection)
с,	Command complement	7 bits (for parity check)
d.	Command	7 bits
e.	Timing	20 bits (all zeros or all ones - command execution interval)

The demodulator section achieves phase and bit synchronization during the first eighteen timing bits of the preamble and maintains synchronization during the entire command timing interval.

The 64, 32, 16, 8, 4, 2, 1 binary weighted code is used to decode the seven-bit decoder address group, the seven-bit command complement group, and the seven-bit command group.

Seven address bits are used to uniquely command the ALSEP systems. Each command decoder shall respond to two address codes; one for section A and another for section B. Address codes have been selected as follows:

ALSEP	Address Code No.	Binary Weighted Code Pattern	Command Decoder No.
1	88	1011000	1A
1	24	0011000	1 B
A-2	78	1001110	A-2A
A-2	14	0001110	A-2B

No.

The seven-bit command complement group is transmitted after the address and is followed with the seven-bit command group. The command decoder performs a bit-by-bit parity check over the command complement and command bits. A decoder command is executed if parity is correct and is rejected if incorrect.

Twenty timing bits are transmitted to allow for a 20 millisecond command execution timing interval.

The command decoder is capable of accepting 128 different command messages and is designed to provide 100 commands to ALSEP users. All command code numbers except the following are available to the users: 0, 1, 2, 4, 8, 14, 16, 22, 24, 32, 39, 41, 49, 63, 64, 78, 86, 88, 95, 103, 105, 111, 113, 119, 123, 125, 126, 127.

Provisions have been incorporated in the command decoder to accommodate a maximum of 114 discrete commands which have been allotted as follows:

a.	Experiments	62
b.	Power distribution	29
C.	Power conditioning unit	2
d.	Data processor	5
e.	Command decoder	2
f.	Available for test purposes	14
g.	Timer	1

The command decoder stores an eight-bit command verification message which consists of seven command bits and a parity bit. The command verification message is sampled by, and shifted to, the data processor once every frame time, if a command has been received.

The command word rate is limited to approximately one message per second during a data processor normal mode of operation and to approximately one message per two seconds during the data processor slow mode of operation.

No special requirements exist for intercommand operation. Loss of synchronization between commands does not affect the operation of the command decoder.

A list of the discrete commands issued by the command decoder is presented in the Appendix.

The command decoder automatically generates seven one-time commands after a 96-hour delay. The delayed command functions and time of execution are listed in Table 2-10. A flow chart of delayed command sequences is shown in Figure 2-27. (A 144-hour delay is used in Array A-2).

Monitoring circuits provide telemetry data to the data processor on the status of command decoder internal, base and demodulator oscillator temperatures.

Command	Function	Time of Execution
75	Blow CPLEE dust cover	96 hours + 2 minutes
69	Set CCIG seal break	-11
59	Uncage PSE	4.6
72	Execute CCIG seal break	96 hours + 3 minutes
82	Blow SWE dust cover	96 hours + 4 minutes
71	Set SIDE blow dust cover	
72	Execute SIDE blow dust cover	96 hours + 5 minutes
89	Magnetometer flip calibrate	108 hours $+1$ minute,
	and the second s	then every 12 hours
42	Restore power to lowest	108 hours +7 minutes,
	priority experiment	then every 12 hours

Table 2-10.	Data Subsystem	Delayed Command Functions
	(Flights 1,	3, and 4)

Table 2-10A. Data Subsystem Delayed Command Functions (Array A-2)

Command	Function	Time of Execution
59	Uncage PSE	144 hours + 2 minutes
69	Set CCIG seal break	'n
72	Execute CCIG seal break	144 hours + 3 minutes
82	Blow SWE dust cover	144 hours + 4 minutes
71	Set SIDE blow dust cover	n
72	Execute SIDE blow dust cover	144 hours + 5 minutes
89	Magnetometer flip calibrate	162 hours + 1 minute,
		then every 18 hours
42	Restore power to lowest	162 hours +7 minutes
	priority experiment	then every 18 hours

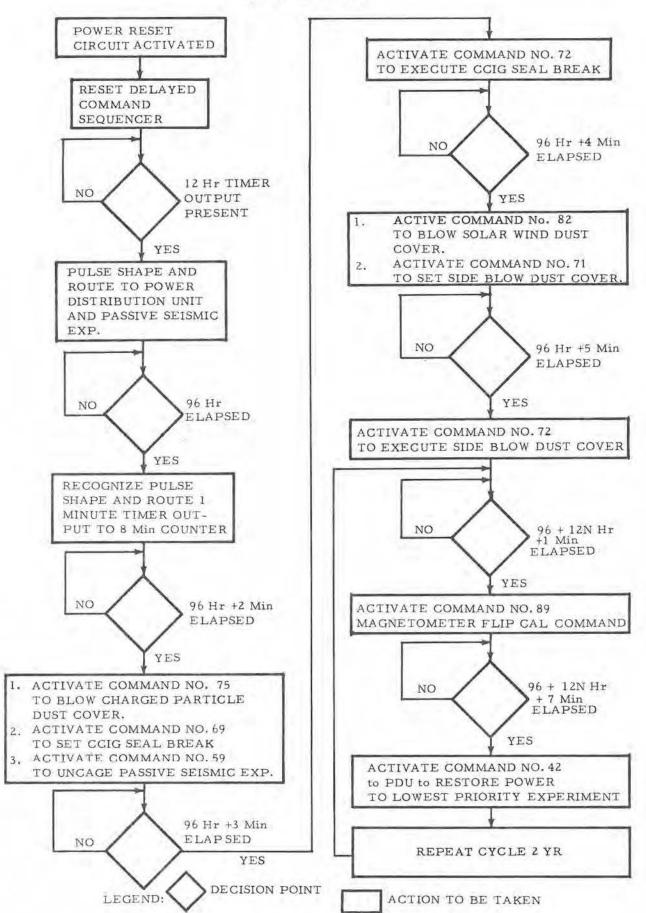


Figure 2-27. Data Subsystem Delayed Command Sequence, Functional Flow Chart

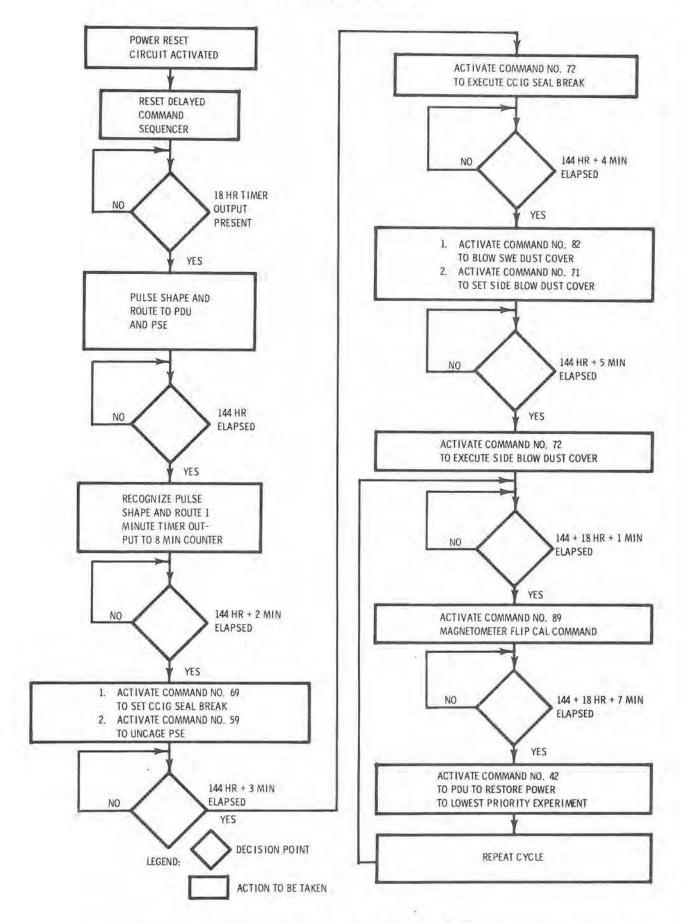


Figure 2-27A. Data Subsystem Delayed Command Sequence, Functional Flow Chart (Array A-2)

Changed 15 December 1970 2-48A/2-48B

. . . .

2-41. DATA SUBSYSTEM CENTRAL STATION TIMER

The central station timer provides predetermined switch closures used to initiate specific functions within the data subsystem of ALSEP Flight 1, 3, and 4 systems.

2-42. <u>Data Subsystem Central Station Timer Physical Description</u>. The central station timer consists of a Bulova model TE-12 Accutron clock and a long life mercury cell battery.

The timer is housed in a black anodized aluminum case approximately 2.6 inches long and 1.3 inches in diameter. Weight of the unit is slightly more than 0.25 pounds. Solder terminals provide electrical connection. Figure 2-28 shows the central station timer.

2-43. Data Subsystem Central Station Timer Functional Description. Figure 2-29 shows a block diagram of the timer. The central station timer starts to provide back-up timing pulses when the IPU cable is mated to the central station. A tuning fork controls the frequency of a transistorized 360 Hz oscillator which provides the basic timing frequency. This timing frequency drives the electrome-chanical arrangement used to provide three back-up timing switch closures. The switch closures are at one minute, 12-hour, and 720-day intervals. The one-minute and 12-hour closures are continuously repetitive and are applied to the delayed command sequencer in the command decoder. The 720-day closure occurs only once and initiates a permanent off command to the ALSEP transmitter. The commands activated by the command decoder delayed command sequencer are listed in Table 2-10.

Figure 2-28. Data Subsystem Central Station Timer

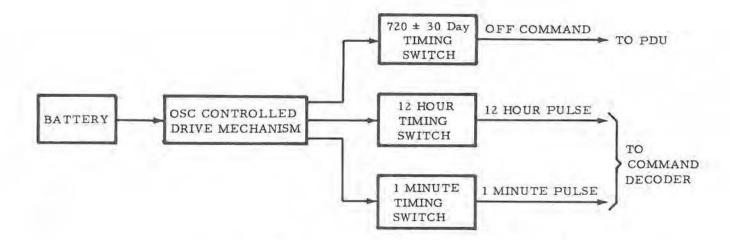


Figure 2-29. Data Subsystem Central Station Timer, Block Diagram

2-43A. DATA SUBSYSTEM RESETTABLE SOLID STATE TIMER

The resettable solid state timer is used in the ALSEP Flight System Array A-2 to provide timing signals to the command decoder, and to terminate ALSEP transmission.

The timer generates its own reset signal upon initial application of ± 12 vdc power from the PCU so that it will begin its count at zero. It will retain its count during approximately 30 seconds of power loss. Its outputs are 1-minute, 18-hour, and 1.5-month timing and telemetry signals, and a 97 (± 5) day transmitter off signal. A timer reset command from Earth will reset the timer to initiate an additional 97 (± 5) day ALSEP transmission period.

2-43B. <u>Resettable Solid State Timer Physical Description</u>. The resettable solid state timer (Figure 2-29A) consists of three circuit boards housed in an aluminum case approximately 2.8 inches high, 1.4 inches wide, and 2.2 inches long. Electrical connections are made through a 37-pin connector. Maximum weight of the unit is 7.3 ounces.

2-43C. Resettable Solid State Timer Functional Description. Figure 2-29B is a functional block diagram of the resettable solid state timer. An oscillator generated 16,384 Hz $(\pm 5\%)$ clock is divided down to drive two parallel 28-bit ripple counter divider chains at a 1-second rate. The count of divider chain no. 1 is decoded to generate the 1-minute and the 18-hour timing signals which are applied to the delayed command sequencer of the command decoder.

Figure 2-29A. Resettable Solid State Timer

The three-month output (bit 24) of each of the divider chains is used to drive the transmitter turn-off relay, while ensuring that a premature turn-off does not occur. Operation of the relay applies a transmitter-off signal to the transmitter on/off relay in the PDU. Application of the timer reset command at any time prior to relay operation will reset the counters to extend transmitter operation for a three month period.

The 1.5 month count (bit 23) of each of the divider chains, and the 18 hour count are applied to the data processor analog multiplexer for downlink telemetry.

2-44. DATA SUBSYSTEM DATA PROCESSOR

The data processor generates ALSEP timing and control signals, collects and formats both analog and digital data, and provides split-phase modulated data used for phase modulation of the downlink RF carrier.

2-45. Data Subsystem Data Processor Physical Description. The data processor consists of two physical components: (a) digital data processor, (b) analog multiplexer/converter. ALSEP flight 1, 3, and 4 systems use analog multiplexer/converter P/N 2330524, and ALSEP Array A-2 uses dual analog multiplexer/converter P/N 2338900. Figures 2-30 and 2-31 show the digital processor and the analog multiplexer/converter. Multilayer printed circuit boards are used

2-50B Changed 15 December 1970

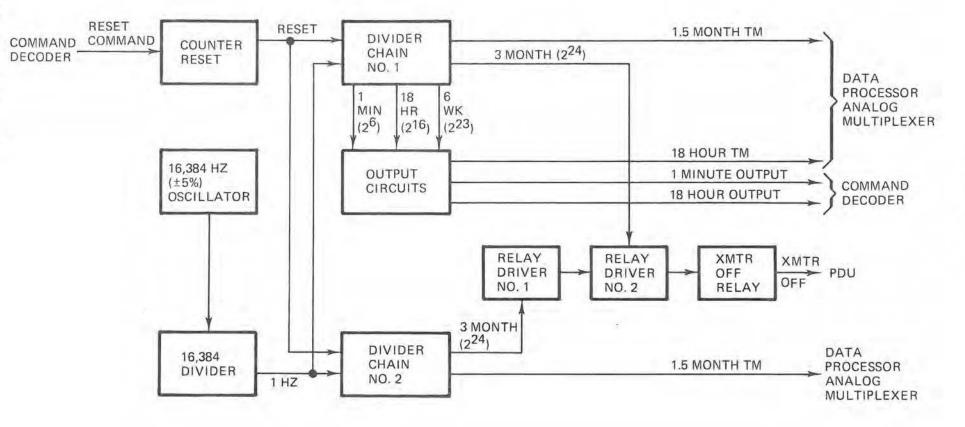


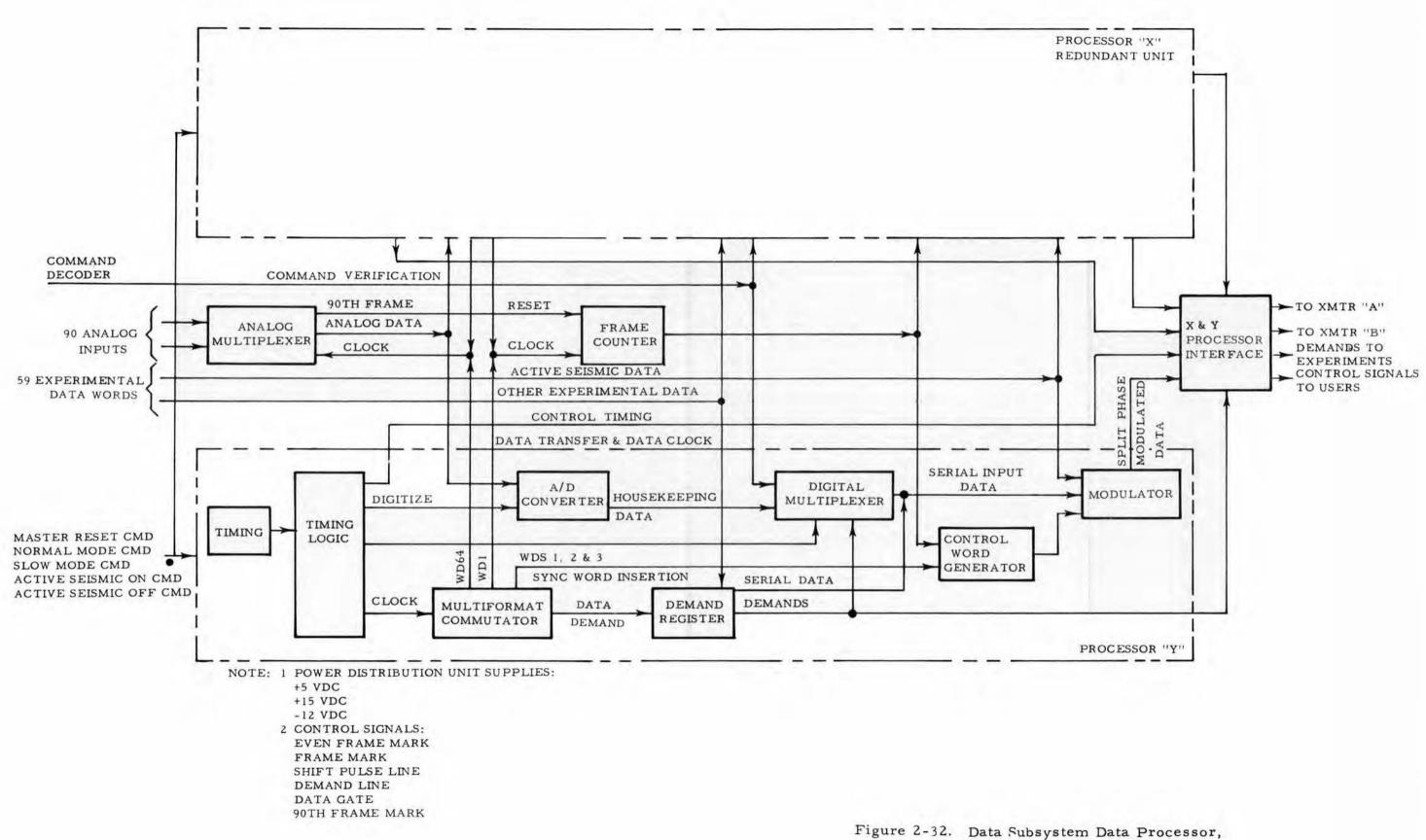
Figure 2-29B. Resettable Solid State Timer, Block Diagram

ALSEP-MT-03

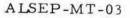
throughout the digital data processor and analog multiplexer/converter. The analog multiplexer/converter 2330524 uses 15 two-layer boards, and analog multiplexer/converter 2338900 uses 11 two-layer boards. The digital data processor uses seven twelve-layer boards, one six-layer board and one threelayer discrete component board. Leading particulars are listed in Table 2-11.

2-46. Data Subsystem Data Processor Functional Description. Functionally, there are two redundant data processing channels (data processor X and data processor Y) which process both analog and digital data. Either processor channel may be selected to perform the data processing function. Figure 2-32 is a block diagram of the data processor showing redundant data processor channels X and Y. Digital data is applied directly to the processor channels. Analog engineering (housekeeping) data is applied to the 90-channel analog multiplexer.

Figure 2-33 is a block diagram of the analog multiplexer of 2330524. Multiplexer channels I through 15 are considered high reliability channels because of the redundant gating provided. Channels 16 through 90 are normal channels without redundant gating. Figure 2-33A is a block diagram of the dual analog multiplexer of 2338900. The 90 analog inputs are applied to two totally redundant multiplexer circuits. Operation of the two multiplexer units is otherwise identical.


An advance pulse from the timing and control circuits of the X and Y processor channels is applied to the multiplexer sequencer logic. The sequencer logic applies timing signals to the multiplexing circuitry, and an end-of-frame signal to the frame counter when the frame advance reaches ninety. Multiplexed analog outputs from the multiplexing circuitry are applied through two parallel buffer stages to the analog-to-digital converters in data processors X and Y. The channel assignments of the analog multiplexer/converter are listed in the Appendix.

Analog data inputs from the analog multiplexer are received by the analog-todigital converter. (See Figure 2-32.) The analog-to-digital converter digitizes the PAM output signal from the analog multiplexer. The analog-to-digital converters use a ramp generation technique to encode the analog signal into an eightbit digital word. A single eight-bit conversion is made every telemetry frame. Processor timing and control circuits provide signals which assure that the conversions are made at the appropriate time. The digitized output data is applied to the digital multiplexer in parallel data form.


The digital multiplexer consists of a ten-bit shift register which accepts eight parallel bits from the analog-to-digital converter or eight serial bits from the command decoder and serially shifts them as a ten-bit word with zeros inserted in the two most significant figures. The bits are shifted high order first. Gates

ALSI

32. Data Subsystem Data Processor, Functional Block Diagram

Changed 15 December 1970 2-53/2-54

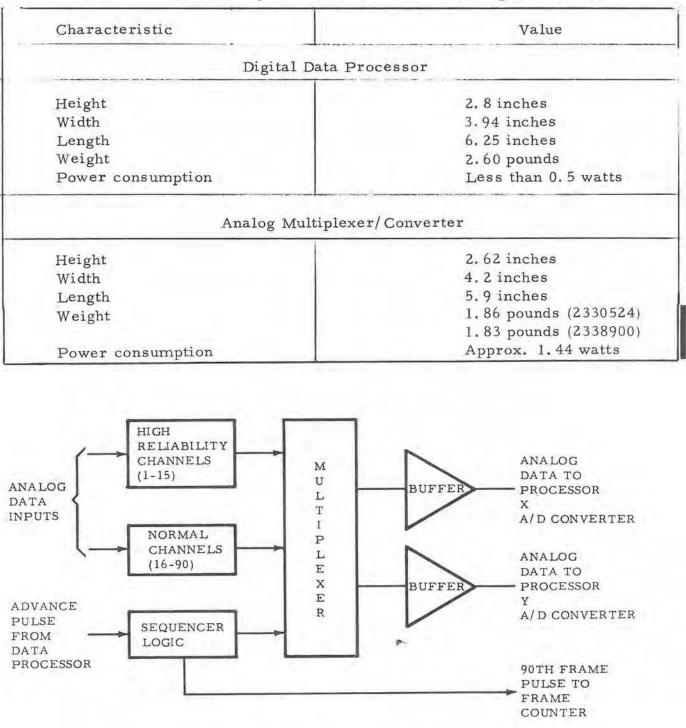


Table 2-11. Data Subsystem Data Processor Leading Particulars

Figure 2-33. Data Subsystem Analog Multiplexer (of 2330524), Block Diagram are included in the digital multiplexer circuitry which gate serial input data directly from the experiments. The gate outputs and the ten-bit shift register outputs are "OR'd" and presented to a two-bit shift register which accepts either serial data from experiments or parallel control word coding.

The two-bit shift register presents the experiment and control word data in serial form to the PCM format converter. A PCM "0" is represented by a "01" and a PCM "1" is represented by a "10". The split phase signal phase modulates the transmitter so that a PCM "0" causes a positive phase transition and a PCM "1" causes a negative phase transition.

Table 2-12 lists the characteristics of ALSEP timing and control signals.

Pulse Type	Duration* (µsec)	Repetition Rate*	Timing Relative to Frame Mark
Frame mark	118	once per ALSEP frame	occurs at start of word 1 of each frame
Even frame mark	118	once every other frame	in coincidence with frame mark
90th frame mark	118	once every 90th frame	in coincidence with frame mark
Data gate (word mark)	118	64, once per each ten-bit word in	data gate of word 1 is in coincidence with
Data demand	9434	frame once per experi- ment word in ALSEP frame	frame mark occurs asymmetrically as defined in Figure 2-34
Shift pulse	47	640 pulses per frame 1060 pulses per second	a continuous 1060 pulses per second symmetrical square wave

Table 2-12. Data Subsystem Timing and Control Pulse Characteristics in Normal ALSEP Data Mode

Amplitude: High or logic "1" - +2.5 to 5.0 volts Low or logic "0" - 0 to +0.4 volts

Rise and Fall Times: 2 to 10 µsec 10% to 90% points and 90% to 10% points

In slow ALSEP data mode, duration is twice the normal mode and repetition rate is one-half normal mode.

2-47. Operating Modes - The data processor operates in three modes:

- a. Normal mode (1060 bps)
 - b. Slow mode (530 bps)
 - c. Active Seismic mode (10600 bps).

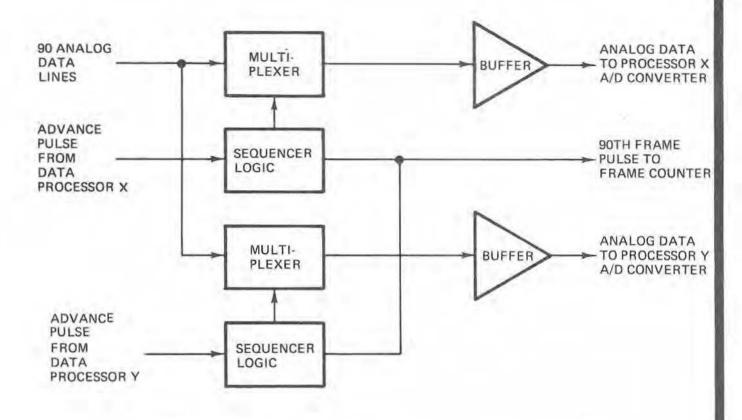


Figure 2-33A. Data Subsystem Dual Analog Multiplexer (of 2338900), Block Diagram.

ARRAY A2

1		2		3		4		5		6		7		8	
	x		x		x		x		o	-	x		S		X
9	1	10		11		12		13		14		15		16	
	-		x	-	ł		x		1		x		I		x
17		18		19		20		21		22		23		24	
	0	1	x		0		x		0	11	x		S	I	IF
25		26		27		28		29		30		31		32	
			x		÷		x		-		x		I		X
33		34		35		36		37		38		39		40	
	н		x		•		x		•		x		S		x
41		42		43		44		45		46		47		48	
	-		x		-		x		-	C	v		I	N	x
49		50		51		52		53	-11	54		55		56	
	0		x	-	0		x		0		x		S		I
57	71	58		59		60		61		62		63		64	
	-		x	1	-		x	11	-		x		I	-	x

WORD TOTALS

LEGEND

= Control 3 x = Passive Seismic - Short Period X 28 = Passive Seismic - Long Period 12 -= Passive Seismic - Long Period Tidal and one 2 Θ. Temperature = Magnetometer 7 0 = Solar Wind S 4 = Suprathermal Ion Detector 5 I CV = Command Verification 1 = Housekeeping H 1 HF = Heat Flow 1 Each box contains one ten-bit word

Total bits per frame = $10 \times 64 = 640$ bits

Figure 2-34A. ALSEP Telemetry Frame Format

CONTROL WORD FORMAT

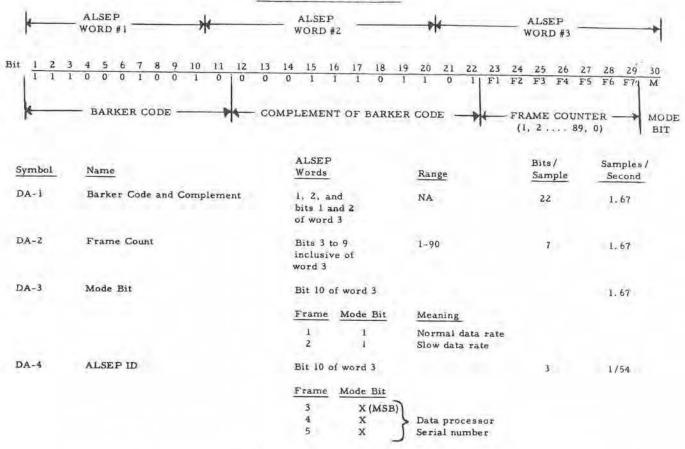


Figure 2-35. ALSEP Telemetry Control Word Bit Assignments

counter to obtain the 10.6 KHz signal used in the active seismic mode. This counter is gated to produce the 42.4 KHz signal used in the slow data mode of 530 bps.

The 84.8 KHz, or the 42.4 KHz signal also drives a divide-by-ten counter. The outputs from this counter are used to drive the sub-bit counter and the timing logic. The sub-bit counter is a divide-by-eight counter with output frequencies of 1060 Hz, or 530 Hz, depending upon the operational mode. This output establishes the bit rate, drives a bit time counter, and provides timing signals for the timing logic.

The bit time counter is a divide-by-ten counter with an output frequency of 106 Hz, or 53 Hz, which establishes the word rate. Outputs of this counter are used in generating the control words and signal timing throughout the processor.

The multiformat commutator determines the specific assignments of each word within the 64 word telemetry format. The commutator provides signals (demand pulses) of one word length and multiples of one word length in duration so that

data may be gated from the experiments and command decoder through the splitphase modulator and into the transmitter in a predetermined sequence. The output of the multiformat commutator is applied to the demand register and the control word generator.

The demand register performs the following functions:

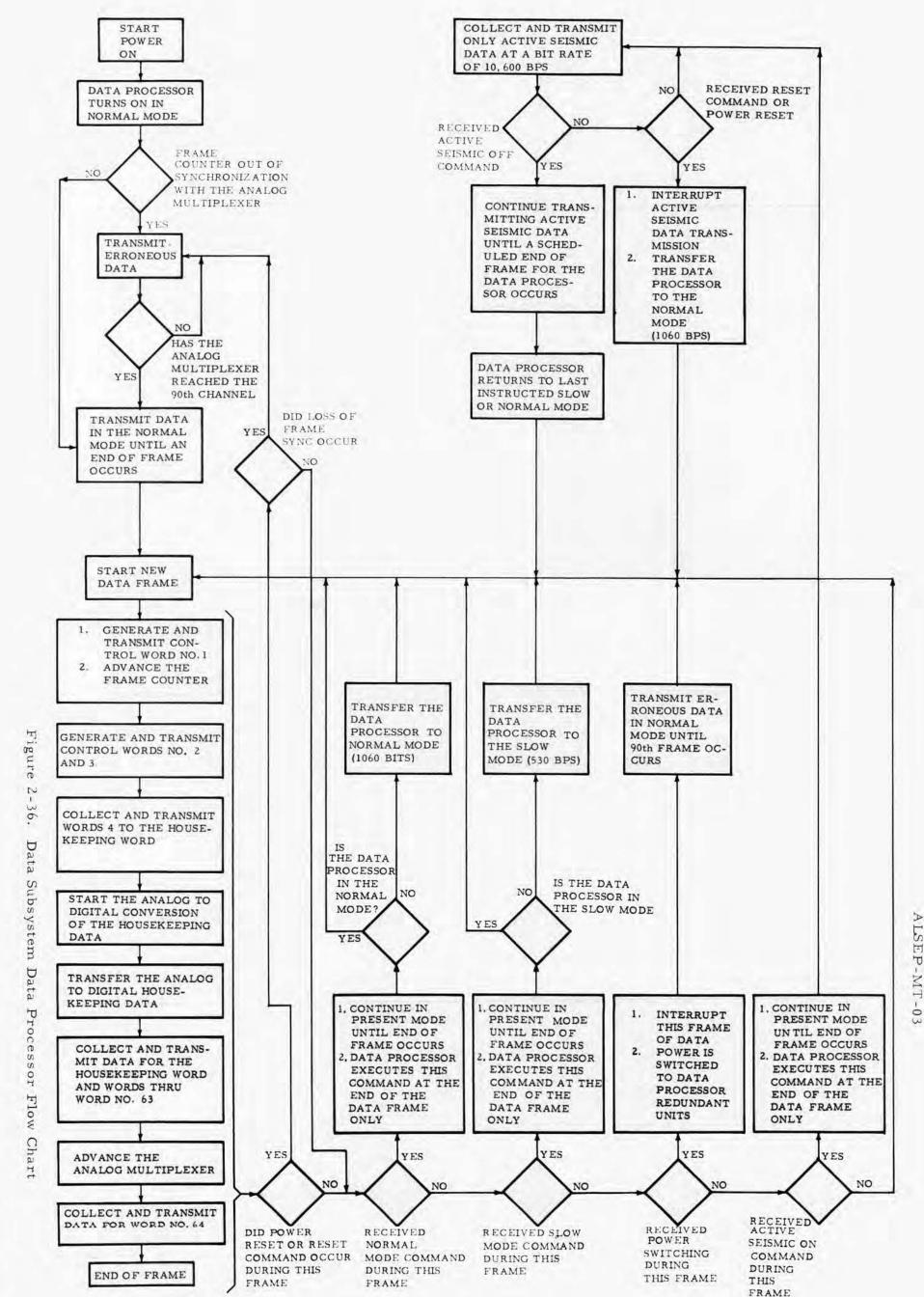
a. Provides memory for the demand signal while the commutator is being switched.

b. Acts as a master switch turning off all demands while allowing the format generator and all control signals to function normally while in active seismic mode.

c. Acts as a buffer between the demand decoder assembly eliminating any gating transients from the demand lines.

The control word generator generates the synchronization code and provides the information to the output register during the proper bit times of the control word. Mode, frame, and data processor serial number information is provided to the output register at the appropriate bit times.

The frame counter generates the frame bits. The frame counter is essentially a ripple-through counter which is advanced one step whenever the first word of each frame occurs. Reset is accomplished by means of the 90th frame end-of-frame signal generated by the analog multiplexer.


A flow chart of the data processor is presented in Figure 2-36.

2-49. DATA SUBSYSTEM TRANSMITTER 2330527

The data subsystem transmitter 2330527 is used in the ALSEP Flight 1 through 4 systems to generate an S-band carrier frequency between 2275 and 2280 MHz which is phase modulated by the split-phase serial bit stream from the data processor.

2-50. Data Subsystem Transmitter Physical Description. Two identical transmitters are used in each data subsystem to provide standby redundant operation. Either transmitter can be selected to transmit downlink data. A transmitter is shown in Figure 2-37. Most circuit modules are mounted on a milled out magnesium base plate. Some modules and other components are located inside the base plate. Transmitter leading particulars are listed in Table 2-13.

2-51. Data Subsystem Transmitter Functional Description. Figure 2-38 shows a block diagram of the transmitter circuit. Transmitter output frequency is a function of the oscillator crystal and tuning. Transmitter frequencies will vary between individual ALSEP systems. An oscillator frequency of 142 MHz is used as an example in this discussion. The crystal-controlled oscillator in the oscillator-buffer-phase modulator generates a 142 MHz frequency which is phase modulated by the binary data from the data processor. A buffer amplifier between

ALSE J

Changed 15 December 1970 2-63/2-64

Figure 2-37. Data Subsystem Transmitter 2330527

Characteristic	Value
Output frequency	Channel 1 = 2276.5 MHz
	Channel 2 = 2278.5 MHz
	Channel 3 = 2275.5 MHz
Frequency stability	(a) ±.0025%/year (long term)
	(b) 2.2 x 10^{-10} parts/second (short term)
Output power	1 watt minimum into 50 ohm load with maxi- mum VSWR of 1.3:1
Output spurious	 (a) Harmonically related: 0 dbm, 2-7 GHz (b) Other: -50 dbm above 2-GHz - 10 dbm, 7-10 GHz
	(c) All: 0 dbm below 2 GHz
Incidental AM	Less than 3% (0.25 db power ratio)
Phase noise	Less than 4.5° rms as measured with a phase coherent receiver having a loop bandwidth 2 $B_T = 50$ cps
Carrier deviation	Fixed at ± 1.25 radians $\pm 5\%$
Modulation drive	+2.5 to +5.5 volt peak-to-peak (binary voltage only)

Table 2-13. Data Subsystem Transmitter 2330527 Leading Particulars

Characteristic	Value
Modulation polarity	+ phase shift for + modulation voltage
Modulation frequency	200 Hz to 12 KHz/binary voltage
Modulation input impedance	22K ohm minimum shunted by less than
	100 pf (ac coupled)
Supply voltages	$+29 \text{ vdc} \pm 1\% + 12 \text{ vdc} \pm 1\%$
Supply power	9.5 watts maximum (9.2 watts nominal
	$= 8.7 \le @ +29 \le + 0.5 $ watts $@ +12 \le)$
Telemetry outputs	(a) Oscillator crystal temperature
	 (b) Heat sink temperature at highest power stage
	(c) RF level at output (AGC voltage)
	(d) Supply current to power doubler
Weight	1.13 pounds
Form factor	$7.5 \ge 2.0$ inches mounting surface ≥ 1.50 inches in height exclusive of connectors

Table 2-13. Data Subsystem Transmitter Leading Particulars (cont)

the 142 MHz oscillator and the phase modulator provides impedance matching and circuit isolation which enhance modulator stability. The analog phase modulator contains a pair of back-to-back varactor diodes which vary the capacitance of a parallel resonant tank circuit by varying the diode back bias at the modulating frequency. A modulator driver maintains the proper diode bias voltages for binary modulation voltage variations from 2.5 volts to 5.5 volts peak-to-peak.

The output of the phase modulator is applied to buffer amplifier, AGC-controlled amplifier, and frequency doubler stages. The buffer amplifier stage between the phase modulator output and the AGC-controlled amplifier inputs prevents modulator tank circuit detuning which would be caused by amplifier input impedance changes resulting from temperature and aging. The times two frequency multiplier stage increases the carrier frequency to 284 MHz.

The 284 MHz output from the frequency multiplier is amplified by the power amplifier, and doubled in frequency by the power doubler. A times four varactor frequency multiplier then quadruples the carrier frequency. The output frequency is between 2275 and 2280 MHz, depending on the selection of the crystal-controlled oscillator. A stripline filter reduces spurious harmonics of the output signal to 30 db below the carrier. Additional spurious rejection is provided by the interfacing diplexer. A directional coupler built into the filter provides an RF output to the AGC circuit.

Monitor circuits provide analog signals to the data processor indicating the status of current supply, AGC voltage and the temperatures at the oscillator crystal and the power heat sink.

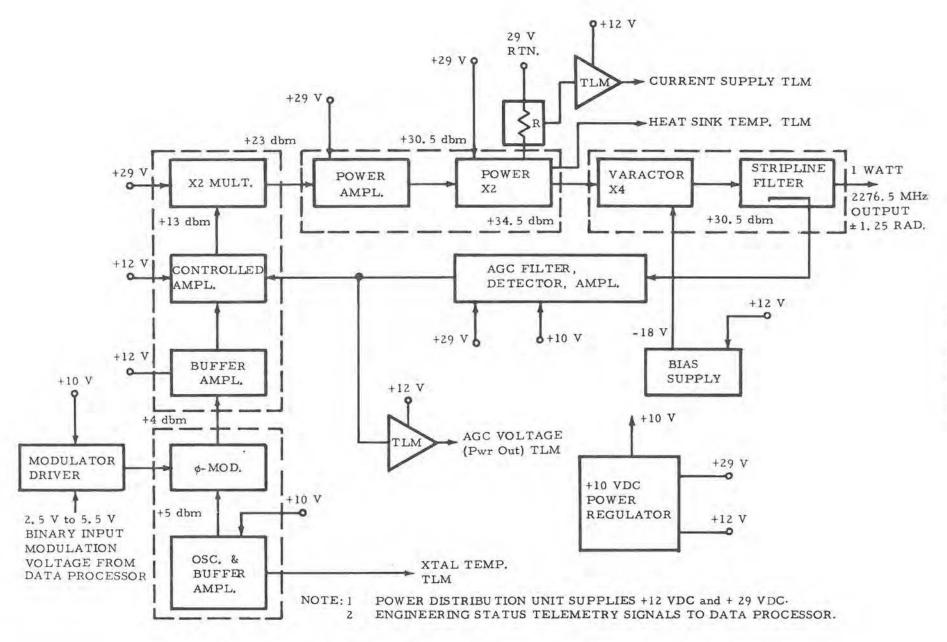


Figure 2-38. Data Subsystem Transmitter (2330527) Block Diagram

ALSEP-MT-03

2-51A. DATA SUBSYSTEM TRANSMITTER 2345250

The data subsystem transmitter 2345250 is used in the ALSEP flight system Array A-2 to generate a specific S-band carrier frequency within the range of 2275 to 2280 MHz. The signal is phase modulated by the split-phase serial bit stream from the data processor. Two identical transmitters are used in the data subsystem to provide standby redundant operation. Either transmitter can be selected to transmit downlink data.

2-51B. Data Subsystem Transmitter Physical Description. The transmitter is comprised of six circuit modules. The X6 multiplier module is superimposed on the power amplifier module to form an integral structural unit with an aluminum base plate. The other four modules are printed circuit boards which are mounted in cavities in the side of the power amplifier module. The operating power and data signal input and telemetry output interface is through a 14-pin connector. The RF carrier output interface is through a coaxial connector. Figure 2-38A shows the structural configuration of the transmitter. Transmitter leading particulars are listed in Table 2-13A.

2-51C. <u>Data Subsystem Transmitter Functional Description</u>. Figure 2-38B shows a block diagram of the transmitter circuit. Transmitter output frequency is determined by the selection of the oscillator crystal. An oscillator frequency of 38 MHz is used in this discussion.

The crystal-controlled oscillator in the oscillator, buffer, modulator module, A3, generates a 38 MHz signal. The power level of the signal is increased by a buffer amplifier, and applied to a X5 multiplier which consists of a step recovery diode for harmonic generation, and a tuned circuit which passes the fifth harmonic, 190 MHz. A cascode amplifier acts as a buffer between the multiplier and the phase modulator.

The phase modulator module, A4, consists of a modulator and a modulator driver. The modulator receives the 190 MHz carrier signal. Modulation of the signal takes place in a series capacitor and resistor network in which the capacitance is provided by two parallel varactor diodes. The modulator driver receives the 2.5 to 5.5 volt, 265 Hz to 10,600 KHz split-phase modulated binary data signal from the data processor, and develops a back bias across the modulator varactors. The back bias is varied at the data signal frequency to alter the capacitance of the varactors and thus cause a phase shift of the 190 MHz carrier signal. The resultant phase modulated 190 MHz carrier signal is applied through a resistive T-network to the preamplifier.

The preamplifier module, A5, is a three-stage limiting preamplifier which provides a constant drive level over a wide range of temperatures. The output is applied through a resistive T-network which is selected through test to attenuate the phase modulated carrier signal to the correct drive level for the power amplifier. The power amplifier module, A2, provides a stage of amplification, a X2 multiplier, and two more stages of amplification. The X2 multiplier is a common-base doubler which raises the 190 MHz phase modulated carrier frequency to 380 MHz. The amplifiers raise the power of the phase modulated carrier to three watts. This module also performs 29VDC power filtering for all modules.

The X6 multiplier module, A1, increases the frequency of the phase modulated carrier to 2280 MHz in two stages. A coaxial cavity is tuned to the 380 MHz phase modulated carrier input from the power amplifier, and applies it to a varactor multiplier which produces many harmonics. The third harmonic, 1140 MHz, is selected by a tuned coaxial cavity and applied to a second varactor multiplier to produce harmonics. The second harmonic, 2280 MHz, is selected by a tuned coaxial cavity and the coaxial cavity to filter spurious harmonics. The 1-watt, 2280 MHz, split-phase modulated output is applied to the diplexer switch for downlink transmission.

The current, temperature, and RF power telemetry module, A6, circuits provide signals representative of monitored transmitter operational parameters to the analog multiplexer of the data processor for downlink telemetry. The 29VDC operating current, the output signal power at A1, and the temperature of the crystal in A3 and the output transistor heat sink in A2 are monitored.

Figure 2-38A. Data Subsystem Transmitter 2345250

Changed 15 December 1970 2-68A

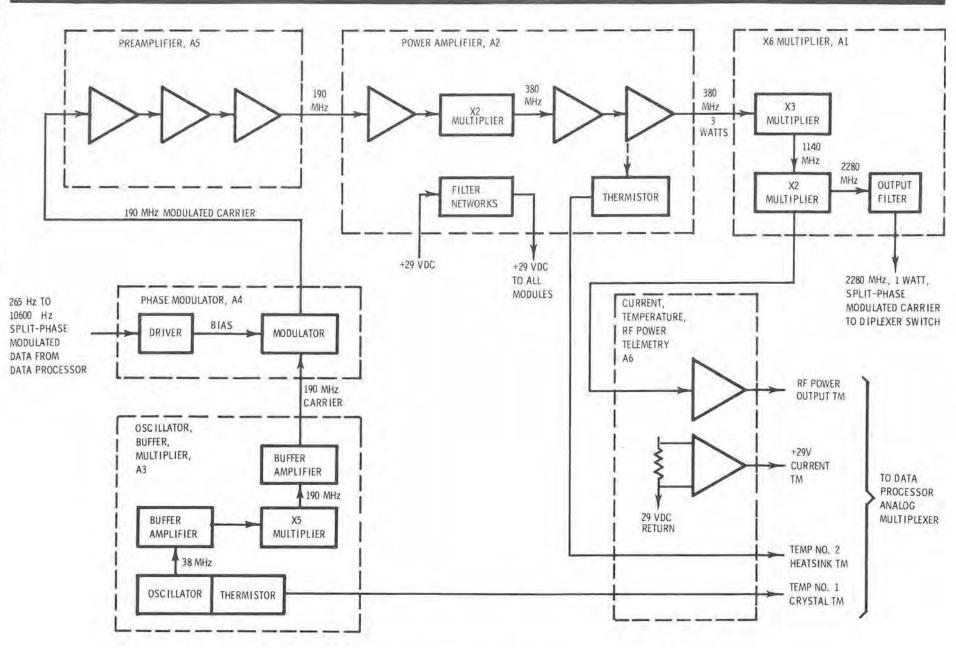


Figure 2-38B. Data Subsystem Transmitter 2345250, Block Diagram

Table 2-13A. Data Subsystem Transmitter 2345250 Leading Particulars

275 to 2280 MHz fixed by selected oscillator crystal 0.0025% per year. watt min. into 50 ohms at a maximum VSWR of .3:1 requency: 0 to 2 GHz -30 db below unmodulated carrier 2 to 2.45 GHz -80 db 2.45 to 4.60 GHz -20 db 4.60 to 10.0 GHz -40 db Less than 3% wess than 0.1 rad. BMS measured with a phase			
watt min. into 50 ohms at a maximum VSWR of .3:1 requency: 0 to 2 GHz -30 db below unmodulated carrier 2 to 2.45 GHz -80 db 2.45 to 4.60 GHz -20 db 4.60 to 10.0 GHz -40 db Less than 3%			
.3:1 requency: 0 to 2 GHz -30 db below unmodulated carrier 2 to 2.45 GHz -80 db 2.45 to 4.60 GHz -20 db 4.60 to 10.0 GHz -40 db Less than 3%			
lated carrier 2 to 2.45 GHz -80 db 2.45 to 4.60 GHz -20 db 4.60 to 10.0 GHz -40 db			
ess than 0. I rad. BMS measured with a phase			
Less than 0.1 rad. RMS measured with a phase coherent receiver with a loop bandwidth 2 $B_{T} = 50 \text{ Hz}$			
$\pm 1.25 \text{ radians} \pm 5\%.$			
Binary signal +2.5 to +5.5 volt p-p.			
265 Hz to 10.6 KHz binary signal.			
Greater than 10K ohms shunted by less than 100 pf (ac coupled)			
9 volts <u>+</u> 2%			
ess than 418 ma.			
) Oscillator crystal temperature (-30 to +70°C)) Heat sink temperature of power output stage (-30 to +70°C)) R. F. level at power amplifier output (0.63 to 1.58 watts)) Supply current (250 to 475 ma). 			
less than 2.1 lb			
.5 x 2.0 inches mounting surface x 2.8 inches high.			

Changed 15 December 1970 2-68C

2-52. DATA SUBSYSTEM POWER DISTRIBUTION UNIT

The power distribution unit (PDU) distributes power to experiment and central station components and provides circuit overload protection and power switching of selected circuits. The PDU also provides signal conditioning of selected central station and RTG telemetry monitor signals prior to input to the analog multiplexer for analog-to-digital conversion and subsequent data transmission to earth.

2-53. Data Subsystem Power Distribution Unit Physical Description. A PDU is shown in Figure 2-39. The power distribution unit is comprised of five printed circuit cards, a mother board to provide interconnection between the individual boards, the component connector, a case, and a cover. All electrical inputs are made through a rectangular, screw-lock, 244-pin connector.

Figure 2-39. Data Subsystem Power Distribution Unit

The amplifier board mounts the RTG temperature sensing bridges and amplifiers, the power reserve sequencer comparator, and one experiment power control circuit.

The experiment drive card contains the relay driver, relays, fuses, and associated circuit components for the power control of four experiments.

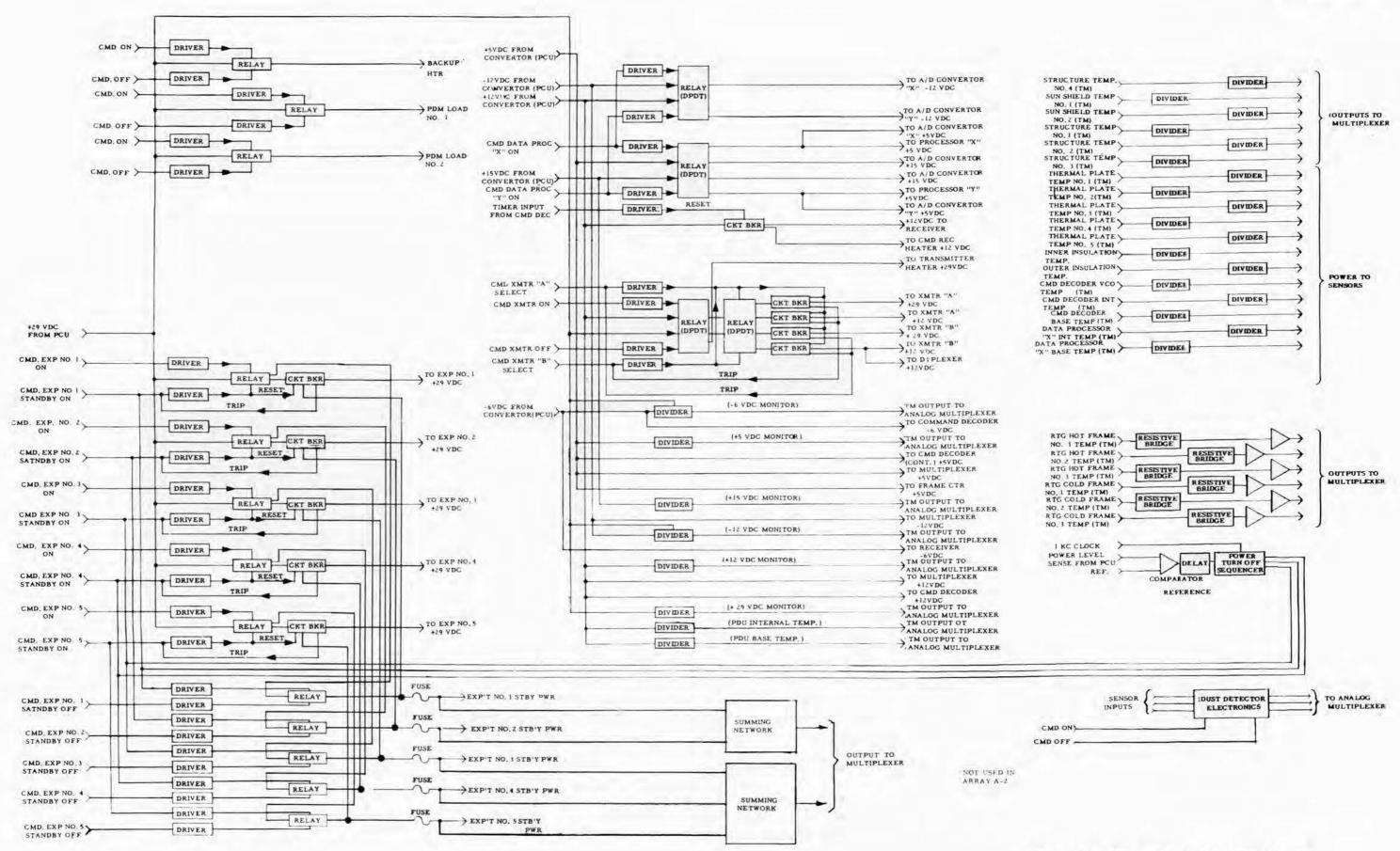


Figure 2-40. Data Subsystem Power Distribution Unit, Block Diagram

Changed 15 December 1970 2-71/2-72

resetting its contacts to permit normal standby-on command inputs. Provisions have been made to shunt each current sensing coil to provide a 0.5 amp capability to all experiments.

A high conductance diode is paralleled (in a forward biased condition) with the current sensing coil of the overload sensing relay. This diode permits an extension of the dynamic range of the overload sensor to high transient overloads. Two resistive summing networks provide a telemetry output to indicate the presence or absence of standby power for all experiment power switching circuits.

Transmitter power control and overload protection as shown in Figure 2-41 uses two power control relays, four overload sensing relays, and associated relay drivers. Four commands are required:

- a. Transmitter on
- b. Transmitter off
- c. Transmitter A select
- d. Transmitter B select.

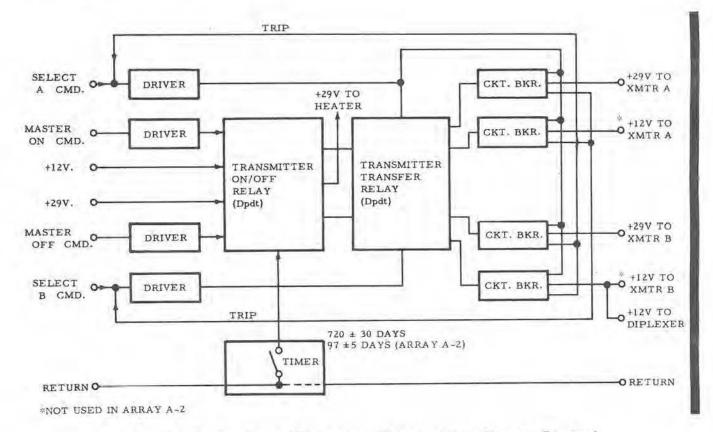


Figure 2-41. Data Subsystem Transmitter Power Control

The transmitter on and off commands operate the double-pole, double-throw relay which switches both 12 vdc and 29 vdc to the transmitter transfer relay. When the transmitter control relay is off, nominal transmitter operating power is applied to the transmitter heater which maintains thermal balance within the central station. Two power lines to either of two transmitters are selectable via transmitter A or transmitter B select commands as appropriate. If either power line to either transmitter is overloaded, the contacts of the overload sensing relay transfers the transmitter select relay to supply power to the alternate transmitter. When power is transferred to the alternate transmitter, the circuit overload sensing relays are both reset and the normal command link inputs are restored. Diplexer switching power, required only when transmitter B is selected, is obtained directly from the 12 vdc transmitter power line.

A transmitter turn-on capability is provided by a manually operated backup switch which is used if an uplink cannot be established following deployment of ALSEP on the lunar surface.

The command receiver requires both 12 vdc and -6 vdc for operation (Figure 2-41). The -6 vdc line is not provided with circuit protection because of the high reliability of the -6 volt line load. The 12 vdc line is provided with overload protection which uses a magnetic latching circuit breaker relay. The sensing coil of this device will interrupt the 12 vdc of the receiver when current is excessive. Since no redundancy of receivers exists, a 12-hour reset pulse is supplied to the breaker every 12 hours. If the receiver is tripped off, a receiver heater load is energized by the transfer of the circuit breaker contacts to maintain thermal balance. (An 18-hour reset pulse is used in Array A-2.)

For data processor power control (Figure 2-42), redundant electronics are switched using standard magnetic latching relays. These relays are controlled by standard commands. Overload protection is not provided.

Power dissipation module 1, power dissipation module 2, and the central station backup heaters are switched off and on by ground command only.

Electronics for the dust detector are mounted on a printed circuit card in the PDU and consist of the following three functional areas:

- a. Power switching
- b. Operational amplifiers
- c. Temperature measurement.

The power switching function switches 12 vdc and -12 vdc power to the amplifiers upon receiving a ground command. Power protection for the card is provided by individual fuses on each of the two voltages.

The operational amplifier consists of an integrated circuit differential amplifier with added circuitry to establish a closed loop fixed gain configuration. Its functional purpose is to condition the output of the photocell detectors, which act as

variable current sources of a 0 to +5 vdc varying dc level for telemetry information. Temperature measurement is accomplished with a thermistor attached to the photocell and a series resistor, located on the card to optimize thermistor sensitivity and provide a 0 to +5 vdc telemetry signal.

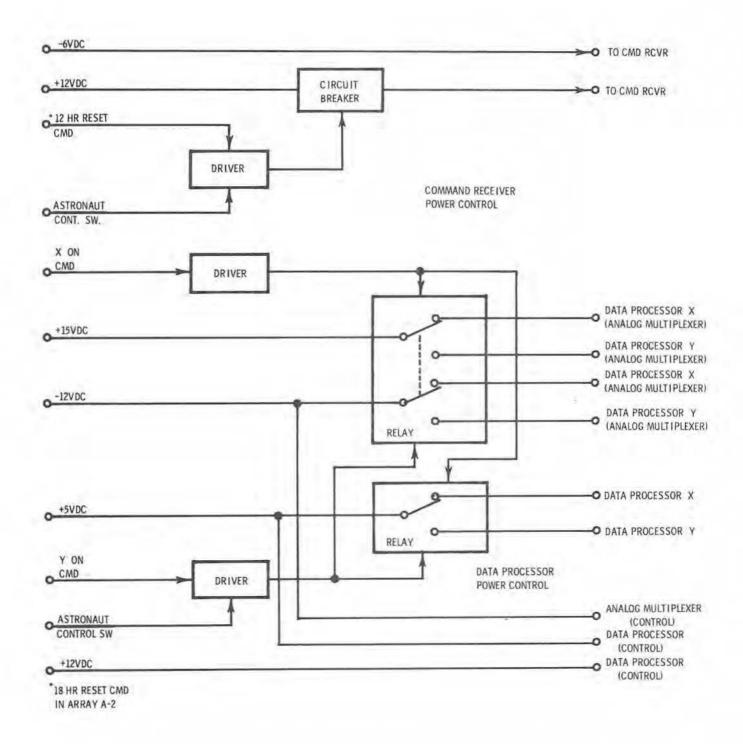


Figure 2-42. Command Receiver and Data Processor Power Control

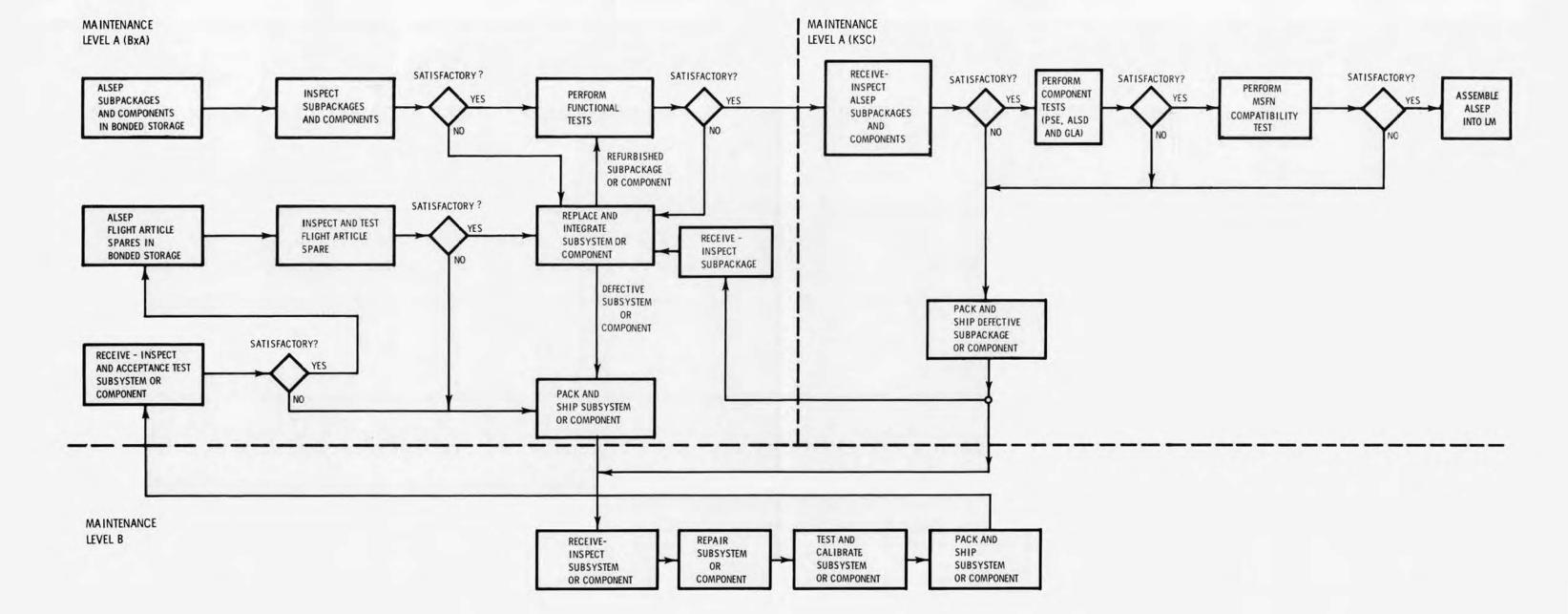


Figure 3-1. ALSEP Flight System Maintenance Flow Diagram

Changed 15 December 1970 3-3/3-4

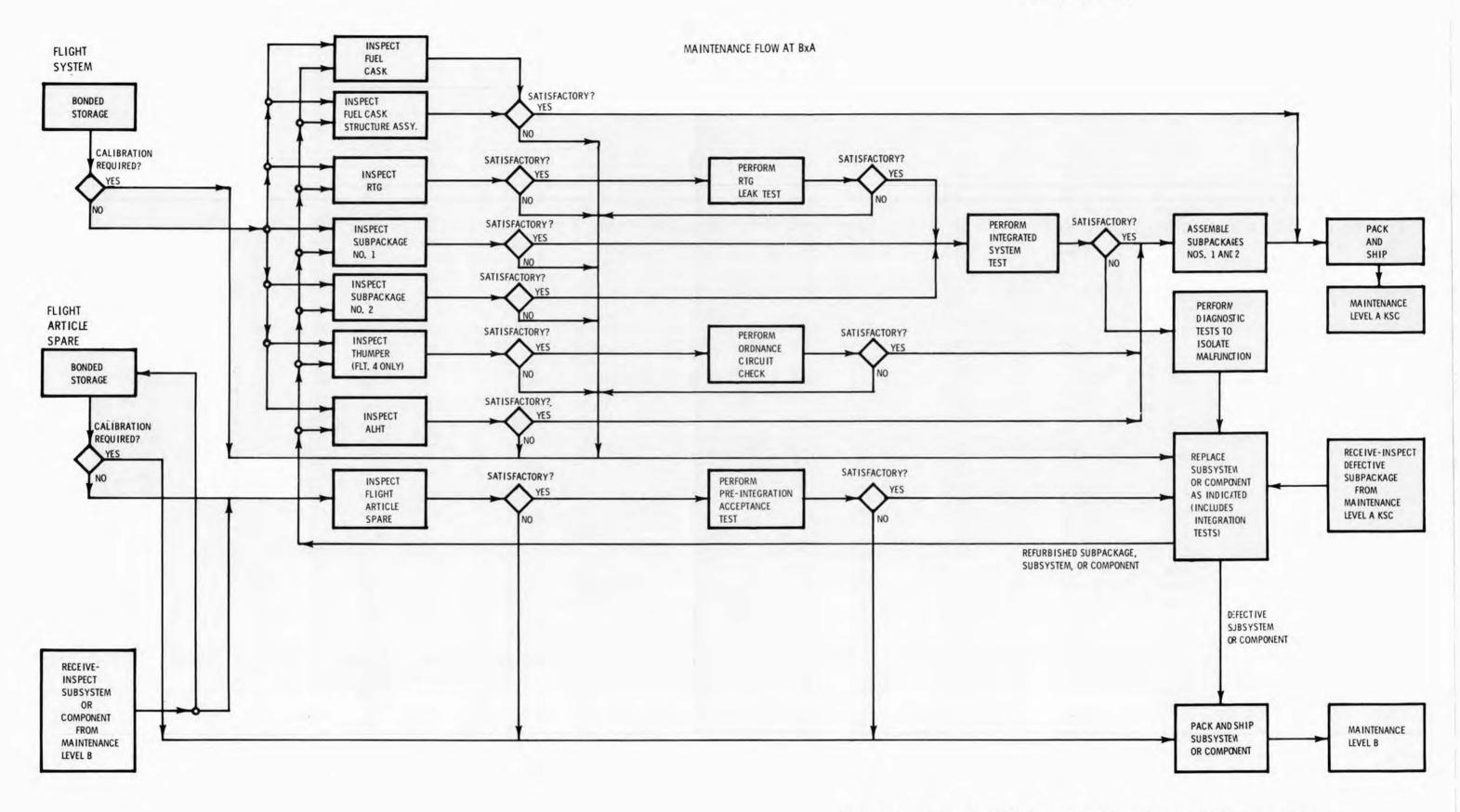


Figure 3-2. Level A Maintenance Flow Diagram (Sheet 1 of 2)

Changed 15 December 1970 3-5/3-6

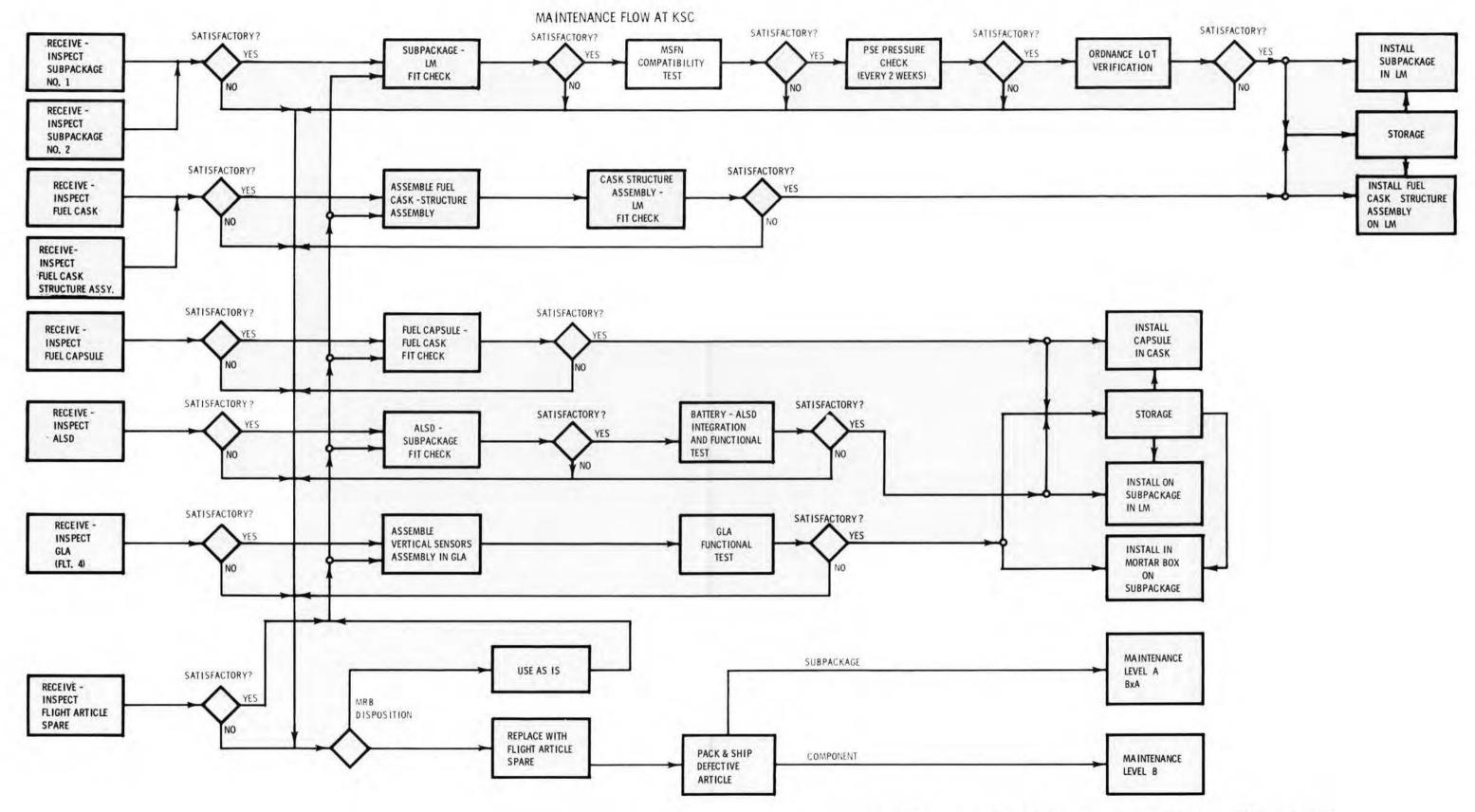


Figure 3-2. Level A Maintenance Flow Diagram (Sheet 2 of 2)

Changed 15 December 1970 3-7/3-8

Nomenclature	Quantity	Part Number	Note
Passive seismic experiment	1	2330659	
Heat flow experiment	2	2330661	
Charged particle lunar environment experiment	1	2330662	
Active seismic experiment electronics	ĩ	2334468	
Grenade launch assembly	2	2338507-2	KSC
Mortar box assembly	2	2334499-4	NOC
Thumper and geophone assembly	2	2334772-4	
Magnetometer experiment	0	2330657	GFE
Solar wind experiment	1	2330658	A CONTRACTOR OF CONTRACTOR
Suprathermal ion detector experiment	2		GFE
Dust detector package	0	2330660	GFE
Dust detector package		2330370-2	
	0	2341440	
Radioisotope thermoelectric generator	1	47E300779	GFE
Apollo lunar surface drill	1	467A805000	GFE
Apollo lunar hand tools	0	SGB39101165	GFE
Fuel cask	0	47E301134	GFE
Fuel capsule	0	47D300400	GFE
Universal handling tool	1	2338102	
Dome removal tool	1	2337954	
Helical antenna	0	2330307	
Antenna cable assembly	1	2334522	
Antenna aiming mechanism	1	2330309	
Diplexer switch	1	2330526	
Diplexer filter	1	2330525	
Command receiver	1	2330523	
Command decoder	1	2330509	
Analog to digital converter-multiplexer	0	2330524	
Analog to digital converter-multiplexer	1	2338900	
Data processor	1	2330521-A4	
Data processor	1	2330521-B7	
Transmitter (2276.5 mc)	1	2330527	
Transmitter (2278.5 mc)	1	2330527	
Transmitter A & B	2	2345250	
Power distribution unit	1	2330450-2	
Timer	1	2330626	
Timer battery	2	2334476	
Timer	1	2338511	
	1	2330000-3	
Power conditioning unit	2	2330528-4	
RF cable assembly	2	2330528-5	
RF cable assembly	2	2330528-6	
RF cable assembly	2		
RF cable assembly	2	2330670-3	
RF cable assembly	6	2330670-4	

ALSEP 3-2. ALSEP Flight Article Spares

Nomenclature	Quantity	Part Number	Note
RF cable assembly	2	2330671-2	
RF cable assembly	2	2330671-3	
RF cable assembly	2	2344607	
Diplexer switch cable assembly		2344698-1	
Diplexer switch cable assembly	2 2 2	2344698-2	
Ammeter shorting plug	2	2338017	
PSE stool quick release pin	1	2335565	
SIDE connector quick release pin	1	2335574	
Fuel cask mounting assembly	1	2338660	
Lever and wire assembly	2	2338681-1	
Lever and wire assembly	1	2338681-2	
Body release mechanism	1	2338687-1	
Body release mechanism	1	2338687-2	
Shear pin stop bracket (left hand)	1	2338685	
Shear pin stop bracket (right hand)	ĩ	2338686	
Tab lock	2	2338689	
Special washer	2	2338693	
Shear pin	2	2338668	
Tension stud	2	2338692	
	4	2338671-3	
Square shear pin cutter	4	MS21043-4	
Self-locking nut Belleville washer	8	BO500-025	
Shear wire	13	2338043	
Shear wire	14	2338054	
Shear wire Setscrew		2338665	
Serew 4-40 x . 25 inch	2	MS35275-213	
	1	2338128	
Lanyard assembly Tool support quick release pin	1	2335575	
	4	2335516	
RTG cable spring clip		2335262	
Boom quick release pin	1 2	2335126	
Outboard support pin	2	2334525-3	
Outboard quick release pin	20	2335931-1	
Guide fastener		2335931-2	
Guide fastener	2 2	and the second second second second	
Guide fastener	3	2335931-4 2335931-5	
Guide fastener	2		
Guide fastener	2	2335931-6	
Guide fastener	2	2335931-7	
Guide fastener		2344998	
Guide fastener cap	100	2334675-1	
Guide fastener cap	16	2334675-2	
Guide fastener cap	10	2334675-3	
Guide fastener cap	4	2334675-4	
Dust cover	2	2344999	
Quick release pin	1	2335577-5	
Quick release pin	1	2335577-4	

Table 3-2. ALSEP Flight Article Spares (cont)

3-10 Changed 15 December 1970

Nomenclature	Quantity	Part Number	Note
Quick release pin	1	2335577-1	
Dust cover connector	1	2334528-2	
Dust cover connector	1	2334528-6	
Dust cover connector	1	2334528-8	
Bolt, special	1 6 4	2335067	
Bolt, special	4	2338041	
Boyd bolt	4	CA2773-2-1	
Boyd bolt	4	CA2773-4-1	
Boyd bolt	4	CA2773-6-1	
Boyd bolt	2	CA2773-8-1	
Boyd bolt	4	CA2773-10-1	
Boyd bolt	8	CA2773-14-1	
Boyd bolt	8 4 4	CA2773-18-1	
Boyd bolt	4	CA2773-20-1	
Boyd bolt	4	CA2773-24-1	
Boyd bolt spring	25	CS1014	
Boyd bolt nut	25	SP1015	
Accordion rivet	50	PC47290	
Accordion rivet	50	PC47289	
Boom release assembly cable		2335501-1	
Boom release assembly cable	3	2335501-2	
Boom release assembly cable	1	2335501-3	

Table 3-2. ALSEP Flight Article Spares (cont)

3-4. Level A Maintenance at KSC. Level A maintenance at KSC consists of those actions required to receive the flight system from BxA, and install it in the LM. It includes receiving-inspection, fit checks, and functional checks in the sequence illustrated in Figure 3-2. Any discrepancy requires a Material Review Board disposition. If an article cannot be used as is, it is replaced with a flight article spare which is requested from Level A BxA.

3-5. MAINTENANCE LEVEL B (SPECIALIZED)

Maintenance level B consists of factory repair and overhaul of ALSEP flight equipment. It will consist of detailed repair, overhaul, and component/part removal and replacement as well as required adjustments and calibration necessary to achieve the high level of ALSEP performance.

3-6. GROUND SUPPORT EQUIPMENT (GSE)

ALSEP GSE includes test sets, exciters, simulators, handling equipment, and selected standard tools and test equipment. Corrective maintenance for the STS includes self-test diagnostic programs (in conjunction with the "ALSEP System Test Equipment Maintenance Manual") to fault-isolate to the black box, panel, component, part, or to a functional circuit group of logic cards in the programmer/processor.

Maintenance beyond the level A capability will be accomplished at specialized repair (level B maintenance) levels, or by vendor services. ALSEP peculiar deliverable GSE will be directed to Bendix (or Bendix subcontractor), for repair as required.

3-7. GSE ELECTRICAL

Electrical GSE used in level A maintenance for testing of the ALSEP system is listed in Table 3-3. The system test set is the prime ALSEP maintenance tool and all other equipment listed in Table 3-3 is considered peripheral test equipment that complements the system test set. Figures 3-3 through 3-17 illustrate these equipments.

3-8. GSE MECHANICAL

Mechanical GSE used in handling, test, installation, and maintenance of the ALSEP system is listed in Tables 3-4 through 3-6, and illustrated in Figures 3-18 through 3-22.

3-9. TOOLS AND TEST EQUIPMENT

Standard tools and test equipment, facilities, and supplies required for maintenance are listed in Table 3-7.

Figure No.	Nomenclature	Part Number	CFE or GFE
3-3	ALSEP system test set	2331700	CFE
3-4	Magnetometer flux tank assembly	WDL-29-173299 (Philco)	GFE
3-5	Gamma control console	WDL-99-173301 (Philco)	GFE
3-6	Integrated power unit test set	47E300467G1 (GE-MSD)	GFE
3-7	Environmental test chamber	PD452971 (3M)	GFE
3-8	IPU breakout box	BSX 7482	CFE
3-9	RTG simulator	BSX 6997	CFE
3-10	Grenade launch assembly test set	2331657	CFE
3-1	Active seismic sensor simulator	2331601	CFE
3-12	Passive seismic sensor exciter	CBE 2250 (Teledyne)	CFE
3-13	Heat flow sensor simulator	2332375	CFE
3-14	ALSD pressurization unit	467A8090000 (Martin-Marietta)	GFE
3-15	ALSD battery charging unit	467A808000 (Martin-Marietta)	GFE
3-16	Electric fuel capsule simulator	47D300261 (GE-MSD)	GFE
3-17	Antenna cap fixture	2333830	CFE
-	Thumper - AIRME adapter	2345477	CFE

Table 3-3. Electrical Ground Support Equipment

3-12 Changed 15 December 1970

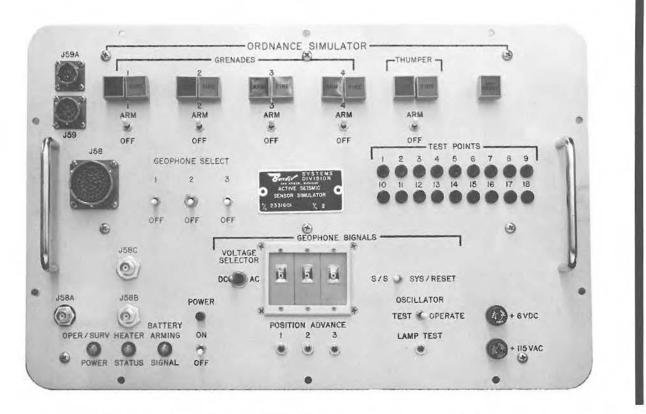


Figure 3-11. Active Seismic Sensor Simulator

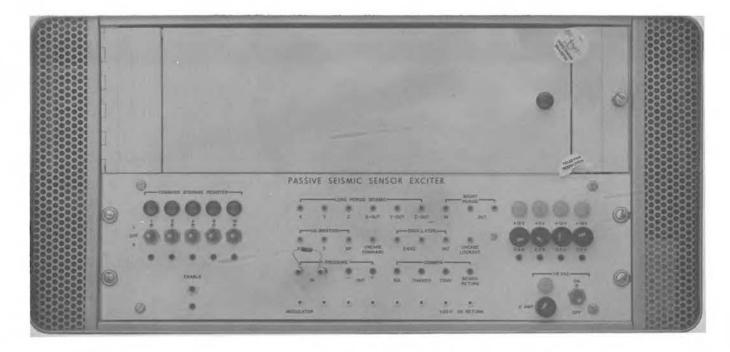


Figure 3-12. Passive Seismic Sensor Exciter

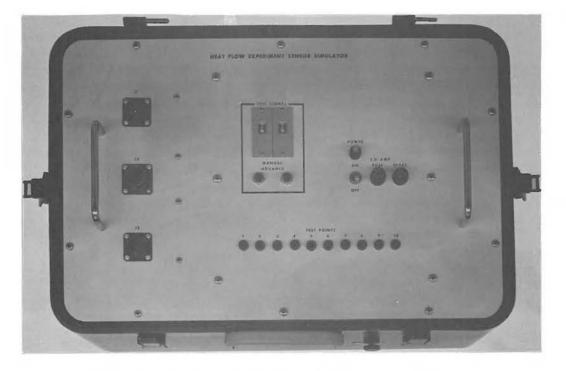


Figure 3-13. Heat Flow Sensor Simulator

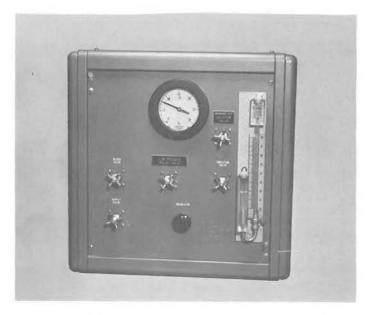


Figure 3-14. ALSD Pressurization Unit

Nomenclature	Function	Part Number
Handling Device, Subpackage No. 2	Attaches to base of subpackage No. 2 for subpackage transfer to various test fixtures.	2335313
Handling Cart	Provides mounting tie-down for ALSEP subpackages during handling and trans- portation during maintenance.	2332899
Hoisting Device	Attaches to ALSEP holding fixture or handling device for subpackage hoisting operations.	2335310
Boyd Bolt Installation Tool	Attaches to Boyd bolt for insertion into ALSEP structure.	2338343
Boyd Bolt Torque Tool (Long)	Used to tighten Boyd bolt to required tension.	2338212
Boyd Bolt Torque Tool (short)	Used to tighten Boyd bolt to required tension.	2338215
Boyd Bolt Spindle Force Measuring Tool	Used to measure force required to de- press Boyd bolt spindle.	2338213
Boyd Bolt Spindle Position Measuring Tool (long & short)	Used to measure position of spindle relative to Boyd bolt body.	2338651-1 2338651-2
Boyd Bolt Release Tool	Used to release Boyd bolt.	2335910
GLA Test Fixture	GLA alignment sensor checkout.	2331455
Cask Assembly Protective Cover	Protects fuel cask assembly on LM in SLA until fuel capsule loading	2345612
Central Station Handling Cart	Provides mounting tie-down for central station during handling and transportation.	2333431
Center of Gravity Fixture	Provides mounting tie-down during sub- package No. 1 or No. 2 center of gravity testing.	2335309
Pressure Regulator Assembly	Lowers pressure of gas from gas cylin- ders to purge or pressurize containers.	2338476

Table 3-4. Mechanical Ground Support Equipment (cont)

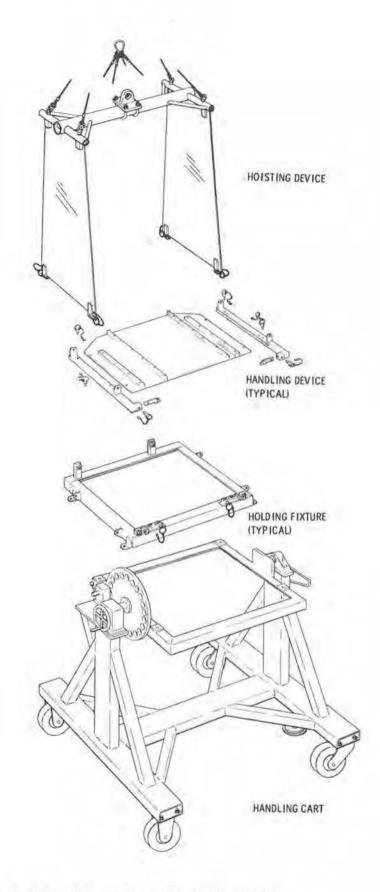


Figure 3-18. Subpackage Handling GSE

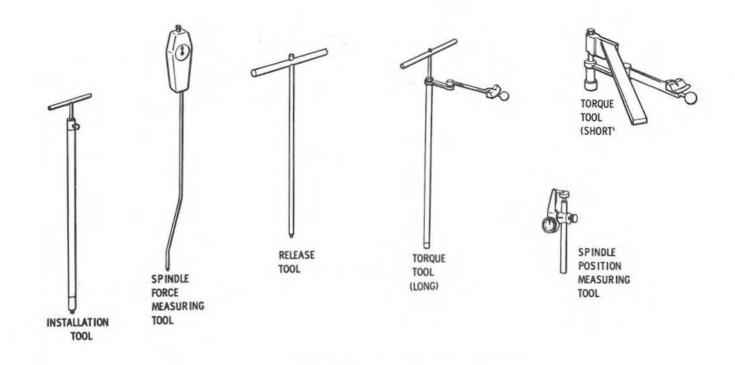


Figure 3-19. Boyd Bolt Tools

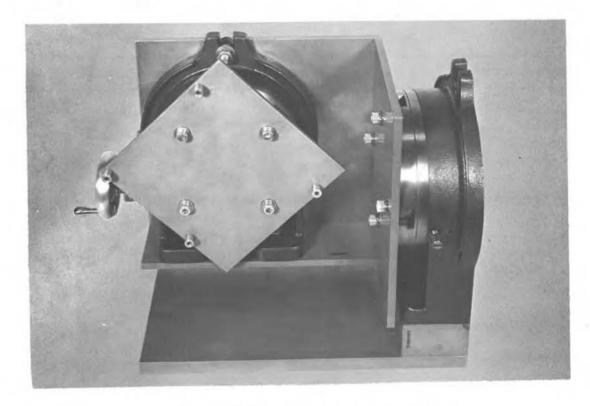


Figure 3-20. GLA Test Fixture

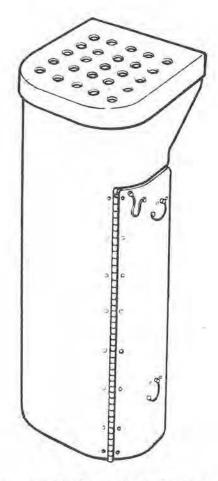


Figure 3-20A. Cask Assembly Protective Cover

Table 3-4A. SLA Installation Ground Support Equi
--

Nomenclature	Function	Part Number
Lifting Frame Assembly	Attaches to base of subpackage No. 1 or No.2 for SLA installation handling operations. Mounts in transit container for transportation operations.	2345480
Transit Container Assembly	Provides environmental protection for sub- package No. 1 or No. 2 during SLA installa- tion transportation operations.	2345410
Sling Assembly	Attaches to lifting frame assembly for SLA installation hoisting operations.	2340585
Safety Hook Assembly	Provides attachment of sling assembly to hositing device in SLA.	2345600

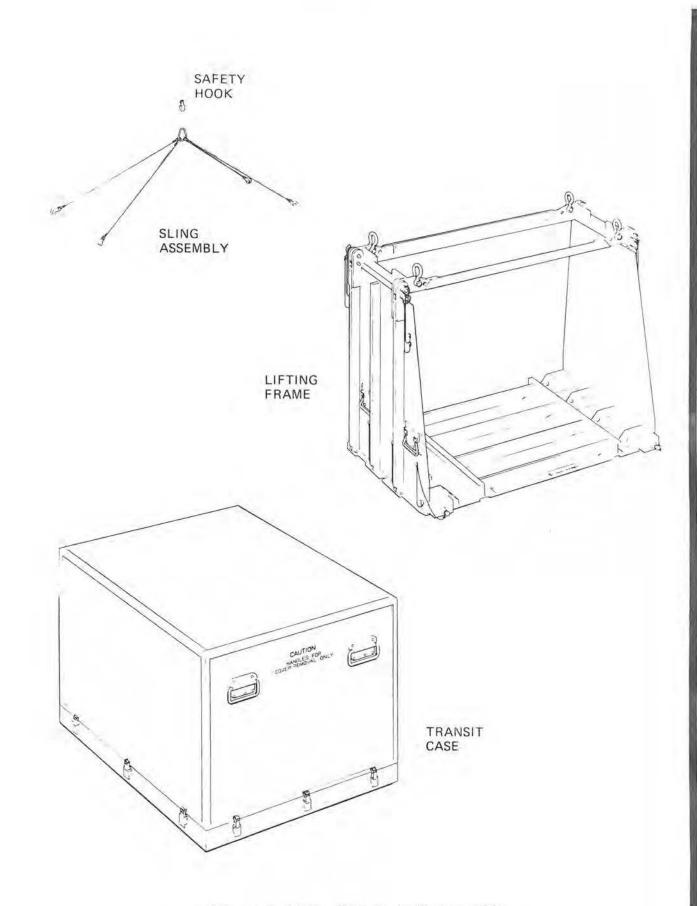


Figure 3-20B. SLA Installation GSE

Changed 15 December 1970 3-24A

Nomenclature	Function	Part Number
Cask/Structure Handling Device	Fuel cask structure assembly handling dur- ing fuel cask fit checks and LM fit checks.	2335319
Fuel Cask/Band Assembly Handling Device	Fuel cask/band assembly handling during fit checks to fuel cask structure assembly and installation on LM.	2335318
Trunnion Alignment/ Band Calibration Fixture	Fixture for cask/band assembly trunnion alignment and band tensioning procedures.	2335316
Dome Handling Tool	Fuel cask dome removal and handling dur- ing fuel capsule insertion/removal opera- tions.	2335908
Strain Gage Readout Device	Provides tensioning readout during cask band tensioning procedures.	2332320
Fuel Cask Handling Cart	Provides transportation accommodations for fuel cask movement.	2335315
Dome Removal Tool	Remove dome from fuel cask during buildup.	2335317
Band Tensioning Tool	Used to tighten or loosen cask bands.	2338044
Dome/Tool Receptacle	Provides storage for fuel cask dome with dome handling tool attached.	2337950
CG Determination Fixture	Holding, CG, and fit check fixture for fuel cask and structure assembly.	2335314

Table 3-5. Fuel Cask/Structure Assembly Handling Equipment

Table 3-6. Fuel Capsule Handling Equipment

Nomenclature	Function	Part Number
Capsule SLA handling tool	Used at the launch area for insertion and removal of the fuel capsule assembly.	(GFE)
Capsule transfer cask	Used to transport fuel capsule assembly from a van on the launch pad to the SLA platform area of the Apollo spacecraft.	(GFE)
Capsule port entry trough	Used to transfer the fuel capsule assem- bly, with the SLA handling tool attached through a ten-inch access port in the spacecraft structure at the level of LM/ fuel cask attachment.	(GFE)
Capsule inspection tool	Used to verify proper engagement of fuel capsule assembly in the LM fuel cask.	(GFE)

Part Number	Nomenclature	Function
Tektronix 546	Oscilloscope (2)	
Tektronix CA	Vertical plug-in unit (2)	
HP 805 C	Slotted line (1)	
HP 415 B	VSWR meter (1)	
HP 211 A	Square wave generator (1)	
HP 616 B	Signal generator (1)	
HP 851-8551	Spectrum analyzer (1)	
Empire AT30-10	Attenuator pad (2)	
BPD-SPS2000	Stored program simulator (1)	
(or equivalent)		
HP 410 B	VTVM (2)	
Simpson 206-5M	VOM (2)	
HP 721 A	Power Supply (1)	
HP 405	Digital Voltmeter (1)	
	Set miscellaneous cables	Contract Contract
(GFE)	Apollo Initiator Resistance Measuring Equipment (AIRME)	Thumper assembly and GLA circuit checks.
(GFE)	ALINCO squib tester	CPLEE ordnance circuit checks.
A. C. T.	Vacuum enclosure	RTG leak test.
	Vacuum pump	RTG leak test.
(GFE)	Spectrometer type leak detector	RTG leak test.
	Gaseous nitrogen supply (regulated at 150 psig (max.)	Calibration and checkout of ALSD
1310 Yardney Elect. Co.	Gaseous argon supply ALSD battery filling kit	Repressurizing RTG container. ALSD battery activation

Table 3-7. Standard Tools, Test Equipment, Facilities, and Supplies

3-10. TRANSPORTATION EQUIPMENT

Transportation equipment consists of ALSEP containers that provide protection for the flight article subsystems and components during delivery to KSC and movement between facilities at KSC during maintenance activities. Transportation equipment for the ground support equipment consists of commercial packages that provide protection for the GSE components during shipment to KSC.

The shipping containers used for transportation of the ALSEP flight article and associated GSE include two types, ALSEP containers and commercial packages. The following paragraphs briefly describe each type of container.

3-11. <u>ALSEP Containers</u>. Special containers are provided for each ALSEP subpackage assembly, and separately shipped subsystem component. Figure 3-23 illustrates typical ALSEP containers.

The ALSEP containers are constructed for an outer metal housing specifically shaped to enclose the associated assembly which is mounted on a shock isolation plate. The containers are instrumented to provide a real-time history of shock on three axes, and temperature for at least seven days. A humidity indicator, visible from outside the container, provides an indication of the humidity within the container. The container for subpackage No. 1, Flight 1 and Array A-2, incorporates a GFE flux recorder for checking magnetic field exposure during shipment.

3-12. <u>Commercial Packages</u>. Commercial packaging is primarily used for shipment of GSE. The packages consist of components wrapped or packaged in a carton, box, bag, or similar container that conforms to commercial shipping practice. Commercial packaging methods are as follows:

a. Component mounted on a pallet, wrapped in plastic, and metal-banded to pallet.

b. Component mounted in a plywood box on mating hardpoints and box packed with dunnage.

c. Component wrapped in plastic, placed in a plywood box, and packed with dunnage.

d. Component sealed in plastic, wrapped in cellulose or aircap, and placed in corrugated paper box.

e. Component packed in foam, molded to fit component contour, and packed in wood, metal, or plastic box.

3-13. ALSEP SUPPORT MANUALS

There are six ALSEP support manuals used as an integrated documentation system to support the ALSEP hardware system. These manuals are listed in Table 3-8.

Title	Document Number	
ALSEP General Familiarization Manual	ALSEP-MA-24	
ALSEP Flight System Familiarization Manual	ALSEP-MT-03	
ALSEP Flight System Maintenance Manual	ALSEP-LS-04	
ALSEP System Test Equipment Maintenance Manual	ALSEP-LS-06	
ALSEP Transportation and Handling Manual	ALSEP-LS-03	
Grenade Launch Assembly Test Set Instructions Manual	ALSEP-LS-07	

Table 3-8. ALSEP Support Manuals

SECTION IV

OPERATIONS

4-1. OPERATIONS, GENERAL

This section presents a description of the operational ALSEP flight hardware operations. The description encompasses events occurring between equipment receipt at Kennedy Space Center (KSC) and the programmed shutdown of ALSEP lunar operation. Table 4-1 contains a location index of ALSEP operations.

KSC	Lunar Surface	Postdeployment
ALSEP inspection	In-flight configuration	MSFN operation
	Post-landing operations	MCC operation
Fit checks	Carry mode	PI activities
Ordnance verification		
ALSD activation	Deployment:	
ALSEP installation	(a) Support subsystems (b) Experiment subsystems	
ALSD installation		
Grenade and thumper installation		

Table 4-1. ALSEP Operations Locations

4-2. KSC PRELAUNCH CHECKOUT AND INSTALLATION

Activity at KSC includes inspection, fit checks, ordnance verification, assembly, test, and ALSEP installation. Figure 3-2, Sheet 2 shows the sequence of events necessary to receive, check out, and install ALSEP equipment in the LM. Note that Class A ordnance and radioactive items are received and checked in a location separate from the rest of the ALSEP equipment. KSC ALSEP facilities consist of:

a. Bunker facility - used for checkout of the GLA

b. Ordnance laboratory building, M7-1417 - Used in conjunction with the bunker facility to test the GLA, thumper, and ordnance

c. ALSEP launch preparation site (ALPS) - Used for receipt, inspection, assembly, and bonded stores operations.

d. AEC fuel capsule storage.

4-3. KSC INSPECTION AND CHECKOUT

ALSEP activities are centered in the ALPS (Hangar S, Cape Kennedy Air Force Station). All ALSEP subsystems except the GLA and thumper are received and tested here.

Ordnance items are stored in the ordnance test storage facility (LC-39) where ordnance circuit tests, lot verification and installation are accomplished. Ordnance items include the following:

a. Squib devices - used to actuate CCIG and CPLEE dust covers and uncage the PSE after experiment deployment.

b. Thumper initiators - used in thumper firing operations.

c. Four rocket grenades - used in the active seismic experiment. (Class A ordnance)

4-4. <u>KSC Inspection</u>. Ordnance items, as noted in paragraph 4-3, will be received, inspected, and stored at the KSC ordnance test storage facility. The remaining ALSEP equipment will be received, inspected, and stored at the ALPS.

The ALSEP equipment listed in Table 4-2 will be inspected upon receipt for possible shipping damage that may have occurred in transit. Temperature, humidity, magnetic flux and shock recorders will be monitored for maximum excursions, if applicable. Excursions will be recorded on the logistic traveler or the quality assurance inspection report (QAIR).

4-5. <u>KSC Equipment Calibration</u>. Equipment calibration conducted at KSC is listed in Table 4-3 with an explanation of the task to be performed. All calibration data will be entered in the GSE calibration log.

4-6. <u>KSC Equipment Checkout</u>. Table 4-4 lists the ALSEP equipment and ALSEP GSE requiring checkout. Appropriate checks for each item are referenced.

4-7. <u>KSC Fit Checks</u>. Fit checks of ALSEP hardware, tools, packages, and the LM are required to verify tolerances and effective operation and installation. Table 4-5 lists the fit checks required.

4-8. KSC ALSEP INSTALLATION

4-9. KSC Ordnance Installation. The ALSEP system is delivered to the ordnance laboratory after all ordnance tests are complete. The ALSEP system is stored in the ordnance laboratory storage facility between ordnance installation activities. Ordnance items are installed as follows:

Table 4-2. KSC Inspection

Item	Sub-item (if applicable)
GLA Test Set (GLATS)	(Received at ordnance facility and trans ferred to Building M7-1210 for inspec- tion)
CPLEE CCIG, PSE Ordnance	Lot verification ordnance
Thumper Geophone Cable Assembly	Thumper
	21 Apollo Standard Initiators (ASI) Three geophones and cables
Grenade Launcher Assembly (GLA)	Launcher assembly
	Four rocket grenades
ALSEP Subpackage No. 1	Experiment subsystems
	Data subsystem
ALSEP Subpackage No. 2	Experiment subsystems
	Radioisotope Thermoelectric Generator
	Handling tools
Apollo Lunar Hand Tools	
Apollo Lunar Surface Drill (ALSD)	Battery pack
	Power head
ALCO CCD	Casing
ALSD GSE	Transport/storage case
	Battery charger Pressurization unit
Flight Fuel Cask	Fressurization unit
Fuel Cask Structure Assembly	
RTG Fuel Capsule	(The fuel capsule will not be removed
RIG Fuel Capsule	from the shipping cask for inspection and will be stored in the AEC storage facility)
Fuel Capsule Handling Tools	Capsule ground handling tool
	Capsule spacecraft LM adapter (SLA) handling tool
	Capsule transfer cask
	Capsule port transfer trough
ALSEP/LM Installation and Handling	Sub-package hoist equipment
Equipment	ALSEP/LM Insertion handling fixtures
T. T.	Handling equipment support platform

a. Dust cover squibs are installed on particle experiments and the connections are soldered.

b. The thumper assembly is installed on subpackage no. 2.

c. The GLA is installed in the mortar box to make up the mortar package assembly which is mounted on subpackage No. 1.

Item	Task
GLA Test Set	Calibrate in accordance with "GLA Test Set Instructions Manual. "
ALSD (GSE)	Check the battery charger for rate, voltage and charge termination using spare set of silver oxide zinc cells. Calibrate low and
Trunnion Alignment/Band	high pressure relief valve settings. Adjust per top assembly drawing.
Calibration Fixture	THE PART AND ADDRESS

Table 4-3.	KSC	GSE	Calibration
------------	-----	-----	-------------

4-10. <u>KSC ALSEP Installation in LM</u>. The ALSEP subpackages prior to flight 4 are installed in the SEQ bay while the LM is in the landing gear fixture just prior to mating with the spacecraft LM adapter (SLA). A special platform is erected to the SEQ bay level to facilitate ALSEP installation.

Table 4-4.	KSC ALSEP	Equipment	Checkout
------------	-----------	-----------	----------

Item	Checks		
GLA test set	Check satisfactory operation in accordance with "GLA Test Set Instructions Manual."		
Thumper assembly circuit check	Verify circuit continuity of Apollo standard initi- ators installed in thumper using squib tester at ordnance test facility.		
GLA	Verify circuit continuity of squibs and cable using AIRME squib tester and ordnance voltmeter (Simpson 260 with batteries removed).		
ALSD	Verify the ALSD battery and power head have cor rect internal pressure settings on the relief valve and that the power head functions satisfactorily.		
ALSD GSE	Verify correct operation of ALSD battery charger and pressurization unit by verifying the output of the battery charger and leak testing the pressuri- zation unit.		

The ALSEP subpackages of flight 4 and subsequent are installed in the SEQ bay of the LM in the SLA at Complex 39. The special GSE listed in Table 3-4A is used to facilitate this operation.

4-11. <u>KSC ALSD Installation</u>. Included in the ALSD installation are battery activation, pressure checks, and functional tests, which are performed as follows:

a. The ALSD battery is activated and charged prior to installation in the ALSD. If rescheduling at this point delays the activity by more than 6 days, the batteries are replaced.

b. The pressurization unit is connected to a supply of regulated nitrogen. The pressure required to actuate the relief valve is checked. A soak test is conducted to check for leaks from the battery box. A check is then made of the battery power switch operation and the off load voltage at the output connector.

c. The ALSD power head and battery pack are assembled and locked together. The power head is operated for ten seconds to verify proper operation.

d. The ALSD is transported to the SLA at Complex 39 where it is mounted on ALSEP subpackage No. 2 which is already installed in the SEQ bay. After completion of the ALSD installation, the SEQ bay door is closed and secured. In Array A-2, the ALSD is mounted elsewhere on the LM.

Item	Fit Checked with:	
ALSD	Subpackage No. 2	
Fuel Capsule	SLA handling tool (from cask to port entry trough and back to cask)	
	Fuel Transfer tool Fuel cask RTG	
Fuel Cask	Fuel cask structure assembly	
Fuel Cask structure assy	LM	
ALHT	Subpackage No. 2	
ALSEP (Subpackages and ALSD)	LM	

Table 4-5. KSC Fit Checks

4-12. <u>KSC Fuel Cask and Fuel Capsule Installation</u>. The fuel cask and mounting structure assembly is transported to the work platform at SLA and is mounted on the LM structure after the LM has been fueled.

The radioactive and hot (1200°F) fuel capsule is transported to the SLA work platform, inserted into the fuel cask in the upright position, and locked in place using the SLA handling tool.

4-13. LUNAR SURFACE OPERATIONS

The following paragraphs describe the events that take place from the time the LM lands on the lunar surface until all ALSEP experiments have been deployed. Included in the discussion are:

a. Flight mode - The in-flight configuration of ALSEP equipment.

b. Post-landing operations - The events that occur between lunar landing and the beginning of ALSEP deployment procedures.

c. Carry mode - The activity performed by the crewmen in removing the ALSEP equipment from the LM and transporting it to the emplacement area.

d. Deployment and activation - The events performed by the crewmen in emplacing and activating the experiments.

4-14. FLIGHT MODE

During flight, the ALSEP system is inert except for the structure/thermal subsystem function of providing thermal protection to the LM. The location of the fuel cask assembly, external to the LM, provides a heat rejection system for the fuel capsule and for crew safety during deployment. The cask support structure incorporates a thermal shield to reflect cask thermal radiation away from the LM. In addition, insulators are incorporated in the structure to reduce conductive heat transfer to the LM.

ALSEP subsystems and experiments are mounted on subpackage pallets which are secured in the LM SEQ bay. The SEQ bay is located in LM descent stage behind a thermal door. The subpackages occupy a volume of approximately 15 cubic feet and are locked in place by retaining pins. Contents of the two subpackages for Flight 1 are listed in Table 4-6. On Flight 3 the magnetometer and solar wind experiments are replaced by charged particle, cold cathode gauge, and heat flow experiments on subpackage No. 1 and the Apollo lunar surface drill replaces the suprathermal ion detector experiment on subpackage No. 2. On Flight 4 subpackage No. 2 is identical with subpackage No. 2 of Flight 1. Flight 4 subpackage No. 1 will mount the passive seismic and charged particle experiments, the mortar box assembly and the thumper of the active seismic experiment. In addition, the active seismic electronics package will be incorporated in the central station. The Array A-2 subpackage No. 1 mounts the same experiments as the Flight 1 subpackage No. 1. The Array A-2 subpackage No. 2 is the same as the Flight 1 subpackage No. 2 except the Apollo lunar hand tools are replaced by the heat flow experiment. The Apollo lunar surface drill and the Apollo lunar hand tools are mounted elsewhere on the LM.

Passive seismic experimentRadioisotope thermoelectric generalSolar wind experimentPassive seismic stoolDust detector*Apollo lunar hand toolsData subsystem antenna*Fuel transfer toolData subsystem*Universal handling tool (2)Power conditioning unit*Dome removal toolAntenna aiming mechanism	Subpackage No. 1 (SEQ Compartment No. 1)	Subpackage No. 2 (SEQ Compartment No. 2)
Solar wind experimentPassive seismic stoolDust detector*Apollo lunar hand toolsData subsystem antenna*Fuel transfer toolData subsystem*Universal handling tool (2)Power conditioning unit*Dome removal toolAntenna aiming mechanism		Suprathermal ion detector experiment
Dust detector*Apollo lunar hand toolsData subsystem antenna*Fuel transfer toolData subsystem*Universal handling tool (2)Power conditioning unit*Dome removal toolAntenna aiming mechanism		
Data subsystem antenna*Fuel transfer toolData subsystem*Universal handling tool (2)Power conditioning unit*Dome removal toolAntenna aiming mechanism		The state of the s
Power conditioning unit [*] Dome removal tool Antenna aiming mechanism	Data subsystem antenna*	
Antenna aiming mechanism	Data subsystem*	Universal handling tool (2)
	Power conditioning unit*	Dome removal tool
Antenna mast/carry bar sections (a		Antenna aiming mechanism
		Antenna mast/carry bar sections (2)
*Part of central station	*Part of central station	

Table 4-6. Subpackage Configuration, Flight 1

rotate the cask to a proper unloading angle. Using the dome removal tool, the crewman removes the cask dome and discards the cask dome and the DRT.

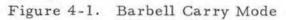
The crewman removes the fuel capsule from the fuel cask by inserting the FTT into the fuel capsule head, rotating the tool handle to achieve engagement and capsule release, and withdrawing the tool and capsule from the cask. The crewman then moves with the tool and attached fuel capsule to the RTG and lowers the capsule into the generator cavity. Once the fuel capsule has been placed in the RTG, release is accomplished by reversing the rotation of the tool handle. Releasing the tool from the fuel capsule head automatically locks the fuel capsule in the RTG. The tool provides positive connection with the fuel capsule, separation from the hot element, and control of the transfer by the crewman. The FTT is discarded.

4-21. <u>Transport ALSEP to Emplacement Area.</u> The crewman places the subpackages in the carrying position and connects the antenna mast between the subpackages. The connectors are simple keyhole slip-fit. The crewman lifts the subpackages to the carrying position in "barbell" fashion as shown in Figure 4-1, and carries them approximately 300 feet from the LM on the Z axis. The representative direction of the Z axis is affected by the suitability of the surrounding terrain. For purposes of this description, it is assumed that a southwesterly direction from LM is satisfactory for the emplacement of the ALSEP. While carrying the subpackages, lateral balance is shifted by changing the hand position on the carry bar.

The 300-foot (approximate) distance to the emplacement area is the result of a trade-off in comparing the necessity of ALSEP deployment out of the LM ascent blast area with the constraints of keeping the crewman within the time and distance limitations dictated by the mission. The walk to the deployment area is timed to prevent excess RTG warmup and thereby avoid potential thermal problems for the crewman.

4-22. DEPLOYMENT

To aid the astronaut in proper deployment of the experiments, decals, similar to those shown in Figure 4-1A, are attached to the subpackages and experiments. The deployment alignment and level indicating devices of the central station and experiments are illustrated in Figure 4-1B.


The following paragraphs describe the events that occur from the time the crewman arrives at the ALSEP emplacement area until he has deployed all ALSEP equipment. It is assumed that the ALHT was removed from the ALSEP No. 2 subpackage on the initial excursion. Deployment activities are discussed in the procedural sequence performed by the crewman. Figures 4-2 through 4-4A illustrate the layout of the ALSEP equipment and experiments after deployment.

Each of the ALSEP systems will carry different combinations of experiments. Deployment steps applicable to the experiments carried on Flights 1 and 2 are discussed in paragraph 4-23. Deployment steps applicable to the experiments carried on Flights 3 and 4 and Array A-2, which were not discussed in paragraph 4-23, are provided in paragraphs 4-24 through 4-25A.

ALSEP-MT-03

4

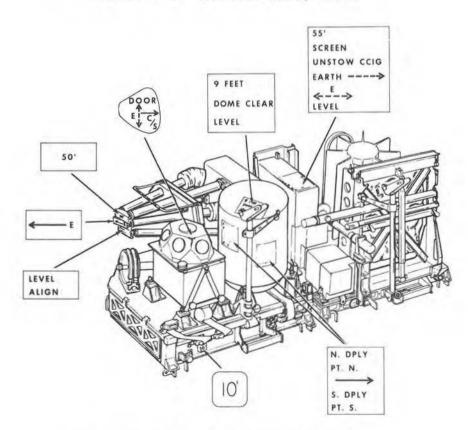
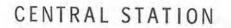



Figure 4-1A. Deployment Decals

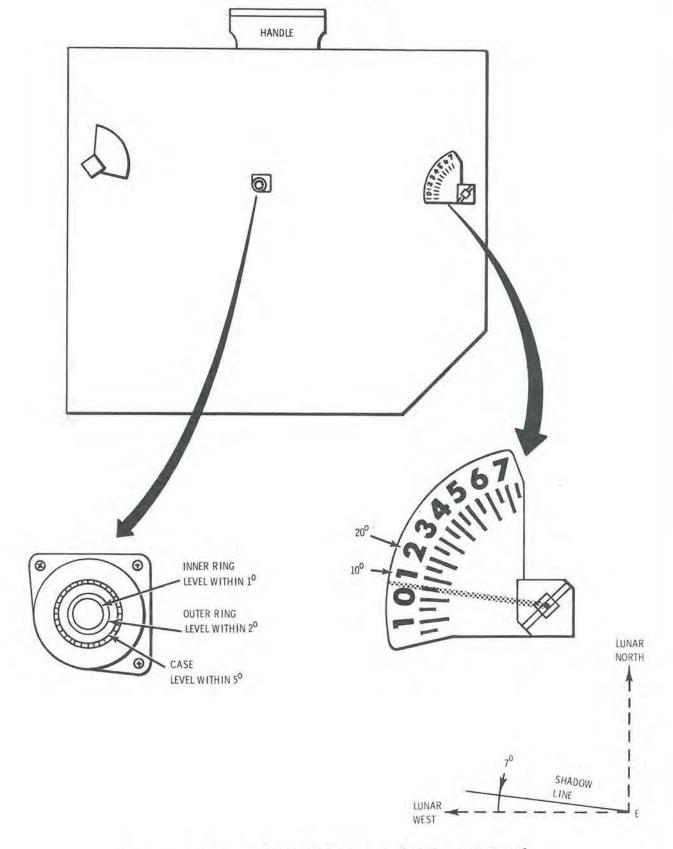


Figure 4-1B. ALSEP Array A-2 Alignment and Leveling Devices (Sheet 1 of 7)

Changed 15 December 1970

4-10A

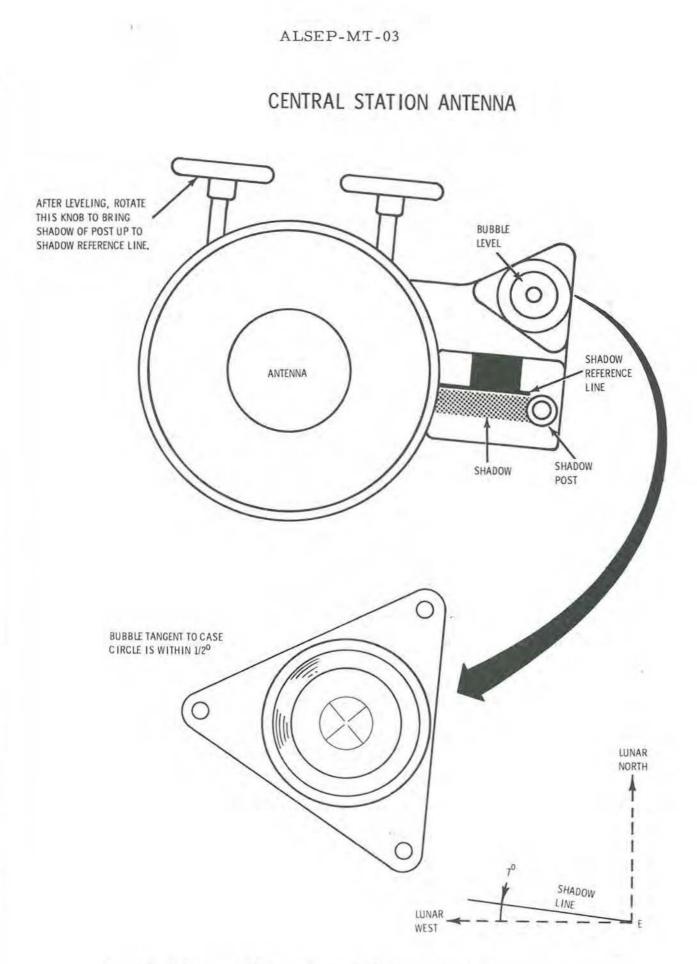


Figure 4-1B. ALSEP Array A-2 Alignment and Leveling Devices (Sheet 2 of 7)

4-10B Changed 15 December 1970

1.5.

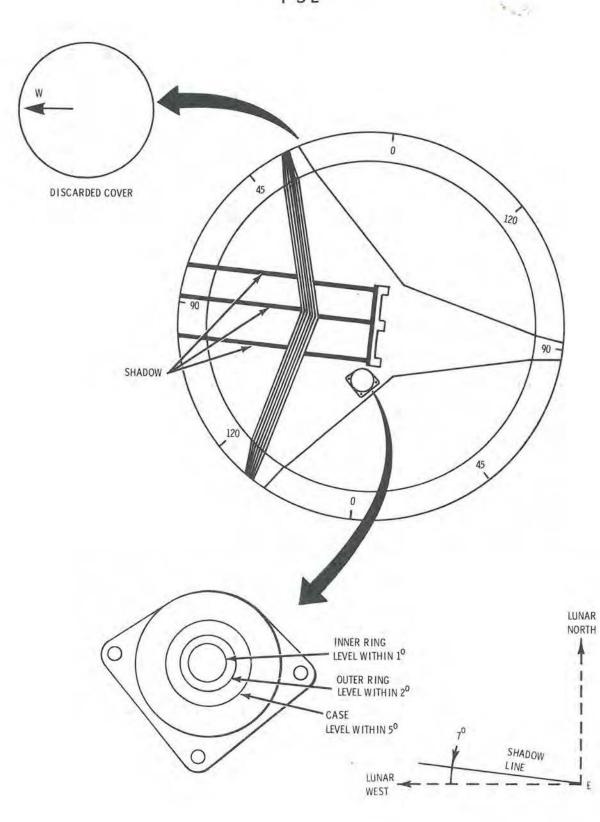
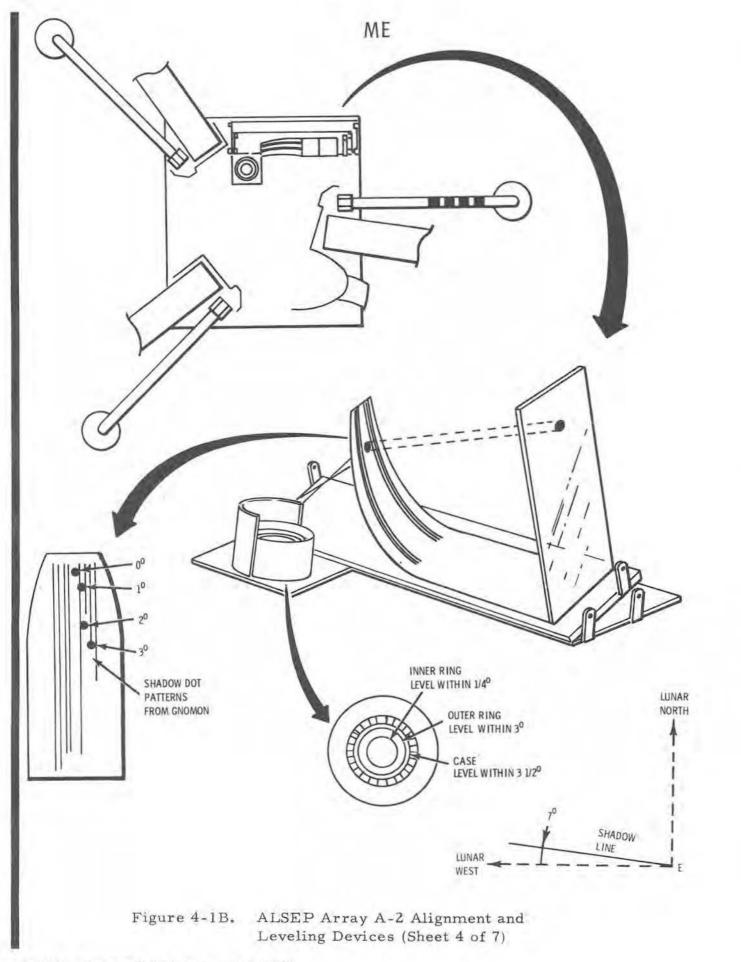
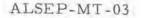
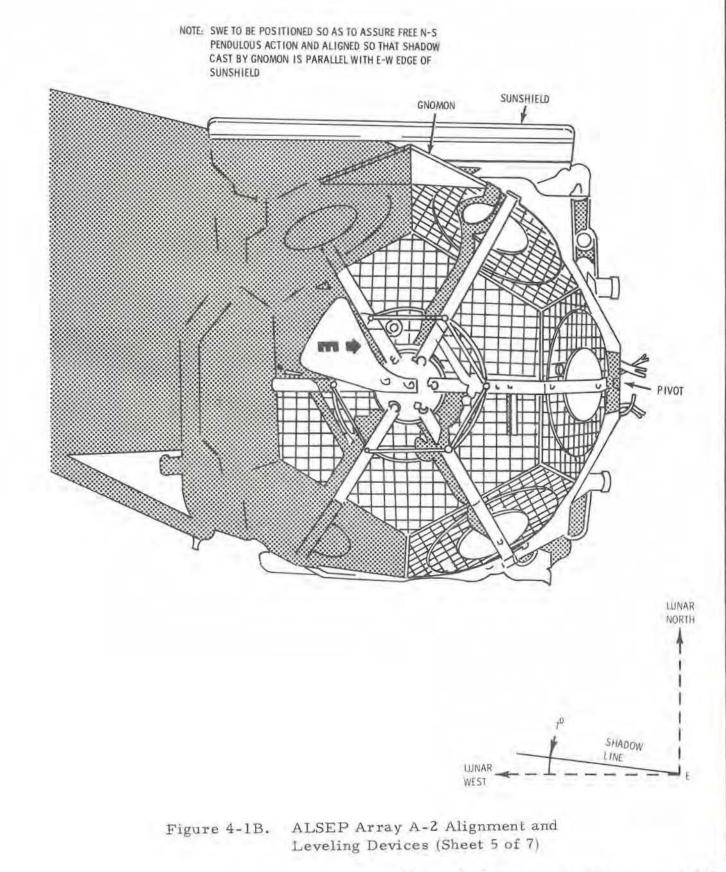
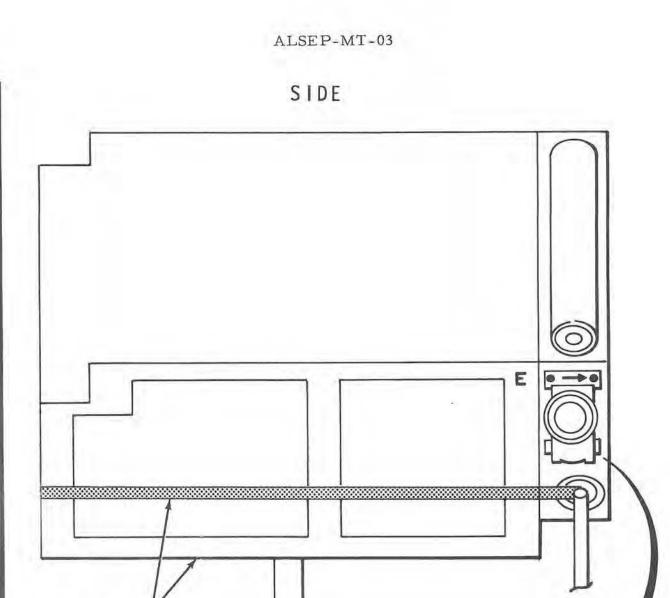
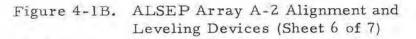





Figure 4-1B, ALSEP Array A-2 Alignment and Leveling Devices (Sheet 3 of 7)

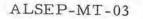


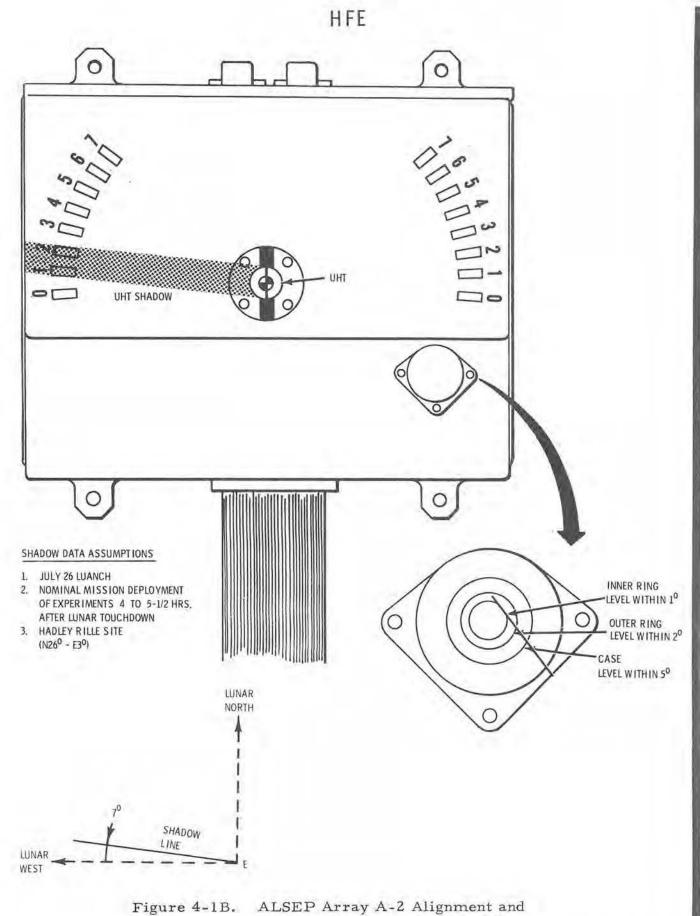
SWE



Changed 15 December 1970 4-10E

LUNAR


UHT SHADOW PARALLEL TO CASE



4-10F Changed 15 December 1970

LUNAR

WEST

Leveling Devices (Sheet 7 of 7)

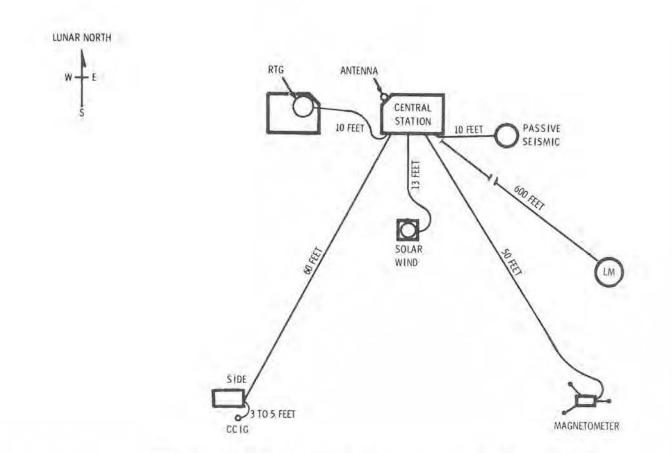


Figure 4-2. Deployment Arrangement Flight 1 (Actual)

4-23. <u>Flights 1 and 2 Deployment</u>. Flights 1 and 2 systems include the passive seismic experiment (PSE), magnetometer experiment (ME), solar wind experiment (SWE), and the suprathermal ion detector experiment (SIDE). Deployment of these experiments is covered in the following steps.

Step Event

- I Emplace ALSEP on lunar surface on a N/S axis with subpackage No. 1 on the South side.
- 2 Remove subpackage No. 1 and carry to emplacement site 10 feet East of subpackage No. 2.
- 3 Return to subpackage No. 2, rotate it upright and align subpackage on E/W axis with RTG on East side. Remove subpallet and carry to subpackage No. 1.
- 4 Return to subpackage No. 2, remove cable reel, and return to subpackage No. 1 deploying cable enroute. Make power connection to subpackage No. 1.
- 5 Remove SIDE from subpallet, unfold legs, place SIDE on lunar surface approximately 5 feet South of subpackage No. 1, and complete cable connection.

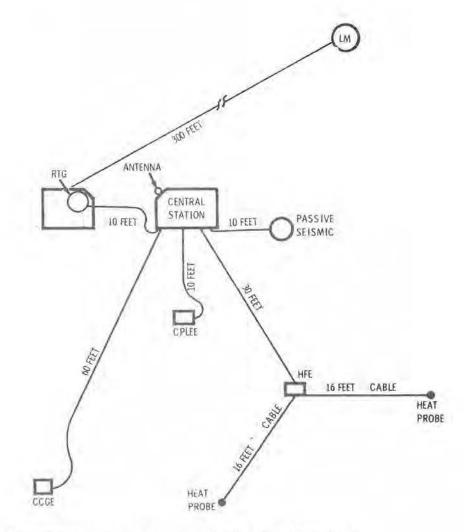


Figure 4-3. Deployment Arrangement Flight 3, Typical

- Step Event
- 6 Return to subpackage No. 1, remove carry bar and install on subpallet taper fitting.
- 7 Using handle of UHT, release PSE leveling stool pull pin, and remove stool from subpallet, carry stool to a point 10 feet East of subpackage No. 1 and emplace. Return to subpackage No. 1.
- 8 Set subpackage upright and align on E/W axis.
- 9 Release SWE, remove SWE from central station, carry 13 feet South, and emplace on lunar surface. Align by observing shadow cast by sensor head.
- 10 Release PSE, remove PSE from subpackage No. 1, carry with UHT to emplacement site, release thermal shroud restraint, emplace and align PSE, deploy thermal shroud, and level PSE. (See Figure 4-5.)
- 11 Release ME sensor arm fasteners, remove horse collar/brace assembly, release ME from subpackage No. 1, and place ME on lunar surface about 5 feet from subpackage No. 1 in the direction of deployment.

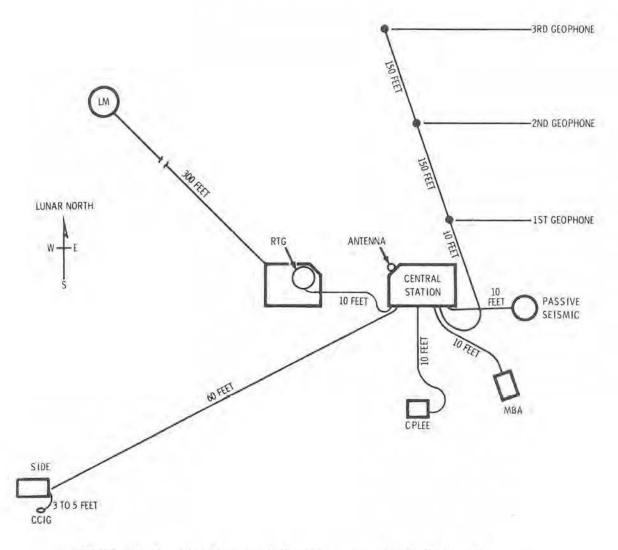
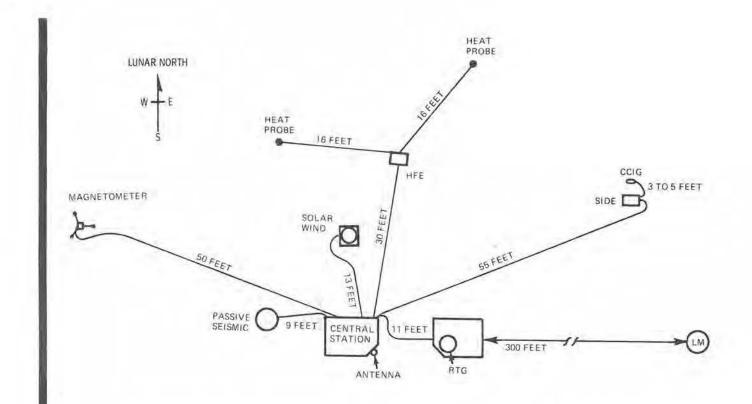



Figure 4-4. Deployment Arrangement Flight 4, Typical

Step Event

- 12 Return to central station, release SIDE connector, release and deploy RF cable, release antenna tie-downs, release and raise sunshield, remove antenna mast and antenna aiming mechanism housing from subpallet, assemble to central station, retrieve antenna and install on aiming mechanism. (See Figure 4-6.)
- 13 Align central station antenna by: entering azimuth and elevation offsets, leveling and aligning the antenna subsystem. (See Figure 4-7.)
- 14 Walk to ME, grasp carry handle, carry ME in predetermined direction 50 feet, deploy legs, align ME and place on lunar surface, extend sensors, deploy parabolic reflector assemblies, level and align ME. (See Figure 4-8.)

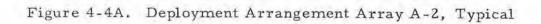


Figure 4-5. PSE Shroud Deployment and Experiment Leveling

Figure 4-8. ME Deployment

Step Event

- 15 Walk to SIDE, insert UHT, carry SIDE 55 ± 5 feet in predetermined direction deploying cable, emplace SIDE on lunar surface, deploy ground screen on level surface, lift SIDE, remove CCIG and hold, emplace SIDE on ground screen, emplace CCIG maximum distance from SIDE with seal side of CCIG away from SIDE, central station, and LM, and level and align SIDE.
- 16

Return to central station, turn on Astronaut switch No. 1 using UHT, request transmitter turn-on, check antenna orientation, receive confirmation of receipt of RF signal and useful data.

4-24. <u>Flight Three</u>. Flight three will carry the heat flow experiment (HFE), the passive seismic experiment (PSE), the charged particle lunar environment experiment (CPLEE), and the cold cathode gauge experiment (CCGE). Deployment of the PSE has been discussed in paragraph 4-23, and therefore, the following steps cover deployment of the CPLEE, CCGE, and HFE only (Figure 4-3).

Step Event

- 1 Remove CCGE from subpackage No. 1 and place CCGE on lunar surface approximately 5 feet South of subpackage No. 1.
- 2 Remove HFE electronic package, with probe box attached, from subpackage No. 1 and place on lunar surface approximately 5 feet South of subpackage No. 1.
- 3 Remove and carry the CPLEE, deploying the cable, to approximately 10 feet South of the central station.
- 4 Emplace the CPLEE parallel to the central station. Level and align the CPLEE and return to the central station.
- 5 Insert UHT and carry CCGE 55 ±5 feet in predetermined direction, deploying cable. Emplace CCGE on lunar surface, level and align. Return to central station.
- 6 Insert UHT and carry HFE assembly 30 feet South, deposit package, and return to package No. 2 for ALHT and ALSD. After retrieving ALHT and ALSD and returning to HFE assembly, walk an additional 16 feet to site for probe No. 1 emplacement.
- 7 Drill probe hole (Figure 4-9) and insert sheathing.
- 8 Return to electronics package, detach probe box and separate two halves of probe box; carry half probe box with attached emplacement tool to probe emplacement site deploying cable enroute. Insert HFE probe (Figure 4-10) and proceed to second emplacement area with ALHT, ALSD, and emplacement tool.
- 9 Return to electronics package, pick up remaining half of probe box, return to second probe emplacement site and emplace probe as in steps 7 and 8. Return to and align the HFE electronics package.

4-25. <u>Flight Four</u>. Flight four will carry the suprathermal ion detector experiment (SIDE), the PSE, the CPLEE, and the active seismic experiment (ASE). All but the ASE deployment have been discussed in previous paragraphs; therefore the following steps cover deployment of the ASE only. (Figure 4-4).

Step Event

- Remove thumper-geophone assembly and mortar package from experiment package, assemble thumper, and partially deploy mortar package.
 - Using UHT turn central station ASE safe/enable switch to enable.
 Emplace geophones at 10, 160, and 310 foot points along a Northwest
 - 3 Emplace geophones at 10, 160, and 310 foot points along a Northwest line, deploying geophone and thumper cables enroute.
 - 4 Return along the geophone cables activating the thumper at the marked intervals; approximately every 15 feet. Return to central station after final thumper activation.
- 5 Using UHT turn central station ASE safe/enable switch to safe.
- 6 Remove safety rods from mortar package, turn on mortar package safe/ arm switches, return to the central station and enable the ASE.

The mortar package and grenades will be activated by commands from MSFN on Earth some time (approximately on year) after the astronauts and LM have left the Moon.

4-25A. <u>Array A-2</u>. The Array A-2 system includes the passive seismic experiment (PSE), magnetometer experiment (ME), solar wind experiment (SWE), suprathermal ion detector experiment (SIDE), and the heat flow experiment (HFE). Deployment of these experiments was discussed in paragraphs 4-23 and 4-24.

4-26. <u>Antenna Aiming</u>. The final step in all deployment sequences before returning to the LM is to verify, and correct if necessary, the alignment and leveling of the central station antenna. The following operations, performed in the sequence shown, effect antenna aiming:

- a. Set the antenna in elevation.
- b. Set the antenna in azimuth.
- c. Level the mechanism.
- d. Align the shadow with the marked null line.

On completion of antenna aiming, all four settings are checked and readjusted as necessary. Any readjustment in leveling may require further adjustment of the shadow null setting. Refer to Figure 4-11 for location of adjustments and position readouts.

The ALSEP antenna is pointed to the mean position of Earth by means of the elevation, azimuth, and shadow adjustments. The three gimbal mechanisms provide null and angular adjustments through worm and wheel gears at a 72:1 ratio. Correction range for each adjustment is as follows:

- a. Sun shadow null \pm 15 degrees
- b. Azimuth angle ± 15 degrees
- c. Elevation angle ± 50 degrees

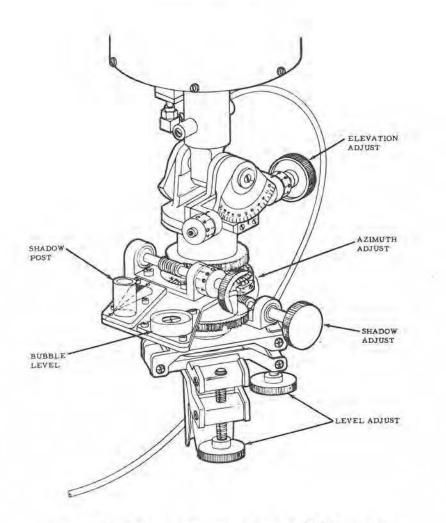


Figure 4-11. Antenna Aiming Mechanism

Elevation and azimuth adjustments are made by rotating the applicable knobs. The elevation and azimuth angles will each be measured by two scales, a coarse scale measuring increments of 5 degrees and set on the respective elevation and azimuth axis, and a fine scale measuring increments of 1/20 of each 5 degree resolution and set on the respective worm drive axis. Data for these settings are derived from aiming tables (Figure 4-12) and relayed via the voice link between astronaut and MCC.

From these two fixed data the mechanism sets the antenna at a predetermined angle in elevation and in azimuth. The azimuth and sunshadow null adjustments are on a common axis. Therefore, the azimuth adjustment is relative to the shadow null position. The elevation angle is measured relative to the local vertical set of the bubble level.

The antenna is leveled to ± 0.5 degrees by adjusting the two knobs located on the lower side of the aiming mechanism. Sensitivity of the leveling adjustments is 1 degree per revolution of the knob. The adjustment mechanism will correct up to ± 6 degrees from the horizontal plane. As the knobs are rotated observe the bubble level to determine when leveling is accomplished.

Upon satisfying the leveling requirements, the shadow knob is rotated (which rotates the mechanism in azimuth) until a specified (null) setting is positioned directly under the shadow from the antenna mounted sun compass. With this accomplished, the antenna is pointed toward the mean position of Earth within ± 0.7 degrees, and provides a reference direction between LM and a subsolar point from which fine antenna aiming is made.

To check all adjustments after the mechanism has been set, the bubble level is positioned 3-1/2 inches out from the center of the mechanism and the elevation coarse and fine scales are set at each end of their respective axis.

4-27. POST-DEPLOYMENT OPERATIONS

Communication between MCC and ALSEP is established with the activation of central station during deployment operations. For 45 days ALSEP operation is monitored continuously. Commands which initiate specific actions required for normal operation are sent to ALSEP during this period. Commands are also sent to change or request status of ALSEP subsystems or experiments.

After the initial 45-day period, MCC monitors and controls ALSEP at least two hours out of each 24-hour day and 48 to 60 hours during lunar sunrise and sunset. For the active seismic experiment, high data rate is used either 15 minutes once a week or 30 minutes every two weeks.

ALSEP transmission (downlink) is received by remote sites on Earth and relayed to MCC via tie line cables. Commands initiated by MCC are routed through another tie line cable to the remote site and are transmitted to ALSEP. This communication system is referred to as the manned space flight network (MSFN).

Because of the Earth's rotation, it is necessary to schedule remote sites around the Earth. The following MSFN remote sites are typical of those which may be scheduled for ALSEP operations:

- a. Goldstone, California (85-foot antenna)
- b. Carnarvon, Australia (30-foot antenna)
 - c. Ascension Island (30-foot antenna)
 - d. Hawaii (30-foot antenna)
 - e. Guam (30-foot antenna)
 - f. Madrid, Spain (85-foot antenna)
 - g. Canberra, Australia (85-foot antenna).

The stations selected will provide transmitters/receivers in latitude about the equator ranging from approximately 34 degrees north to 37 degrees south.

The 30-foot dish antennas can be used for normal operations, but the 85-foot dish antennas will be used when ALSEP is in the active seismic mode. ALSEP will be in the active seismic mode approximately one hour during deployment when the astronaut activates the thumper, and another hour at the time that the grenades are launched (this is in addition to intermittent monitoring periods).

Longitude 22° 12'

Latitude	Upper Gimbal +East -West	N.E. Quad	Sun Compa S.E. Quad		N.W. Quad
0 [°] 0'	22.0	0.0	0.0	0.0	0.0
0°4'	22.0	0.3	-0.4	0.1	-0.2
0 ⁰ 8'	22.0	0.6	-0.8	0.2	-0.3
0 ⁰ 12'	22.0	0.9	-0.2	0.3	-0.5
.e	· C-		i.	ī	
	ž.	1		τ.	,
ā.	- i	- <u>i</u>	÷.,	i .	
4 ⁰ 48'	22.5	16.4	-1.82	6.6	-9.4
4 ⁰ 52'	22.5	16.7	-18.6	6.7	-9.5
4 [°] 56'	22.5	17.0	-19.0	6.9	-9.7
5 [°] 0'	22.5	17.2	-19.4	7.0	-9.8
		(Main T	able)		
		Latitude Sun Elev			
	0° 5° 10° 15° 20° 25° 30° 35° 40° 45°		- 1 - 0 - 0 - 0 + 0 + 0 + 1 + 1	1.5 .1 0.8 0.4 0.1 0.3 0.7 1.0 1.2 1.6	
		(Correction	Table)		

NOTE: Table entries are not correct and are given for illustration only.

Figure 4-12. Antenna Aiming Table (Sample)

GLOSSAR Y

Abbreviation	Definition
A/D	Analog to Digital
ALHT	Apollo Lunar Hand Tools
ALSD	Apollo Lunar Surface Drill
ALSEP	Apollo Lunar Surface Experiments Package
AMU	Atomic Mass Unit
ASE	Active Seismic Experiment
ASI	Apollo Standard Initiator
BxA	Bendix Aerospace Systems Division
CCGE	Cold Cathode Gauge Experiment
CCIG	Cold Cathode Ion Gauge
CFE	Contractor Furnished Equipment
CM	Command Module
CPA	Curved Plate Analyzer
CPLEE	Charged Particle Lunar Environment Experiment
CS	Central Station
DRT	Dome Removal Tool
DS/S	Data Subsystem
DTREM	Dust, Thermal, and Radiation Engineering Measurements Package
EASEP	Early Apollo Scientific Experiment Package
EGFU	Electronics/Gimbal-Flip Unit
EMU	Extravehicular Mobility Unit
EPS	Electrical Power Subsystem
FCA	Fuel Capsule Assembly
FET	Field Effect Transistor
FTT	Fuel Transfer Tool
GFE	Government Furnished Equipment
GHz	Gigahertz
GLA	Grenade Launch Assembly
GSE	Ground Support Equipment
HFE	Heat Flow Experiment

Changed 15 December 1970 G-1

GLOSSARY (cont)

Abbreviation	Definition
Hz	Hertz; Cycles per Second
IPU	Integrated Power Unit
IST	Integrated Systems Test
KHz	Kilohertz
KSC	Kennedy Space Center
LM	Lunar Module
LP	Long Period
LRL	Lunar Receiving Laboratory
LRRR	Laser Ranging Retro-Reflector
LTA	Launch Tube Assembly
MCC-H	Mission Control Center-Houston
ME	Magnetometer Experiment
MSC	Manned Spacecraft Center
MSFN	Manned Space Flight Network
MSOB	Manned Spacecraft Operation Building
NASA	National Aeronautics and Space Administration
NRZ	Non Return to Zero
PAM	Pulse Amplitude Modulation
PCM	Pulse Coded Modulation
PCU	Power Conditioning Unit
PDU	Power Distribution Unit
PI	Principle Investigator
PSE	Passive Seismic Experiment
PSEP	Passive Seismic Experiment Package
R F	Radio Frequency
RFI	Radio Frequency Interference
RTG	Radioisotope Thermoelectric Generator
SBASI	Single Bridgewire Apollo Standard Initiator
SEQ	Scientific Equipment Bay in LM
SIDE	Suprathermal Ion Detector Experiment
SIDE/CCIG	Suprathermal Ion Detector Experiment with Cold Cathode Ion Gauge

G-2 Changed 15 December 1970

INDEX

Item	Page
А	
Active Seismic Experiment (ASE), Subsystem Functional	
Block Diagram (Figure)	2-167
Active Seismic Experiment Subsystem	1-18, 2-161
Active Seismic Experiment (ASE) Subsystem (Figure)	2-163
ASE Central (Station) Electronics	2-165
ASE Data Handling Function	2-172
ASE Data Handling Function, Block Diagram (Figure)	2-173
ASE Detailed Functional Description	2-167
ASE Functional Description	2-166
ASE Geophones	2-162
ASE Grenade Launch Assembly (GLA)	2-164
ASE Interconnecting Cables	2-165
ASE Leading Particulars	2-165
ASE Leading Particulars (Table)	2-165
ASE Measurements (Table)	2-174
ASE Mortar Box	2-164
ASE Mortar Mode	2-167
ASE Mortar Package	2-162
ASE Mortar Package Assembly	2-176
ASE Passive Listening Mode	2-167
ASE Physical Description	2-162
ASE Power Control Function	2-175
ASE Power Control Function, Block Diagram (Figure)	2-175
ASE Safety Features	2-175
ASE Seismic Signal Detection	2-171
ASE Seismic Signal Generation	2-168
ASE Seismic Signal Generation Function, Block Diagram (Figure)	2-169
ASE Seismic Signal Detection Function, Block Diagram (Figure)	2-171
ASE Thumper-Geophone Assembly	2-162
ASE Thumper-Geophone Assembly	2-175
ASE Thumper Mode	2-167
ASE Timing and Control	2-172
ASE Timing and Control Function, Block Diagram (Figure)	2-172
Active Seismic Sensor Simulator (Figure)	3-17
Antenna Aiming	4-21
Antenna Aiming Mechanism	2-29
Antenna Aiming Mechanism (Figure)	4-22
Antenna Aiming Mechanism Alignment (Figure)	4-16
Antenna Aiming Table (Sample) (Figure)	4-24
Antenna and Aiming Mechanism (Figure)	2-28
Antenna Cap Fixture (Figure)	3-20

INDEX (cont)

Item	Page
Antenna Assembly Description	2-27
Antenna Functional Description	2-29
Antenna Leading Particulars (Table)	2-29
Antenna Mast	2-7
Antenna Mast Sections (Figure)	2-7
Antenna Physical Description	2-27
Apollo Lunar Hand Tools (Table)	2-229
Apollo Lunar Hand Tools Subsystem	1-19, 2-229
Apollo Lunar Hand Tools Subsystem Deployed (Figure)	2-233
ALHT Description	2-229
ALHT Subsystem Front and Rear Views of Flight Configur	
(Figure)	2-234
ALHT Subsystem Brush/Scriber/Hand Lens, Scoop, and S	
(Figure)	2-235
Apollo Lunar Surface Drill (ALSD)	1-19, 2-237
Apollo Lunar Surface Drill (ALSD) (Figure)	2-238
ALSD Accessory Group	2-242
ALSD Battery Charging Unit (Figure)	3-19
ALSD Battery Pack	2-237
ALSD Detailed Functional Description	2-243
ALSD Drill String	2-242
ALSD Functional Description	2-243
ALSD Leading Particulars (Table)	2-240
ALSD, Partially Exploded View (Figure)	2-239
ALSP Physical Description	2-237
ALSD Power Head	2-241
ALSD, Power Head, Simplified Cutaway View (Figure)	2-244
ALSD Pressurization Unit (Figure)	3-18
ALSD Use in HFE (Figure)	4-19
ALSEP Array A-2 Alignment and Leveling Devices (Figure	
ALSEP Commands (Table)	2-20
ALSEP Containers	3-28
ALSEP Containers (Figure)	3-29
ALSEP 1 Deployed on Lunar Surface (Figure)	1-24
ALSEP Experiment Subsystem Flight Assignments (Table)	
ALSEP 1 Experiment Temperature Extremes (Table)	1-27
ALSEP Flight Article Spares (Table)	3-9
ALSEP Flight System Maintenance Flow Diagram (Figure)	3-3
ALSEP Functional Description	1-6
ALSEP Hardware Categories (Table)	3-1
ALSEP/LM Interface (Figure)	1-2
ALSEP 1 Lunar Day No. 12 (Figure)	1-26
ALSEP Mission Introduction	1-1
ALSEP Mission Objectives	1-3
ALSEP Mission Profile	1-1
ALSEP Operational Experience	1-24

INDEX (cont)

Item	Page
ALSEP Operations Locations (Table)	4-1
ALSEP Physical Description	1-3
ALSEP Principal Investigators	1-19
ALSEP Principal Investigators (Table)	
ALSEP Scientific Objectives (Table)	1-20
	1-4
ALSEP Subpackage No. 1 (Flight 1 and Array A-2) (Figure)	1-7
ALSEP Subpackage No. 1 (Flight 3) (Figure)	1 - 1 1
ALSEP Subpackage No. 1 (Flight 4) (Figure)	1-15
ALSEP Subpackage No. 2 (Array A-2) (Figure)	1-16A
ALSEP Subpackage No. 2 (Flights 1, 2, and 4) (Figure)	1-9
ALSEP Subpackage No. 2 (Flight 3) (Figure)	1-13
ALSEP Subsystem Introduction	2-1
ALSEP Support Manuals	3-28
ALSEP Support Manuals (Table)	3-28
ALSEP System Description	1-3
ALSEP System, Simplified Block Diagram (Figure)	1-17
ALSEP System Test Set (Figure)	3-13
ALSEP Telemetry Control Word Bit Assignments (Figure)	2-61
ALSEP Telemetry Frame Format (Figure)	2-58
Array A-2 Deployment	4-21
Array A-2 Deproyment	4-41
В	
Barbell Carry Mode (Figure)	4-10
Boydbolt Tools (Figure)	3-23
C	
Cask Assembly Protective Cover (Figure)	3-24
Charged Particle Lunar Environment Experiment Subsytem	1-19, 2-199
Charged Particle Lunar Environment Experiment Subsystem (Figure)	2-200
CPLEE/ALSEP Data Subsystem Interface	2-211
CPLEE Channeltron B Detector Typical Electron Gain (Figure)	2-206
CPLEE Charged Particle Detection Function, Block Diagram	
(Figure)	2-205
CPLEE Command List (Table)	2-203
CPLEE Data Handling Function	2-209
CPLEE Data Handling Function, Block Diagram (Figure)	2-209
CPLEE Detailed Functional Description	2-204
	2-204
CPLEE Detecting Function	2-203
CPLEE Discrimination and Programming Function,	2 200
Block Diagram (Figure)	2-208
CPLEE Environmental Control Function	2-210
CPLEE, Functional Block Diagram (Figure)	2-202
CPLEE Functional Description	2-202

INDEX (cont)

Item	Page
CPLEE Leading Particulars (Table)	2-201
CPLEE Major Components (Figure)	2-201
CPLEE Particle Discrimination and Programming Function	2-207
CPLEE Physical Analyzer Major Components (Figure)	2-207
CPLEE Physical Description	2-200
CPLEE Power Supply Function	2-209
CPLEE Power Supply Function, Block Diagram (Figure)	2-210
CPLEE Self-Test Function	2-210
Cold Cathode Gauge Experiment	1-19
Cold Cathode Gauge Experiment, Functional Block Diagram	
(Figure)	2-216
Cold Cathode Gauge Experiment (CCGE) Subsystem	2-213
Cold Cathode Gauge Experiment (CCGE) Subsystem (Figure)	2-214
CCGE Command Function	2-222
CCGE Command Function, Block Diagram (Figure)	2-223
CCGE Data Handling Function	2-224
CCGE Data Handling Function, Block Diagram (Figure)	2-225
CCGE Detailed Functional Description	2-217
CCGE Electronics Package	2-213
CCGE Functional Description	2-215
CCGE Leading Particulars (Table)	2-215
CCGE Measurement Function	2-217
CCGE Measurement Function, Block Diagram (Figure)	2-218
CCGE Physical Description	2-213
CCGE Power Function	2-226
CCGE Power Function, Block Diagram (Figure)	2-226
CCGE Thermal Control	2-215
CCGE Thermal Control Function	2-226
CCGE Thermal Control Function, Block Diagram (Figure)	2-227
CCGE Timing and Control Function	2-220
CCGE Timing and Control Function, Block Diagram (Figure)	2-221
CCGE Structural Housing	2-215
Cold Cathod Ion Gauge	2-213
Command Receiver and Data Processor Power Control (Figure)	2-77
Commercial Packages	3-28
D	
Data Subsystem	1-6, 2-17
Data Subsystem Analog Data Multiplexer/Converter (Figure)	2-52
Data Subsystem Analog Multiplexer (of 2330524), Block Diagram	3 55
(Figure) Data Subsystem (Array A-2) Functional Block Diagram	2-55
Data Subsystem (Array A-2) Functional Block Diagram Data Subsytem Central Station Timer	2-26A
Data Subsystem Central Station Timer (Figure)	2-49
Data Subsystem Central Station Timer, Block Diagram (Figure)	2-49
Data Subsystem Central Station Timer, Block Diagram (Figure) Data Subsystem Central Station Timer Functional Description	2-50
Save Subsystem Central Station Timer Functional Description	2-49

Item		Page
Data Subsystem	Central Station Timer Physical Description	2-49
	Command Decoder	2-35
Data Subsystem	n Command Decoder (Figure)	2-38
Data Subsystem	Command Decoder Flow Diagram (Figure)	2-43
	Command Decoder, Functional Block Diagram	2-39
	Command Decoder Functional Description	2-39
	Command Decoder Leading Particulars (Table)	2-38
	Command Decoder Physical Description	2-35
	Command Receiver	2-33
	Command Receiver (Figure)	2-33
	Command Receiver Block Diagram (Figure)	2-36
	Command Receiver and Data Processor Power	2-30
Control (0	2-77
Data Subsystem	Command Receiver Functional Description	2-35
Data Subsystem	Command Receiver Leading Particulars (Table)	2-34
the second se	Command Receiver Output Signal Characteristics	
(Figure)		2-37
	Command Receiver Physical Description	2-33
	Component Functions (Table)	2-18
	Component Location (Figure)	2-19
and a contract of the fact of the second second	Data Commands	2-45
	n Data Processor	2-50A
	Data Processor Flow Chart (Figure)	2-63
	Data Processor, Functional Block Diagram (Figure)	2-53
	Data Processor Functional Description	2-51
	n Data Processor Leading Particulars (Table)	2-55
	Data Processor Physical Description	2-50A
	Delayed Command Functions (Table)	2-47
	Delayed Command Sequence, Functional	
	rt (Figure)	2-48
	n Digital Data Processor (Figure)	2-52
Data Subsystem		2-30
	Diplexer Filter (Figure)	2-30
	Diplexer Filter Leading Particulars (Table)	2-32
	n Diplexer Functional Description	2-32
	n Diplexer Physical Description	2-30
	n Diplexer Switch (Figure)	2-31
	n Diplexer Switch Diagram (Figure)	2-31
	n Diplexer Switch Leading Particulars (Table) n Dual Analog Multiplexer (of 2338900),	2-32
and the second	am (Figure)	2-56A
	n (Flight 1 Configuration), Functional	
	am (Figure)	2-21

	Item	Page
	Data Subsystem (Flight 3 Configuration), Functional Block	
	Diagram (Figure)	2-23
	Data Subsystem (Flight 4 Configuration), Functional Block	
	Diagram (Figure)	2-25
	Data Subsystem Operating Modes	2-56
	Data Subsystem Physical Description	2-18
	Data Subsystem Power Control	2-74
	Data Subsystem Power Distribution Unit	2-68D
	Data Subsystem Power Distribution Unit (Figure)	2-68D
	Data Subsystem Power Distribution Unit, Block Diagram (Figure)	2-71
	Data Subsystem Power Distribution Unit Functional Description	2-69
	Data Subsystem Power Distribution Unit Leading Particulars	
	(Table)	2-69
	Data Subsystem Power Distribution Unit Physical Description	2-68D
	Data Subsystem Power Off Sequencer	2-69
	Data Subsystem Resettable Solid State Timer	2-50
	Data Subsystem Resettable Solid State Timer (Figure)	2-50A
	Data Subsystem Resettable Solid State Timer, Block Diagram	
	(Figure)	2-50B
	Data Subsystem Resettable Solid State Timer, Functional	
	Description	2-50
	Data Subsystem Resettable Solid State Timer Physical Description	2-50
	Data Subsystem, Simplified Block Diagram (Figure)	2-17
	Data Subsystem Temperature and Voltage Sensor Circuits	2-73
	Data Subsystem Timing and Control Pulse Characteristics in	
1	Normal ALSEP Data Mode (Table)	2-56
	Data Subsystem Timing and Control Signals	2-57
	Data Subsystem Transmitter 2330527	2-62
	Data Subsystem Transmitter 2345250	2-68
	Data Subsystem Transmitter 2330527 (Figure)	2-65
	Data Subsystem Transmitter 2345250 (Figure)	2-68A
	Data Subsystem Transmitter 2330527, Block Diagram (Figure)	2-67
	Data Subsystem Transmitter 2345250, Block Diagram (Figure)	2-68B
	Data Subsystem Transmitter Functional Description	2-62, 2-68
	Data Subsystem Transmitter 2330527, Leading Particulars	
	(Table)	2-65
	Data Subsystem Transmitter 2345250, Leading Particulars	Sec.
	(Table)	2-68C
	Data Subsystem Transmitter Physical Description	2-62, 2-68
	Data Subsystem Transmitter Power Control (Figure)	2-75
	Data Subsystem Uplink Transmission	4-26
	Deployment	4-9
	Deployment Arrangement Array A-2, Typical (Figure)	4-14
	Deployment Arrangement Flight 1 (Actual) (Figure)	4-11
	Deployment Arrangement Flight 3, Typical (Figure)	4-12
	Deployment Arrangement Flight 4, Typical (Figure)	4-13

Item	Page
Deployment Decals (Figure)	4-10
Deployment Tools (Table)	4-7
Descent to Lunar Surface	4-8
Downlink Transmission	4-25
	1-45
E	
EASEP Deployed on Lunar Surface (Figure)	1-23
EASEP Operating Experience (Table)	1-22
EASEP Operational Experience	1-21
Electrical Ground Support Equipment (Table)	3-12
Electrical Power Subsystem	1-6, 2-11
Electrical Power Subsystem (Figure)	2-12
Electrical Power Subsystem, Functional Block Diagram (Figure) 2-14
Electrical Power Subsystem Leading Particulars (Table)	2-13
EPS Detailed Functional Description	2-14
EPS Functional Description	2-11
EPS Fuel Capsule Assembly (FCA)	2-11
EPS Fuel Cask	2-11
EPS Leading Particulars	2-11
EPS Physical Description	2-11
EPS Power Conditioning Unit (PCU)	2-11
EPS Power Conditioning Unit	2-14
EPS Power Generation Function, Block Diagram (Figure)	2-15
EPS Power Regulation Function, Block Diagram (Figure)	
EPS Radioisotope Thermoelectric Generator (RTG)	. 2-11
EPS Radioisotope Thermoelectric Generator	2-14
Electric Fuel Capsule Simulator (Figure)	3-19
Environmental Test Chamber (Figure)	3 - 15
F	
Flight Four Deployment	4-21
Flight Mode	4-6
Flights 1 and 2 Deployment	4-11
Flight Three Deployment	4-18
Fuel Capsule Handling Equipment (Table)	3-24B
Fuel Capsule Handling Equipment (Figure)	3-26
Fuel Cask/Structure Assembly Handling Equipment (Tabl	e) 3-24B
Fuel Cask/Structure Assembly Handling Equipment (Figu	re) 3-25
Fuel the RTG	4-8
G	
Gamma Control Console (Figure)	3-14
GLA Test Fixture (Figure)	3-23
Grenade Launch Assembly Test Set (Figure)	3-16
Ground Support Equipment (GSE)	3-11
GSE Electrical	3-12
GSE Mechanical	3-12

INDEX (cont)

Page

Item

н	
Heat Flow Experiment, Functional Block Diagram (Figure)	2-182
Heat Flow Experiment Subsystem	1-18, 2-179
Heat Flow Experiment (HFE) Subsystem (Figure)	2-180
HFE Analog Housekeeping Datums (Table)	2-197
HFE Command List (Table)	2-183
HFE Command Processing Function	2-183
HFE Command Processing Function, Block Diagram (Figure)	2-184
HFE Conductivity Heater Function	2-192
HFE Conductivity Heater Function, Block Diagram (Figure)	2-193
HFE Data Handling Function	2-193
HFE Data Handling Function, Block Diagram (Figure)	2-194
HFE/Data Subsystem Interface	2-195
HFE Detailed Functional Description	2-183
HFE Functional Description	2-181
HFE Leading Particulars (Table)	2-181
HFE Measurements (Table)	2-189
HFE Measurement Digital Data Format (Figure)	2-196
HFE Measurement Sequencing Function, Block Diagram (Figure)	2-192
HFE Physical Description	2-179
HFE Power and Electronics Thermal Control Function	2-194
HFE Power and Electronics Thermal Control Function, Block	
Diagram (Figure)	2-195
HFE Power Supply and Thermal Control, Functional Block	
Diagram (Figure)	2-196
HFE Probe Emplacement (Figure)	4-20
HFE Temperature Measurement Function	2-185
HFE Temperature Measurement Function, Block Diagram	
(Figure)	2-190
HFE Timing and Control Function	2-185
HFE Timing and Control Function, Block Diagram (Figure)	2-190
Heat Flow Sensor Simulator (Figure)	3-18
1	
IPU Breakout Box (Figure)	3-15
Integrated Power Unit Test Set (Figure)	3-14
K	
KSC ALSD Installation	4-4
KSC ALSEP Equipment Checkout (Table)	4-4
KSC ALSEP Installation in LM	4-4
KSC Equipment Calibration	4-2
KSC Equipment Checkout	4-2
KSC Fit Checks	4-2
KSC Fit Checks (Table)	4-5

INDEX (cont)

Item	Page
KSC Fuel Cask and Fuel Capsule Installation	4-5
KSC GSE Calibration (Table)	4-4
KSC Inspection	4-2
KSC Inspection (Table)	4-3
KSC Inspection and Checkout	4-2
KSC ALSEP Installation	4-2
KSC Ordnance Installation	4-2
KSC Prelaunch Checkout and Installation	4-1
L	
Level A Maintenance at BxA	3-2
Level A Maintenance at KSC	3-11
Level A Maintenance Flow Diagram (Figure)	3-5
LRRR Operation	1-23
Lunar Surface Operations	4-5
Lanar carract operations	
М	
Magnetometer Experiment (Figure)	2-108
Magnetometer Experiment, Functional Block Diagram (Figure)	2-110
Magnetometer Experiment Subsystem	1-18, 2-107
ME Calibration and Sequencing Function	2-113
ME Calibration and Sequencing Function, Block Diagram (Figure)	2-114
ME Command List (Table)	2-112
ME Data Handling Function	2-119
ME Data Handling Function, Block Diagram (Figure)	2-120
ME Data Subsystem Interface	2-122
ME Deployment (Figure)	4-17
ME Detailed Functional Description	2-111
ME Electromagnetic Measurement and Houskeeping Function	2-111
ME Electromagnetic Measurement and Houskeeping Function,	
Block Diagram (Figure)	2-112
ME Engineering and Status Data Processing	2-120
ME Functional Description	2-108
ME Leading Particulars (Table)	2-109
ME Operation	1-28
ME Physical Description	2-107
ME Power Control and Timing Function	2-121
ME Power Control and Timing Function, Block Diagram (Figure)	2-122
ME Scientific Data Processing	2-119
ME Sensor Orientation Function	2-116
ME Sensor Orientation Function, Block Diagram (Figure)	2-117
ME Site Survey Sensor Gimbal and Flip Sequence (Figure)	2-118
NE III I Control Employe	2 121

ME Thermal Control Function2-121ME Thermal Control Function, Block Diagram (Figure)2-121

INDEX (cont)

Item	Page
Magnetometer Flux Tanks (Configuration B) (Figure)	3-13
Manned Space Flight Network (MSFN)	4-25
MSFN Functional Block Diagram (Figure)	4-26
Maintenance Concept	3-1
Maintenance Level A (System)	3-2
Maintenance Level B (Specialized)	3-11
MCC Operation	4-27
Mechanical Ground Support Equipment (Table)	3-20
0	
Operational Experience	1 21

Operational Experience1-21Operations, General4-1

P	
Passive Seismic Experiment (PSE) Subsystem	1-18, 2-79
Passive Seismic Experiment Subsystem (Figure)	2-81
Passive Seismic Experiment, Functional Block Diagram (Figure)	2-85
PSE Command Functions	2-87
PSE Command Functions (Table)	2-88
PSE Data Handling	2-96
PSE Data Handling Function, Block Diagram (Figure)	2-95
PSE Data Word Assignments in ALSEP Telemetry Frame (Figure)	2-97
PSE Detailed Functional Description	2-90
PSE Electronics Assembly	2-82
PSE Functional Description	2-84
PSE Leading Particulars	2-82
PSE Leading Particulars (Table)	2-83
PSE Leveling Stool	2-82
PSE Long Period (LP) Channels	2-90
PSE Long Period Seismic Activity Monitoring Function, Block	
Diagram (Figure)	2-91
PSE Measurements (Table)	2-98
PSE Monitoring Functions	2-86
PSE Monitoring Functions	2-90
PSE Operation	1-27
PSE Physical Description	2-80
PSE Power Converter	2-106
PSE Power Converter Function, Block Diagram (Figure)	2-105
PSE Sensor Assembly	2-80
PSE Short Period (SP) Channel	2-93
PSE Short Period Seismic Activity Monitoring Function, Block	
Diagram (Figure)	2-93
PSE Shroud Deployment and Experiment Leveling (Figure)	4-14
PSE Supporting Functions	2-86

Item	Page
PSE Supporting Functions	2-94
PSE Temperature Monitoring Channel	2-94
PSE Thermal Control	2-104
PSE Thermal Control Function, Block Diagram (Figure)	2-105
PSE Thermal Shroud	2-82
PSE Uncaging and Leveling	2-98
PSE Uncaging and Leveling Function, Block Diagram (Figure)	2-99
PSEP Operation	1-22
Passive Seismic Sensor Exciter (Figure)	3-17
Post-Deployment Operations	4-23
Post-Landing Operations	4-7
Predeployment	4-8
Predeployment Events (Table)	4-8
R	
RTG Simulator (Figure)	3-16
Remove ALSEP Equipment from the LM	4-8
S	
SLA Installation GSE (Figure)	3-24A
SLA Installation GSE (Table)	3-24
Solar Wind Experiment (SWE) Subsystem	1-18, 2-125
Solar Wind Experiment Subsystem (Figure)	2-126
SWE Analog-to-Pulse-Width Converter	2-142
SWE Bandpass Amplifier	2-133
SWE Conversion Counter	2-142
SWE Converter and Temperature Calibration Driver	2-140
SWE Current Calibrate Generator	2-140
SWE Current Limiter	2-144
SWE Current Surge Suppressor	2-144
SWE Data Handling Function	2-140
SWE Data Handling Function, Block Diagram (Figure)	2-141
SWE Detailed Functional Description	2-131
SWE DC Amplifier	2-134
SWE Dust Cover Release Function	2-144
SWE Electronic Assembly	2-128
SWE Faraday Cups	2-131
SWE Faraday Cup Diagram (Figure)	2-133
SWE Frequency Divider	2-138
SWE Functional Description	2-128
SWE, Functional Block Diagram (Figure)	2-130
SWE Heaters Function	2-145
SWE High Voltage Generator	2-136
SWE Input Decoder	2-138
SWE Inverter	2-143

Item	Page
SWE Leading Particulars	2-128
SWE Leading Particulars (Table)	2-127
SWE Leg Assembly	2-128
SWE Level Inhibit and Miscellaneous Sync	2-138
SWE Main Counter	2-138
SWE Measurement Function	2-131
SWE Measurement Function, Block Diagram (Figure)	2-132
SWE Modulator Calibrator	2-136
SWE Modulation Function	2-134
SWE Modulation Function, Block Diagram (Figure)	2-135
SWE Operation	1-28
SWE Output Commutator	2-142
SWE Output Transformer, Rectifiers, and Filters	2-143
SWE Physical Description	2-126
SWE Power Supply Function	2-143
SWE Power Supply, Block Diagram (Figure)	2-144
SWE Preamplifiers	2-133
SWE Preamplifier Switches	2-133
SWE Read-in Gates	2-142
SWE Relay Driver	2-136
SWE Relays	2-137
SWE Segment Driver	2-140
SWE Sequence Counter	2-138
SWE Sequencing Function	2-137
SWE Sequencing Function, Block Diagram (Figure)	2-139
SWE Sensor Assembly	2-128
SWE Shift Register	2-143
SWE Spike Suppressor Circuits	2-144
SWE Staircase Generator	2-135
SWE Subcommutator A	2-142
SWE Subcommutator B	2-142
SWE Sun Sensor	2-134
SWE Sweep Driver	2-140
SWE Synchronous Demodulator	2-134
SWE Temperature Sensors	2-134
SWE Thermal Control Assembly	2-128
SWE 2KHz Drive	2-136
SWE Voltage Calibrate Generator	2-143
SWE Voltage Control Amplifier	2-135
Standard Tools, Test Equipment, Facilities and Suppl	lies 3-27
Structure, Subpackage No. 1 (Typical) (Figure)	2-4
Structure, Subpackage No. 2 (Array A-2) (Figure)	2-6
Structure, Subpackage No. 2 (Flights 1, 2, and 4)	2-5
Structure, Subpackage No. 2 (Flight 3) (Figure)	2-5
Structure/Thermal DTREM II Functional Description	2-10
Structure/Thermal DTREM II Physical Description	2-9

Item	Page
Structure/Thermal Dust Covers	2.2
Structure/Thermal Dust Covers (Figure)	2-3
	2-6A
Structure/Thermal Dust Detector (Figure)	2-8
Structure/Thermal Dust Detector Description	2-7
Structure/Thermal Dust Detector Functional Description	2-8
Structure/Thermal Dust Detector Physical Description Structure/Thermal Dust Detector, Simplified Block Diagram	2-7
(Figure)	2-9
Structure/Thermal Dust, Thermal, and Radiation Engineering	
Measurements Package Description	2-9
Structure/Thermal Dust, Thermal, and Radiation Engineering	
Measurements Package (Figure)	2-10A
Structure/Thermal Dust, Thermal, and Radiation Engineering	
Measurements Package, Simplified Block Diagram (Figure)	2-10A
Structure/Thermal Fuel Cask Structure Assembly	2-3
Structure/Thermal Fuel Cask Structure Assembly (Figure)	2-5
Structure/Thermal Handling Tools	2-3
Structure/Thermal Handling Tools (Figure)	2-6
Structure/Thermal Subpackage No. 1	2-3
Structure/Thermal Subpackage No. 2	2-3
Structure/Thermal Subsystem	1-6, 2-1
Structure/Thermal Subsystem Functional Description	2-3
Structure/Thermal Subsystem Leading Particulars (Table)	2-2
Structure/Thermal Subsystem Physical Description	2-1
Subpackage Configuration, Flight 1 (Table)	4-6
Subpackage Handling GSE (Figure)	3-22
Subpackage No. 1 Structure/Thermal	2-3
Subpackage No. 2 Structure/Thermal	2-3
Suprathermal Ion Detector Experiment, Functional Block	
Diagram (Figure)	2-151
Suprathermal Ion Detector Experiment (SIDE) Subsystem	1-18, 2-147
Suprathermal Ion Detector Experiment Subsystem (Figure)	2-148
SIDE/CCIG Commands (Table)	2-153
SIDE Command Function	2-151
SIDE Command Function, Block Diagram (Figure)	2-152
SIDE Data Handling Function	2-158
SIDE Data Handling Function, Block Diagram (Figure)	2-159
SIDE Detailed Functional Description	2-151
SIDE Functional Description	2-150
SIDE Ion Detection Function	2-154
SIDE Ion Detection Function, Block Diagram (Figure)	2-155
SIDE Leading Particulars (Table)	2-150
SIDE Operation	1-29
SIDE Physical Description	2-149
SIDE Programmer Function	2-152
SIDE Programmer Function, Block Diagram (Figure)	2-154

Item	Page
т	
Tools and Test Equipment	3-12
Tools Used in Deployment	4-7
Transport ALSEP to Emplacement Area	4-9
Transportation Equipment	3-27

INTRODUCTION

This document tabulates the commands used in the ALSEP flight systems. Table 1 lists the commands by symbol, nomenclature, number, and termination point. Table 2 provides a summary of command allocation. Table 3 cross-references command numbers and command functions. Table 4 cross-references array and experiment number assignments.

Flight 1 - Array A Flight 2 - Array A (deleted) Flight 3 - Array B Flight 4 - Array C - Array A-2

TABLE 1

	TADLE, 1					
Symbol	Command Nomenclature	Octal Command	Decimal Command	Termi Point	nation	
CD-31	ASE High Bit Rate ON ³	003	3	Data P	roces	sor
CD-32	ASE High Bit OFF1	005	5	0		
CD-33	Normal Bit Rate ^{1,3}	006	6	- 11	11	
CD-34	Slow Bit Rate ³	007	7	<u></u>	11	
CD-35	Normal Bit Rate Reset ⁴	011	9	11		
CD-1	Transmitter "A" Select ²	012	10	Power	Dist,	Unit
CD-2	Transmitter ON ²	013	11	±1,		31
CD-3	Transmitter OFF	014	12		11	
CD-4	Transmitter "B" Select	015	13		n,	11
CD-5	DSS HTR 1 ON (5 watts)	017	15	11	**	11
CD-6	DSS HTR 1 OFF ²	021	17		-11	11
CD-7	PDR #2 ON	022	18	-11	.).(
CD-8	PDR #2 OFF ²	023	19		31	t.t
CD-9	DSS HTR 2 ON (10 watts)	024	20		10	11
CD-10	DSS HTR 2 OFF ²	025	21	11	11	13
CX-1	Dust Detector - ON	027	23	**	.,	11
CX-2	Dust Detector - OFF	031	25	+1	11	ti -
CD-36	Timer Output Accept ¹	032	26	Comm	and D	ecoder
CD-37	Timer Output Inhibit	033	27	0		H
CD-11	Data Processor "X" Select ²	034	28	Power	Dist.	Unit
CD-12	Data Processor "Y" Select	035	29	34	11	
CD-13	Experiment 1 Operational Power ON ⁵	036	30		11	1.1
CD-14	Experiment 1 Standby Power ²	037	31	11	11	. 1.2
CD-15	Experiment 1 Standby OFF	041	33	11	3.9	17
CD-16	Experiment 2 Operational Power ON	042	34	11	-01-	11
CD-17	Experiment 2 Standby Power ²	043	35	- 0	11	3.0

Symbol	Command Nomenclature		Octal Command	Decimal Command	Termi Point	nation		
and the second								
CD-18	Experiment 2 Standby OFF		044	36	Power			t
CD-19	Experiment 3 Operational Pov		045	37	11	11	11	
CD-20	Experiment 3 Standby Power ²		046	38	11	17	3.1	
CD-21	Experiment 3 Standby OFF		050	40	-01	51	11	
CD-22	Experiment 4 Operational Pov		153	107	11	11	11	
CD-23	Experiment 4 Standby Power ²		053	43	н	11	11	
CD-24	Experiment Standby OFF		054	44	11	11	11	
CD-25	Experiment 5 Operational Pov	ver ON	055	45	11	10	11	
CD-26	Experiment 5 Standby Power ²		056	46	11	11	11	
CD-27	Experiment 5 Standby OFF		057	47	11-	11		
CU-1	PCU #1 Select ²		060	48	Power	Cond.	Un	it
CU-2	PCU #2 Select		062	50	11	11		
CL-1	Gain Change LPX, LPY		063	51	Passiv	e Seis	mic	Exp.
	(Steps through following seque -30db ¹ 0db -10db -20db	ence one st	ep per comm	nand)				
CL-2	Gain Change LPZ (Steps through same sequence	as CL-1)	064	52	**		11	.11
CL-3	Calibration SP ON/OFF1,6	Approximation of the second second	065	53	ii.		11	
CL-4	Calibration LP ON/OFF ¹		066	54			11	11
CL-5	Gain Change SPZ		067	55	11			11
	(Steps through same sequence	as CL-1)						
CL-6		ON/OFF1	070	56	11			31
CL-7		ON/OFF ¹	071	57	.11		ù	1.1
CL-8		ON/OFF ¹	072	58				
		sector association		1000				

Changed 15 December 1970

A-3

A-4	
Changed	
15	
15 December	
1970	

Symbol	Command Nomenclature	2	Octal Command	Decimal Command	Tern Point	ination		
CL-9	Uncage ⁷ , 6	Arm/Fire	073	59	Pass	ive Seis	mic	Exp.
CL-10	Leveling Direction ⁸	Plus ¹ /Minus	074	60	н		Ц	11
CL-11	Leveling Speed ⁸	Low ¹ /High	075	61	it :		. 13	n.
CL-12	Thermal Control Mode	Auto ¹ /Manual ⁹	076	62	11			11
CL-13	Feedback Filter	IN/OUT ¹	101	65	11		11	<u>i9</u>
CL-14	Coarse Level Sensor	IN/OUT ¹	102	66	11		11	11
CL-15	Leveling Mode ⁸	Auto ¹ /Manual	103	67	11		H	11
CT-1	SIDE Load Cmd #1	Command	104	68	Supra	therma	1 Ion	Det.
CT-2	SIDE Load Cmd #2	Functions	105	69	ũ		11	11
CT-3	SIDE Load Cmd #3	As shown	106	70	11		-11	11
CT-4	SIDE Load Cmd #4	in Note 15	107	71	27		11	tr.
CT-5	SIDE Execute Command	4	110	72	11		11	11
CG-1	Cal Mode Set		104	68	Cold	Cathod	le Ga	auge
						Exp		0
CG-2	Uprange ¹⁷		105	69	11			11
CG-3	Manual Ranging Mode		106	70	11	11	1	11
	(Steps through seven ra	anges)						
CG-4	Downrange17,18		107	71	11	11	H.	ii:
CG-5	Automatic Ranging Mo	de ¹	110	72	11	11	a -	TT
CC-1	CPLEE Operational He		111	73	Cha	rand De	ntio	le Exp.
CC-2					11	rged Pa	truc	Te Exp.
	CPLEE Operational He		112	74				
CC-3	CPLEE Dust Cover Re		113	75	10	1.1		0
CC-4	CPLEE Automatic Volt	age Sequence						
	ON ¹		114	76	20	11		0

Symbol Command Nomenclature		Decimal Command	Termination Point				
CPLEE Step Voltage Level 19 (Steps voltage through following steps one step per command) 3500 350 35 0 -35 -350 -3500 0 and repeat	115	77	Char	ged Pa	rticle Exp.		
CPLEE Automatic Voltage Sequence - OFF ²¹	117	79	TT	ii.			
ON (One step increase in voltage)	120	80	11	-ū	71		
OFF ¹	121	81		п	11		
command) 200 gammas full scale ¹ 50 '' '' '' 100 '' '' ''	122 123 er	82 83					
	CPLEE Step Voltage Level 19 (Steps voltage through following steps one step per command) 3500 350 35 0 -35 -350 -3500 0 and repeat CPLEE Automatic Voltage Sequence - OFF ²¹ CPLEE Channeltron Voltage Increase ON (One step increase in voltage) CPLEE Channeltron Voltage Increase OFF ¹ SWS Dust Cover Removal ¹³ LSM Range Select (Steps through three ranges, one step p command) 200 gammas full scale ¹ 50 " " " "	CPLEE Step Voltage Level ¹⁹ 115 (Steps voltage through following steps one step per command) 3500 350 35 0 -35 -350 -3500 0 and repeat CPLEE Automatic Voltage Sequence - OFF^{21} 117 CPLEE Channeltron Voltage Increase - ON (One step increase in voltage) 120 CPLEE Channeltron Voltage Increase - OFF^{1} 121 SWS Dust Cover Removal ¹³ 122 LSM Range Select 123 (Steps through three ranges, one step per command) 200 gammas full scale ¹ 50 """""	Command NomenclatureCommandCommandCPLEE Step Voltage Level 1911577(Steps voltage through following steps one step per command) 3500 350 35115773500 -350 -3500 0 and repeat-35-3500 -3500 0 and repeat-37CPLEE Automatic Voltage Sequence - OFF2111779CPLEE Channeltron Voltage Increase - ON (One step increase in voltage)12080CPLEE Channeltron Voltage Increase - OFF112181SWS Dust Cover Removal1312282LSM Range Select12383(Steps through three ranges, one step per command)80200 gammas full scale 50200 gammas full scale 5010011	Command NomenclatureCommandCommandPointCPLEE Step Voltage Level 1911577Char;(Steps voltage through following steps one step per command) 3500 350 35 0 -355 -350 0 0 and repeat77Char;CPLEE Automatic Voltage Sequence - OFF2111779"CPLEE Automatic Voltage Increase - OFF2111779"CPLEE Channeltron Voltage Increase - OFF112080"CPLEE Channeltron Voltage Increase - OFF112181"SWS Dust Cover Removal1312282SolarLSM Range Select12383LSM r200 gammas full scale1 50""<"<"	Command NomenclatureCommandPointCPLEE Step Voltage Level 1911577Charged Pa(Steps voltage through following steps one step per command) 3500 350 3577Charged Pa3500 350 353577Charged Pa3500 350 353577Charged Pa3500 350 350 350 0 -350 0 0 and repeat77Charged PaCPLEE Automatic Voltage Sequence - OFF2111779"CPLEE Channeltron Voltage Increase - OFF112080""CPLEE Channeltron Voltage Increase - OFF112181""CPLEE Channeltron Voltage Increase - OFF112181""SWS Dust Cover Removal 1312282Solar Wind ELSM Range Select12383LSM Experime200 gammas full scale 50""""100""""		

<pre>(Step through seven values, one s per command)</pre>		Octal Decimal Command Command		Termination Point		
CM-2	Steady Field Offset ¹²	124	84	LSM Experiment		
	(Step through seven values, one step					
	-					
010.2			05	0.0		
CM-3		125	85			
CNA A		127	87			
		131	89	11 11		
CIVI-5		131	07			
	sequence ¹¹)					
CM-6	LSM Filter (In ¹ /Out)	132	90			
CM-7	Site Survey ¹⁴	133	91	11 11		
CM-8	Temperature Control x ¹ /y/OFF Repeat	134	92			
242161	(Changes from X-axis sensor ¹ to Y-axis		10			
	sensor to OFF)					
CH-1	Normal (Gradient) Mode Select ¹	135	93	Heat Flow Experiment		
CH-2	Low Conductivity Mode Select	136	94	it it it		
	(Ring Source)		10 -			

ALSEP-MT-03

CH-3High Conductivity Mode Select14096Heat Flow Experiment (Heat Fulse)CH-4HF Full Sequence Select14197"""""""""""""""""""""""""""""""""	Symbol	Command Nomenclature	Octal Command	Decimal Command	Termir Point	natio	
CH-4 HF Full Sequence Select ¹ 141 97 " " " " CH-5 HF Probe #1 Sequence Select 142 98 " " " " CH-6 HF Probe #2 Sequence Select 143 99 " " " " CH-7 HF Subsequence #1 Command Func- 144 100 " " " " CH-8 HF Subsequence #2 tions as shown in 145 101 " " " " CH-9 HF Subsequence #3 Note 16 146 102 " " " " CH-10 HF Heater Advance 152 106 " " " " " (Steps through following 16-step sequence one step per command) All heaters off Probe #1 heater #2 ON All heaters off Probe #1 heater #1 ON All heaters off Probe #1 heater #3 ON All heaters off Probe #2 heater #2 ON All heaters off Probe #1 heater #3 ON All heaters off Probe #2 heater #2 ON All heaters off Probe #2 heater #3 ON All heaters off Probe #2 heater #3 ON All heaters off Probe #2 heater #4 ON All heaters off Probe #2 heater #4 ON All heaters off Probe #2 heater #4 ON All heaters off Probe #2 heater #3 ON All heaters off	CH-3	•	140	96	Heat F	low	Experiment
CH-5 HF Probe #1 Sequence Select 142 98 " " " " CH-6 HF Probe #2 Sequence Select 143 99 " " " " CH-7 HF Subsequence #1 Command Func- 144 100 " " " " CH-8 HF Subsequence #3 Note 16 146 102 " " " " CH-9 HF Subsequence #3 Note 16 146 102 " " " " CH-10 HF Heater Advance 152 106 " " " " " (Steps through following 16-step sequence one step per command) All heaters off Probe #1 heater #2 ON All heaters off Probe #1 heater #1 ON All heaters off Probe #1 heater #2 ON All heaters off Probe #1 heater #2 ON All heaters off Probe #1 heater #2 ON All heaters off Probe #1 heater #1 ON All heaters off Probe #2 heater #2 ON All heaters off Probe #2 heater #2 ON All heaters off Probe #2 heater #3 ON All heaters off Probe #2 heater #4 ON All heaters off Probe #2 heater #3 ON All heaters off Probe #2 heater #3 ON All heaters off Probe #2 heater #4 ON All heaters off Probe #2 heater #4 ON All heaters off Probe #2 heater #3 ON All heaters off Probe #2 heater #4 ON All heaters off Probe #2 heater #1 ON All heaters off Probe #2 heater #3 ON Heaters OF Probe #3 heater #3 ON He	CII A		141	07	11		11
CH-5 Hi Probe # 2 Sequence Select 143 99 " " " CH-6 HF Probe # 2 Sequence Select 143 99 " " " " CH-7 HF Subsequence #2 tions as shown in 145 101 " " " CH-8 HF Subsequence #2 Note 16 146 102 " " " " CH-9 HF Subsequence #3 Note 16 152 106 " " " " (Steps through following 16-step sequence one step per command) All heaters off Probe #1 heater #2 ON All heaters off Probe #1 heater #4 ON All heaters off Probe #1 heater #1 ON All heaters off Probe #1 heater #3 ON All heaters off Probe #2 heater #2 ON All heaters off Probe #2 heater #4 ON All heaters off Probe #2 heater #3 ON All heaters off Probe #2 heater #4 ON All heaters off Probe #2 heater #3 ON All heaters off Probe #2 heater #4 ON Probe #2 heater #4 ON Probe #4 Deaters #4 ON Probe #4 Deaters #4 ON Probe #4 Deaters #4				12 M.			
CH-7 HF Subsequence #1 Command Func- 144 100 " " " " CH-8 HF Subsequence #2 tions as shown in 145 101 " " " CH-9 HF Subsequence #3 Note 16 146 102 " " " " CH-10 HF Heater Advance 152 106 " " " " (Steps through following 16-step sequence one step per command) All heaters off Probe #1 heater #2 ON All heaters off Probe #1 heater #4 ON All heaters off Probe #1 heater #1 ON All heaters off Probe #1 heater #2 ON All heaters off Probe #1 heater #2 ON All heaters off Probe #1 heater #1 ON All heaters off Probe #2 heater #2 ON All heaters off Probe #2 heater #2 ON All heaters off Probe #2 heater #2 ON All heaters off Probe #2 heater #4 ON All heaters off Probe #2 heater #1 ON							
CH-8 HF Subsequence #2 from as shown in 145 100 " " " CH-9 HF Subsequence #3 Note 16 146 102 " " " " CH-10 HF Heater Advance 152 106 " " " " (Steps through following 16-step sequence one step per command) All heaters off Probe #1 heater #2 ON All heaters off Probe #1 heater #4 ON All heaters off Probe #1 heater #1 ON All heaters off Probe #1 heater #3 ON All heaters off Probe #2 heater #2 ON All heaters off Probe #2 heater #2 ON All heaters off Probe #2 heater #2 ON All heaters off Probe #2 heater #3 ON All heaters off Probe #2 heater #4 ON All heaters off Probe #2 heater #4 ON All heaters off Probe #2 heater #4 ON All heaters off Probe #2 heater #3 ON All heaters off Probe #2 heater #1 ON							
CH-9 HF Subsequence #3 Note 16 146 102 " " " " CH-10 HF Heater Advance 152 106 " " " " " (Steps through following 16-step sequence one step per command) All heaters off Probe #1 heater #2 ON All heaters off Probe #1 heater #4 ON All heaters off Probe #1 heater #1 ON All heaters off Probe #1 heater #3 ON All heaters off Probe #2 heater #2 ON All heaters off Probe #2 heater #2 ON All heaters off Probe #2 heater #1 ON All heaters off Probe #2 heater #3 ON All heaters off Probe #2 heater #3 ON All heaters off Probe #2 heater #4 ON All heaters off Probe #2 heater #3 ON All heaters off							
CH-10 HF Heater Advance 152 106 " " " " (Steps through following 16-step sequence one step per command) All heaters off Probe #1 heater #2 ON All heaters off Probe #1 heater #4 ON All heaters off Probe #1 heater #1 ON All heaters off Probe #1 heater #3 ON All heaters off Probe #2 heater #2 ON All heaters off Probe #2 heater #4 ON All heaters off Probe #2 heater #4 ON All heaters off Probe #2 heater #1 ON							
(Steps through following 16-step sequence one step per command) All heaters off Probe #1 heater #2 ON All heaters off Probe #1 heater #4 ON All heaters off Probe #1 heater #1 ON All heaters off Probe #1 heater #3 ON All heaters off Probe #2 heater #2 ON All heaters off Probe #2 heater #4 ON All heaters off Probe #2 heater #1 ON All heaters off Probe #2 heater #1 ON All heaters off Probe #2 heater #3 ON repeat							
CR-1 Timer Reset 150 104 Timer		All heaters off Probe #1 heater #2 ON All heaters off Probe #1 heater #4 ON All heaters off Probe #1 heater #1 ON All heaters off Probe #1 heater #3 ON All heaters off Probe #2 heater #2 ON All heaters off Probe #2 heater #4 ON All heaters off Probe #2 heater #1 ON All heaters off Probe #2 heater #1 ON All heaters off Probe #2 heater #3 ON					
	CR-1	Timer Reset	150	104	Timer		

Changed 15 December 1970

A-7

TABLE	1	(CON'T)

TABLE 1 (CON'T	Γ)				
Command Nomenclature	Octal Command	Decimal Command	Termi Point	nation	
Geophone Calibrate	156	110	Active	Seismic	Exp.
ASE Grenade Sequential Single Fire (Fires single grenades in sequence 2, 4, 3, 1. Previous grenade must fire before next grenade will fire. Four executions required.)	162	114	n	n	13
ASE Grenade #1 Fire	163	115	0		.0
ASE Grenade #2 Fire	164	116	Ťť	.0	11
ASE Grenade #3 Fire	165	117	11.	ñ.	10%
ASE Grenade #4 Fire	166	118	n.	ан. -	<u>1</u> 0-
Arm Grenades	170	120	и.	-11	
	Command Nomenclature Geophone Calibrate ASE Grenade Sequential Single Fire (Fires single grenades in sequence 2, 4, 3, 1. Previous grenade must fire before next grenade will fire. Four executions required.) ASE Grenade #1 Fire ASE Grenade #2 Fire ASE Grenade #3 Fire ASE Grenade #4 Fire	Command NomenclatureCommandGeophone Calibrate156ASE Grenade Sequential Single Fire (Fires single grenades in sequence 2, 4, 3, 1. Previous grenade must fire before next grenade will fire. Four executions required.)162ASE Grenade #1 Fire163ASE Grenade #2 Fire164ASE Grenade #3 Fire165ASE Grenade #4 Fire166	Command NomenclatureOctal CommandDecimal CommandGeophone Calibrate156110ASE Grenade Sequential Single Fire (Fires single grenades in sequence 2, 4, 3, 1. Previous grenade must fire before next grenade will fire. Four executions required.)162114ASE Grenade #1 Fire163115ASE Grenade #2 Fire164116ASE Grenade #3 Fire165117ASE Grenade #4 Fire166118	Command NomenclatureOctal CommandDecimal CommandTermi PointGeophone Calibrate156110ActiveASE Grenade Sequential Single Fire (Fires single grenades in sequence 2, 4, 3, 1. Previous grenade must fire before next grenade will fire. Four executions required.)162114ASE Grenade #1 Fire163115"ASE Grenade #2 Fire164116"ASE Grenade #3 Fire165117"ASE Grenade #4 Fire166118"	Command NomenclatureOctal CommandDecimal CommandTermination PointGeophone Calibrate156110Active SeismicASE Grenade Sequential Single Fire

TABLE 1 (NOTES)

¹ Preset turn-on operating mode.

- 2 Lunar surface initial conditions programmed in during final system checkout.
- ³ Changes bit rate at end of ALSEP frame during which command executed.

4 Changes bit rate upon command execution.

⁵ Experiment numbers are noted in Table 4.

⁶ Short period calibration and uncage commands are initiated automatically at 12 hour (18 hour*) intervals by the timer unless this feature has been inhibited by execution of CD-37.

7 Uncage command is executed automatically by the delayed command sequencer at 96 hours + 2 minutes (144 hours + 2 minutes*), although uncaging may have been previously accomplished by ground command or as outlined in Note 6 above.

⁸ Manual leveling sequence is as follows: Send CL-15 to change from auto to manual leveling mode, change direction, and speed by CL-10 and CL-11 as necessary, and then execute leveling operation by sending appropriate leveling motor commands, CL-6, CL-7, or CL-8. Leveling operation is terminated by retransmission of CL-6, CL-7, or CL-8.

9 Sequence of command is auto on¹/auto off/manual on/manual off.

- ¹⁰ For 0^o flip position; reverse sign for 180^o flip position.
- Also activated every 12 hours (18 hours*) after and including hour 108 + 1 minute (162 + 1 minute*) by delayed command sequence.
- ¹² Field offset sequence is as follows: select proper axis with CM-3, then execute CM-2 the proper number of times to step from present value to desired value.
- ¹³ Also executed at hour 96 + 4 minutes (144 + 4 minutes*) by delayed command sequence. Repetition of CW-1 three times within ten seconds results in High Voltage Gain Change.
- ¹⁴ First execution of CM-7 performs X-axis survey, second execution Y-axis survey and third execution Z-axis survey.

* Array A-2

TABLE 1 (NOTES) (CON'T)

¹⁵ Suprathermal Ion Detector Command Structure

All commands are pulses. The SIDE uses these pulsed commands by encoding. Two encoded commands are used for one time only operations as well as routine operation. Four of the five incoming command lines are encoded in a four bit command buffer which is then strobed into a second (mode) buffer where it is held for decoding and execution. This latter buffer might be thought of as an execute buffer. The commands are as follows:

	SYMBOL	FUNCTION		о сомм	CTAL AND SI	QUEN	ICE
nds			104	105	106	107	110
Time Commands	CI-1	Break CCIG Seal ²		x			x
H O	CI-2	Blow Dust Cover ²				x	x
	CI-5	Not Used					X
	CI-6	Ground Plane Step Programmer ON ¹ /OFF	x				x
	CI-7	Reset SIDE Frame Counter at 10	1	X			X
	CI-8	Reset SIDE Frame Counter at 39	X	х	1		X
N,	CI-9	Reset Velocity Filter at 9			x		X
pu	CI-10	Reset SIDE Frame Counter at 79	X	ĩ	x		X
Operational Commands	CI-11	Reset SIDE Frame Counter at 79 and Velocity Filter Counter at 9		x	x		x
IO	CI-12	X 10 accumulation interval ON/OFF^1	x	x	x		X
1 4	CI-12 CI-13	Master Reset	^	^	^	x	x
na	CI-14	Velocity Filter Voltage ON ¹ /OFF	x			X	X
ti o	CI-15	Low Energy CPA high voltage ON ¹ /OF		x		x	x
19	CI-16	High Energy CPA high voltage ON ¹ /OF.		x		x	x
be	CI-17	Force Continuous Calibration	1	**			
0	04	(Reset to 120)			x	x	x
	CI-18	Cold Cathode Ion Gauge HiV ON ¹ /OFF	x	1.1	X	x	x
	CI-19	Channeltron high voltage ON ¹ /OFF		x	x	х	х
	CI-20	Reset Command Register	x	x	X	x	х

Commands CI-1 and CI-2 have been incorporated into the design of the SIDE as one time CCIG Seal Break and one time Dust Cover Blow. These are identical to CI-7 and CI-13 respectively, thus the first time CI-7 is executed, so is CI-1 but not thereafter. A similar statement holds for CI-13 and CI-2.

¹Preset turn-on operating mode.

²Also activated at hour 96 + 3 minutes (144 + 3 minutes)^{*}by delayed command sequence.

*Array A-2

TABLE 1 (NOTES) (CON'T)

¹⁶ Heat Flow Command Structure

Octal commands 144 through 146 are used to select subsets of the full heat flow measurement sequence as follows:

Command 144 selects a subset consisting of the four high sensitivity gradient measurements only.

Command 144 followed by command 145 selects a subset consisting of the four low sensitivity gradient measurements only.

Command 144 followed by command 146 selects a subset consisting of probe ambient temperature measurements only.

Command 145 followed by command 146 selects a subset consisting of thermocouple measurements only.

¹⁷ Command sequence for manually changing range is CG-3 after either CG-2 or CG-4 to set up or downrange respectively.

18

Command CG-4 breaks CCGE seal on first execution, may require prior execution of CG-2 to set.

19

⁷ Command sequence is to send CC-6 and then send CC-5 to step voltage levels. CPLEE stops at level it is on at time of command execution.

20

⁰ There are three CPLEE heater modes. On initial turn on the CPLEE thermostat controls the heaters. CC-l over rides thermostat and turns heaters on, CC-2 turns heaters off. CPLEE is placed back on thermostat by experiment power turn off and back on.

21 CPLEE remains in voltage level activated at time of CC-6 command execution and then can be stepped to the next step in sequence by CC-5 or returned to automatic mode by CC-4.

Changed 15 December 1970 A-11

TABLE 2

COMMAND SUMMARY

			Number	of Comm	ands
		Array	Array	Array	Array
Termination Point		А	В	С	A2
Data Processor		3	3	5	3
Power Distribution Uni	t (Power Switching)	29	29	29	29
Power Conditioning Uni	t	2	2	2	2
Command Decoder		2	2	2	2
Timer		0	0	0	1
Passive Seismic		15	15	15	15
Suprathermal Ion Detec	tor/CCGE	5	0	5	5
Charged Particle		0	8	8	0
Solar Wind		1	0	0	1
Magnetomer		8	0	0	8
Heat Flow		0	10	0	10
Active Seismic		0	0	7	0
CCGE (MSC)		0	5	0	0
	Total	65	74	73	76
<u>Function</u> Fest Commands	Octal Code 1, 2, 4, 10, 20, 40, 1	00,77,13	37,	Numbe:	
	157, 167, 173, 175,				
Address	130 ¹ /30, 116 ² /16,	151 ³ /51,	25 ⁴ /65	8	
Address Complement	47 ¹ /147,61 ² /161,	26 ³ /126,	152 ⁴ /112	8	
No Command	0,177			2	
CommandsAssigned to a	Arrays A, B, C, A2			94	
Commands Not Present	ly Assigned (154, 15 172,174	C. Martin Contractor Market	171,	6	
Commands Assigned w			ess	132	-
or Address Complemen	it (25, 33, 62, 65, 112,	152)		-4	
	NATIONAL PROPERTY AND			128	Total C

Notes: 1. Array A 2. Array A2 3. Array B 4. Array C

	F							Address	Address Complement	Command	Not Presently Assigned
Decimal	Octal	Command			ray U		Test	PP	pp	No O	lot
Command	Command	Symbol	A	B	C	A-2	Cmds.	A	A O	Z	AN
1	1			1.00			x	1			
						12	x				1
3	3	CD-31	0200		x				1		1
2 3 4 5 6 7 8 9	2 3 4 5			1. 1		1	x		1		
5	5	CD-32			X		1.2	1		1.1	
6	6	CD-33	x	X	x	X	_				
7	7	CD-34	X	X	X	x		1	1		
8	10					1	X				
9	11	CD-35	Х	X	x	X					
10	12	CD-1	Х	X	X	X				1	
11	13	CD-2	х	X	X	X					
12	14	CD-3	Х	X	X	X	1				
13	15	CD-4	Х	X	X	X		1.00			
14	16							X			
15	17	CD-5	x	x	x	X		-	1		
16	20					1	X		1		
17	21	CD-6	Х	X	x	X					
18	22	CD-7	x	x	x	x					
19	23	CD-8	Х	X	X	X					
20	24	CD-9	X	X	X	X					

TABLE 3

CROSS REFERENCE OF COMMAND NUMBER TO COMMAND FUNCTION

Decímal Command	Octal Command		A	Ar B	ray Us	age A-2	Test Cmds.	Address	Address Complement	No Command	Not Presently Assigned
21	25	CD-10	x	x	X*	x		X*			
22	26	00-10	~	-	AT	X	1 13	A**	x		
23	27	CX-1	x	x	x	x			~		
24	30	On-1	-	1		~		X			
25	31	CX-2	x	x	x	x	1	23			1
26	32	CD-32	X	x	x	x					
27	33	CD-37	X	x	x	x	1				
28	34	CD-11	x	x	x	x					
29	35	CD-12	X	x	X	x					
30	36	CD-13	X	X	x	X		6			
31	37	CD-14	X	X	X	x					
32	40		1.00	1 -	1.20		X				
33	41	CD-15	X	X	X	X		í - 1			
34	42	CD-16	Х	X	X	X					
35	43	CD-17	х	X	X	x					
36	44	CD-18	х	X	X	X					
37	45	CD-19	Х	X	X	x					
38	46	CD-20	х	X	X	x					
39	47								X		
40	50	CD-21	X	X	X	X					
41	51				1.1.1			X			

*Cmds with same code as their Array Address or Address Complement.

TABLE	3	(CON'T)
-------	---	---------

	t							ress	Address Complement	command	Not Presently Assigned
Decimal	Octal	Command			ray Us		Test	Addres	ddi	U o	ot ssi
Command	Command	Symbol	A	В	C	A-2	Cmds.	4	C A	No	ZA
42	52	CD-22	x	x	x				1		
43	53	CD-23	X	X	X	X	-True			1	
44	54	CD-24	x	X	X	x					
45	55	CD-25	X	X	X	X				1	
46	56	CD-26	x	X	X	X		-		1	
47	57	CD-27	x	X	X	x	1			1	
48	60	CU-1	X	X	X	X	1			1	
49	61								X	1	
50	62	CU-2	X	X	X	X				1	
51	63	CL-1	X	X	X	x	1				
52	64	CL-2	X	X	X	x				1	
53	65	CL-3	X	X	X*	X		X*		1	1
54	66	CL-4	X	X	X	X				1	
55	67	CL-5	X	X	X	X				1	
56	70	CL-6	X	X	X	X					
57	71	CL-7	X	X	X	X	1				
58	72	CL-8	X	X	X	X					
59	73	CL-9	X	X	X	X					
60	74	CL-10	X	X	X	X					
61	75	CL-11	X	X	X	X					
62	76	CL-12	X	X	X	X					

P
F
S
F
P
5
A
H
0
w

			-					Address	Address Complement	Command	Not Presently Assigned
Decimal	Octal	Command			ay Us		Test	pp	pp	No (ot ss
Command	Command	Symbol	А	В	C	A-2	Cmds.	A	A O	2	ZA
63	77					10 - 11 1	x				
64	100						X		1 1		
65	101	CL-13	х	X	Х	X	1			1	
66	102	CL-14	X	X	х	X					
67	103	CL-15	X	X	Х	X				1	
68	104	CG-1 ⁺ /CT-1	х	x+	х	X	1			1	1
69	105	CG-2 ⁺ /CT-2	X	x+	Х	X	ş.			1	
70	106	CG-3 ⁺ /CT-3	х	x+	х	X	Î			1	
71	107	CG-4+/CT-4	х	x+	Х	X		1		1	
72	110	CG-5 ⁺ /CT-5	х	x+	Х	X				1	
73	111	CC-1	10.5	X	X						
74	112	CC-2		X	X*				X*	1	
75	113	CC-3		X	Х		1				
76	114	CC-4		X	Х		1				
77	115	CC-5		X	X	1	44	(
78	116			1.50	1.2	1		X	1		
79	117	CC-6		X	X				1		1
80	120	CC-7		X	X				1		
81	121	CC-8	100	X	X	1.					
82	122	C W-1	Х			X					1
83	123	CM-1	X			X			1		1

								Address	Address Complement	No Command	Not Presently Assigned
Decimal	Octal	Command		Ar	ray Us	ane	Test	Idr	Indr	0	ot
Command	Command	Symbol	A	В	C	A-2	Cmds.	Ac	C A	Ž	N A
84	124	CM-2	x	11.70	10.00	x					
85	125	CM-3	X	1		X	1		1.00		1
86	126		1.1			1.1			X		
87	127	CM-4	X			x		1.1			1
88	130		15-	1		1000	+	X		1	1
89	131	CM-5	X			X	1	1.20	1.1.1	1	
90	132	CM-6	X			X				1	
91	133	CM-7	X			X	1		1		1
92	134	CM-8	X	1	1.1	X					
93	135	CH-1	1 - 1	X		X	1				
94	136	CH-2		X	1	X	1	Y			1
95	137		1	1.1	1	1.1	X				1
96	140	CH-3	1	X		X		1	1 3		1
97	141	CH-4	1	X		X					
98	142	CH-5	1	X	1	X	1				1
99	143	CH-6		X	1	X					1
100	144	CH-7	1	X		X					
101	145	CH-8	1	X		X					1
102	146	CH-9	1	x	1	X			1.00		1
103	147			-	1				Х		1
104	150	CR-1	1			X					
105	151				-	00		Х			
106	152	CH-10		X	1	x			X	1	

TABLE 3 (CON'T)

A	
E	
F	
P	
2	
IT	
-	
3	

								SS	Address Complement	Command	Not Presently Assigned
Decimal	Octal	Command	-1-10	Art	ray Us	age	Test	Address	ldre		t P sig
Command	Command	Symbol	A	B	C	A-2	Cmds.	Ad	Ad Co	No	No As
107	153	CD-22				x					-
108	154					-					X
109	155										X
110	156	CS-1		1	X	16 I I I				1	
111	157			1.00		1	X				
112	160										X
113	161		1		1				X		
114	162	CS-3		1	X						
115	163	CS-4			X	10	1				
116	164	CS-5	1	1.1-1	X	1				r F	
117	165	CS-6	ł.		X	1					
118	166	CS-7	1	1	X	1					
119	167		1			1	X	1 m			
120	170	CS-8	1	1.1	X		1		1 1		+
121	171		ł		1		1				X
122	172		1	1.1							X
123	173		1	1			X				
124	174				· · ·						X
125	175		1	1		1	X				1
126	176		1				X		1		1
127	177				1	1		1000	1	x	1
0	000		-		1				-	Х	-
		TOTALS	65	74	73	76	14	8	8	2	6

A-18 Changed 15 December 1970

TABLE 4

Array Experiment Numbers

Array Expt No	А	в	с	A-2
1	PSE	HFE	PSE	PSE
2	LSM	PSE	ASE	LSM
3	SWS	CCGE	SIDE	sws
4	SIDE	CPLEE	CPLEE	SIDE
5	_		_	HFE

INTRODUCTION

This document tabulates the measurements to be telemetered from the ALSEP system. The included tables indicate the functions measured, the designation symbol, the assigned channel, accuracy, range, number of bits per sample, and sample rate provided via the PCM telemetry link.

Operational data is defined as that data required to indicate the readiness of the equipment to perform its intended function. In keeping with this definition, all of the data transmitted on analog housekeeping channels are designated as operational.

The A/D converter provided in the data subsystem is capable of encoding analog housekeeping and science signals to 8-bit accuracy. The encoded word occupies 10 bit positions to fill word 33 in the ALSEP format. Each housekeeping signal is read out once in 90 frames of the PCM format. The analog multiplexer advances one position each frame. Digital data derived from the experiments has an output consistent with the frame format section of the ALSEP Data Subsystem. The high data rate required by the Active Seismic Experiment (ASE) necessitates inhibiting other signals for the operation period of the ASE, except for selected critical items which are incorporated in the ASE format.

The following tables categorize the telemetered measurements:

Table 1 (a)	- Channel Assignments for the Analog Multiplexer (ALSEP Word 33)
Table 1 (b)	- Analog Housekeeping Channel Usage
Table 1 (c)	- Summary of Analog Channel Usage, Flights 1 to 4 and Array A-2
Table 2	- Passive Seismic Experiment
Tables 3, 4, 5	- Magnetometer Experiment
Table 6	 Suprathermal Ion Detector and Cold Cathode Gauge Experiment

Table 7	- Active Seismic Experiment
Table 8	- Charged Particle Experiment
Tables 9-12	- Heat Flow Experiment
Table 13	- Solar Wind Experiment
Table 14	- Cold Cathode Gauge Experiment (MSC)

Flights 1 & Z	Array A
Flight 3	Array B
Flight 4	Array C

1	2	3	4	5	6	7	8
x	x	x	x	0	x	S	x
9	10	11	12	13	14	15	16
*	x	-	х	-	X	I	X
17	18	19	20	21	22	23	24
0	x	0	х	0	x	S	x
25	26	27	28	29	30	31	32
-	x		X	-	X	I	X
33	34	35	36	37	38	39	40
Н	x	•	x	•	x	S	X
41	42	43	44	45	46	47	48
Ξ.	x	-	x	-	CV	I	X
49	50	51	52	53	54	55	56
0	x	0	x	0	x	S	I
57	58	59	60	61	62	63	64
-	x	-	x	-	x	I	X

Flight Systems 1 & 2

Legend

x

4

.

S

0

I

H

Number of Words Per Frame 3 - Control 29 X - Passive Seismic - Short Period 12 43 - Passive Seismic - Long Period Seismic 2) - Passive Seismic - Long Period Tidal and One Temperature 7 - Magnetometer 4 - Solar Wind 5 - Suprathermal Ion Detector 1 CV - Command Verification (upon command, otherwise all zeros) 1 - Housekeeping TOTAL 64

Each box contains one 10-bit word Total bits per frame - $10 \times 64 = 640$ bits

Figure 1. ALSEP Channel Assignment for Array A

2

Flight System 3

1 x	2	3	4 X	5	6	7	8
x	x	x	A	CV	x	CP	x
9	10	11	12	13	14	15	16
-	x	-	x		х	CG	x
17	18	19	20	21	22	23	24
CP	x	CP	x	HF	х	CP	x
25	26	27	28	29	30	31	32
-	x		x	•	х	CG	x
33	34	35	36	37	38	39	40
Н	x	•	x		х	CP	x
41	42	43	44	45	46	. 47	48
-	x	•	х	-	х	CG	x
49	50	51	52	53	54	55	56
NA	х	NA	х	NA	х	CP	CG
57	58	59	60	61	62	63	64
-	x	1.2	x	- 1	x	CG	x

Leg	en	<u>a</u>	Number of Words Per Frame	
x	-	Control	3	
x	-	Passive Seismic - Short Period	30]	
-	-	Passive Seismic - Long Period Seismic	12	44
0	-	Passive Seismic - Long Period Tidal and One Temperature	2]	
HF	-	Heat Flow	1	
CP	-	Charged Particle	6	
CV	-	Command Verification (upon command, otherwise all zeros)	1	
H	-	Housekeeping	1	
NA	-	Not Assigned (all zeros shall be transmitted)	3	
CG	-	Cold Cathode Gauge Experiment (MSC)	5	
		TOTAL	64	

Each box contains one 10-bit word. Total bits per frame - $10 \ge 64 = 640$ bits.

14 Figure 2 ALSEP Channel Assignment for Array B

Flight System 4

1	2	3	4	5	6	7	8
x	×	x	х	CV	x	CP	x
9	10	11	12	13	14	15	16
-	x	10	х	-	x	I	x
17	18	19	20	21	22	23	24
CP	x	CP	х	NA	x	CP	x
25	26	27	28	29	30	31	32
•	x	-	x	-	x	1	x
33	34	35	36	37	38	39	40
H	x		x	•	x	CP	x
41	42	43	44	45	46	47	48
-	x	-	х		x	I	x
49	50	51	52	53	54	55	56
NA	х	NA	х	NA	x	CP	I
57	58	59	60	61	62	63	64
-	X	-	X	-	X	I	X

Number of Words Per Frame Legend 3 - Control x 30 - Passive Seismic - Short Period х 12 - Passive Seismic - Long Period Seismic 44 2 - Passive Seismic - Long Period Tidal and One Temperature 2 • 5 - Suprathermal Ion Detector/CCGE I 6 CP - Charged Particle CV - Command Verification (upon command, otherwise all zeros) 1 - Housekeeping 1 H 4 NA - Not Assigned (all zeros shall be transmitted) TOTAL 64

Each box contains one 10-bit word. Total bits per frame - 10 x 64 = 640 bits.

Figure 3. ALSEP Channel Assignment for Array C

1	2	3	4	5	6	7	8
×	x	x	x	0	x	S	x
9	10	11	12	13	14	15	16
•	x	-	x	-	x	I	x
17	18	19	20	21	22	23	24
0	x	0	x	0	x	S	HF
25	26	27	28	29	30	31	32
•	x	-	x	-	x	I	x
33	34	35	36	37	38	39	40
Н	x		x		x	S	X
41	42	43	44	45	46	47	48
•	x	-	x		CV	I	X
49	50	51	52	53	54	55	56
0	x	0	X	0	x	S	I
57	58	59	60	61	62	63	64
7	x	-	x	-	X	I	X

Leg	ene	4	Number o Words Po Frame
HF	-	Heat Flow	1
x	-	Control	3
x	-	Passive Seismic - Short Period	28]
	-	Passive Seismic - Long Period Seismic	12 4
	-	Passive Seismic - Long Period Tidal and One Temperature	2)
0		Magnetometer	7
S	-	Solar Wind	4
I	-	Suprathermal Ion Detector	5
CV	~	Command Verification (upon command, otherwise all zeros)	1
н	-	Housekeeping	1
		TOTAL	64

Each box contains one 10-bit word Total bits per frame - $10 \times 64 = 640$ bits

Figure 3A. ALSEP Channel Assignment for Array A-2

ALSEP-MT-03

1	11000		1.	in the second second	
¥	ALSEP WORD #1	ALSEP WORD #2	- 14-	ALSEP WORD #3	
$\frac{1}{1} \frac{2}{1} \frac{3}{1}$	4 5 6 7 8 9 10 11 12 0 0 0 1 0 0 1 0 0 0	13 14 15 16 17 18 19 0 0 1 1 1 0 1	20 21 22 23 1 0 1 F1	24 25 26 F2 F3 F4	27 28 29 30 F5 F6 F7 M
*	BARKER CODE	- COMPLEMENT OF BARKER	CODE	FRAME COI (1, 2	89, 0) BIT
Symbol	Name	ALSEP Words	Range	Bits/ Sample	Samples/Second (at Normal Data Rate)
DA-1	Barker Code and Complement	1, 2, and bits 1 and 2 of word 3	NA	22	1.67
DA+2	Frame Count	Bits 3 to 9 inclusive of word 3	0-89	7	1.67
DA-3	Bit Rate ID	Bit 10 of word 3		1	1/54
		Frame Mode Bit 1 1 2 1	Meaning Normal data rate Slow data rate		
DA-4	ALSEP ID	Bit 10 of word 3		3	1/54
		$\begin{array}{c c} \hline Frame & Mode Bit \\ \hline 3 & X(MSB) \\ 4 & X \\ 5 & X \end{array} \right\}$	Data proces number	ssor	
DA-Sees	Received Command Message	Bits 3 to 9 inclusive of word 46 or 5*	0-127	7	**
DA-6	Command MAP ****	Bit 10 of word 46 or 5*	"0" no parity "1" parity	v	**
DA-7	Filler Bits	Bits 1 and 2 of	All seros	z	**
		word 46 or 50 Bits 1 and 2 of	All seros	2	1.67

One word sample is sent for each command received, other samples are all seros. Maximum sampling rate is about once per second. * Command verification word is 46 on Array A and A2 and word 5 on Array C * Verifies reception and decoding of commands by retransmission of command message.

**** Message Acceptance Pulse

Figure 4. Control and Command Verification Words Format

ALSEP-MT-03

TABLE 1 (a)

CHANNEL ASSIGNMENTS FOR ANALOG MULTIPLEXER (ALSEP WORD 33)

12

FLIGHT SYSTEMS 1, 2, 3, 4 and A-2

Channel	Flight Systems			
Number	1 and 2	Flight System 3	Flight System 4	Array A-2
1.	AE-3)			
2.	AE-1			
3.	AE-2			
4.	AT-3			
5.	AE-4	Same on all Flight Syste	eme	
6.	AR-1	buille on all Fright byst	CIIIB	
7.	AR-4			
8.	AE-5			
9.	AB-1			
10.	BLANK	AC-4	AC-4	AZ-1
11.	BLANK	AC-5	AC-5	AZ-2
12.	AB-4		10-2	
13.	AE-6			
14.	AB-5			
15.	AT-10			
16.	AT-21			
17.	AT-22	Same on all Flight Syste	ems	
18.	AT-23	buille on all 1 light by th		
19.	AT-24			
20.	AE-7			
21.	AE-13			
22.	AE-18			
23.	AL-1			
24.	AL-5			
25.	BLANK	AC-1	AC-1	AB-6
26.	AX-5)			
27.	AT-1	Same on all Flight Syste	ems	
28,	AT-4			
29.	BLANK	AH-1	AS-1	AH-1
30.	AX-2]			
31.	AT-25			
32.	AT-26			
33.	AT-27			
34.	AT-28			
35.	AE-8	Same on all Flight Syste	ems	
36.	AE-14			
37.	AR-2			
38.	AL-2			
39.	AL-6			
40.	BLANK	AC-3	AC-3	AE-6
41.	AX-6)			
42.	AT-2	Same on all Flight Syste	ems	
43.	AT-5			

NOTE: Channels 1-15 are "High Reliability" channels.

TABLE 1 (a) (CONT.) CHANNEL ASSIGNMENTS FOR ANALOG MULTIPLEXER (ALSEP WORD 33)

Channel Number	Flight Systems1 and 2	Flight System 3	Flight System 4	Array A-2
44.	BLANK	BLANK	AS-2	AE-5
45.	BLANK	AH-2	BLANK	AH-2
46.	AT-29]			
47.	AT-30			
48.	AT-31			
49.	AT-32	Same on all Flight Systems		
50.	AE-9	STATUTE CONTRACT STATUTE		
51.	AE-15			
52.	AR-3			
53.	AL-3			
54.	AL-7			
55.	BLANK	AH-3	AS-3	AH-3
56.	AX-2	AX-3	AX-3	AX-3
57.	i JANK	AH-6	BLANK	AH-6
58.	AT-6)			6.45 0
59.	AT-8			
60.	AT-12			
61.	AT-33			
62.	AT-34			
63.	AT-35	Same on all Flight Systems		
64.	AT-36			
65.	AE-10			
66.	AE-16			
67.	AR-5			
68.	AL-4			
69.	AL-8			
70.	AI-1	AG-1	AI-1	AI-1
71.	AT-7	Same on all Flight Systems		1008-1-4
72.	AT-13	Same on all Flight Systems		
73.	BLANK	BLANK	AS-4	BLANK
74.	BLANK	AH-4	BLANK	AH-4
75.	BLANK	AH-7	BLANK	AH-7
76.	AT-37)			
77.	AT-38			
78.	AT-39			
79.	AE-11			
80.	AE-12	Same on all Flight Systems		
81.	AE-17			
82.	AR-6			
83.	AX-1			
84.	AX-4			
85.	AI-2	AG-2	AI-2	A1-2
86.	BLANK	BLANK	BLANK	AZ-3
87.	AT-9	Same on all Flight Systems		and the second second
88.	AT-11	Same on all Flight Systems		
89.	BLANK	AC-2	AC-2	BLANK
90.	BLANK	AC-6	AC-6	BLANK

TABLE 1 (b) ANALOG HOUSEKEEPING CHANNEL USAGE

Symbol	Location/Name	Flight	Channel	Range		Sensor Accurac
Struct	ural/Thermal Temperatures					
AT-1	Sunshield #1	All	27	-300°H	to +300°F	+15°F
AT-Z	" #2	- OC	42	11	n	
AT-3	Thermal Plate #1	4.6	4	-50°F	to +200°F	+10°F
AT-4	" " #2	- 11	28		0	
AT-5	11 11 #3		43		19	17
AT-6	" #4	11	58	i α	n	U
AT-7	" #5	.11-	71			-11
AT-8	Left Side Structure #1		59	-300°E	to +300°F	+15°F
AT-9	Right Side Structure #2	11	87	11	u	— n
AT-10	Bottom Structure #3	5.8	15	. X*		0
AT-11	Power Dump Module		88			- 0
AT-12	Inner Multilayer Insulation	17	60	-50°F	to +200°F	+10°F
AT-13	Outer Multilayer Insulation	11	72	-300°F	to +300°F	$\overline{\pm}15^{\circ}F$
Electr	onic Temperatures					
AT-21	Local OSC. Crystal A	- 11	16	$-10^{\circ}F$	to +140°F	+10°F
AT-22	Local OSC. Crystal B	- O*	17	3.6	14	
AT-23	Transmitter A Crystal	11	18	- 69	zie	-14
4T-24	Transmitter A Heat Sink	- 0	19	0	**	
AT-25	Transmitter B Crystal	- <i>11</i>	31	11	*	- 77
AT-26	Transmitter B Heat Sink	11	32	- 0,	stc	-11
AT-27	Analog Data Processor, Base	÷1	33	-50°F	to +200°F	
AT-28	Analog Data Processor, Internal	11	34	0		- 11
AT-29	Digital Data Processor, Base		46		**	11
AT-30	Digital Data Processor, Internal		47	11	11	11
AT-31	Command Decoder, Base	- O	48	лi	- 13	11
AT-32	Command Decoder, Internal		49	. (r	0	- O.
AT-33	Command Demodulator VCO	30	61		11	
AT-34	PDU, Base		62	- 11		11
AT-35	PDU, Internal	- 0	63	11	- CC	11
AT-36	PCU, Power OSC #1	11	64	-0	- 3.1	11
AT-37	PCU, Power OSC #2		76	11		-0
AT-38	PCU, Regulator #1	- 11	77	11	+210°F	Ω.
AT-39	PCU, Regulator #2	1.1	78	11	11	-07

Total of 32 Central Station Temperatures

* Calibration Range for Flights A, B and C shown. Calibration Range for A2 Transmitter is -220°F to +150°F.

Changed 15 December 1970 B-9

TABLE 1 (b) (CONT.)

ANALOG HOUSEKEEPING CHANNEL USAGE

Symbol	Location/Name		Array	Channel	Range	_	Sensor Accuracy	
Centr	al Station Electrical							
E-1	ADC Calibration 0.25V		A11	2	Octal Count 015	+ 1	0.5%	
AE-Z	ADC Calibration 4.75V			3	Octal Count 361	where a	0	
AE-3	Converter Input Voltage			1	0 to 20 VDC	-	+2%	
AE-4	Converter Input Current		17	5	0 to 5 ADC		-0	
AE-5	Shunt Reg #1 Current		n	8 **	0 to 3, 5 ADC		0	
AE-6	Shunt Reg #2 Current		.0	13 卒举	0 to 3.5 ADC			
AE-7	PCU Output Voltage #1 (29V)		**	20	0 to 35 VDC		11	
AE-8	PCU Output Voltage #2 (15V)		n -	35	0 to 18 VDC		- 11	
AE-9	PCU Output Voltage #3 (12V)		0	50	0 to 15 VDC		u.	
AE-10	PCU Output Voltage #4 (5V)		0	65	0 to 6 VDC			
AE-11	PCU Output Voltage #5 (-12V)			79	0 to -15 VDC		-11	
AE-12	PCU Output Voltage #6 (-6)		0	80	0 to -7.5 VDC			
AE-13	RCVR., Pre-Limiting Level			21	-101 to -61 dBm	6	<u>+1</u> dBm	
AE-14	RCVR., Local OSC Level		0	36	0 to 10 dBm		+0.5 dB	
AE-15	Trans. A, AGC Voltage		A, and C		0 to 5 V		<u>+5%</u>	
AE-16	Trans. B, AGC Voltage			66	0 to 5 V			
AE-17	Trans. A, DC, Power Double			81	100 to 220 ma			
AE-18	Trans. B, DC, Power Double	E.		22	100 to 220 ma		9	
AE-15	Trans. A, RF Power		AZ	51	27 to 32 dBm		0.1 dB	
AE-16	Trans. B, RF Power		AZ	66	27 to 32 dBm		0, 1 dB	
AE-17	Trans. A, Current		AZ	81	0 to 500 ma		<u>+5</u> ma	
AE-18	Trans. B, Current		A2 .	22	0 to 500 má		<u>+</u> 5 ma	
Centr	al Station Bistatic							
AB-1	Receiver, 1 KHz Subcarrier 1	Present	ÂIJ	9	Furen #1	Funna #2	Outol Count	
AB-4*	Power Distribution, Experime	ents		12	Exper. #1	Exper. #2	Octal Count 000-002	
	#1 and #2.			**	Standby	-	076-122	
					-	Standby	171-215	
					Standby	Standby	264-314	
AB-5*	Power Distribution, Experim	ents		14	Exper. #3	Exper. #4	Exper. #5	Octal Cn
	3, 4, and 5.			1	-	_	Standby	000-002
						Standby	Standby	073-117
						Standby	Standby	132-156
					Standby		Standby	171-215
					Standby		Standby	226-252
					Standby	Standby	Junice y	262-300
					Standby	Standby	Standby	314-340
AB-6	Data Processor X On/Off		A2	25	Octal 0 to 2 OFI 160 to 220 ON	7/		
*Experime	nts numbered as shown below:							
Exp. No.	A	c	AZ					
1	PSE	PSE	PSE					
Z	LSM	ASE	LSM					
3	SWS	SIDE/	SWS					
		CCGE		-				
4	SIDE/CCGE	CPLEE	SIDE/CCC)E				
5	[DSS Heaters	1 & 2]	HFE					
**For	Array A2 only			For Arrays	A, C.			
	5 8,44		Ex	p. 5 Power	On; DSS Heater 1 C	201		
					Power: DSS Heate			
AE-	6 13,40		Ex		OFF:DSS Heater			

Symbol	Location/Name		Array	Channel	Range	Sensor Accuracy	Bits/ Sample	Samples/ Sec.
RT	G Temperatures	G.E. No.						
AR-1	Hot Frame #1	(R1-1)	All	6	88950°F to 1150°F	+5°F	8	.0185
AR-Z	Hot Frame #2	(R1-2)	4+	37	1950°F to 1150°F	- ye	1.0	11
AR-3	Hot Frame #3	(R1-3)	49	52	950°F to 1150°F	0	24	34.
AR-4	Cold Frame #1	(R3-1)		7	400°F to 600°F	n.	tt.	
AR-5	Cold Frame #2		1.44	67	400°F to 600°F			
AR-6	Cold Frame #3	(R3-3)	0	82	*400°F to 600°F		-11	24
Dut	st Accretion							
AX-1	#1 Cell Temper	ature	AAB	83	+27°C to +160°C	+8°C	8	.0185
AX-Z	#2 Cell Temper		46	30	+27°C to +160°C	- u	**	
AX-3	#3 Cell Temper			56	+27°C to +160°C	0.		ex
AX-4	#1 Cell Output		110	84	0-150 mV	+1%		
AX-5	#2 Cell Output		0.0	26	0-150 mV			11
AX -6	#3 Cell Output			41	0-150 mV	- 11	- 0	- 83
D. 1	T.R.E.M.							
AX-1	Inner Tempera	ture	C & A2	83	-160°C to +120°C	+2°C	8	0185
AX-2	Cell Temperate			30	+27°C to +160°C	+5°C		. 0135
AX-3	Outer Tempera			56	-160°C to +120°C	72°C	11	12
AX-4	#1 Cell Output		294.8	84	0-150 mV	+1%		
AX-5		(Irradiated Filter)		26	0-150 mV			
AX-6	#3 Cell Output		ė.	41	0-150 mV	.01	11	11
Par	ssive Seismic							
AL-1	L. P. Ampl. Ga	in (X & Y)	All	23	Discrete		8	.0185
AL-2	L. P. Ampl. Ga		XX	38	**		u	
AL-3	Level Direction		546	53			4.4	
AL-4	S. P. Ampl. Ga	Constraints of the Constraint of the Constraints		68			10	11
AL-5	A REAL PROPERTY OF A REA	& Coarse Sensor Mode	8.1	24	" See Table 2		A.C	
AL-6	Thermal Contr	ol Status		39	11-		4.4	
AL-7	Calibration Sta	tus L. P. & S. P.	3.0	54	ù.		200	
AL-8	Uncage Status		0.0	69			- 34	xir
Act	tive Seismic							
AS-1	Central Station	Package Temp.	G	29	-40°C to +100°C	+3°C	8	.0185
AS-2	Mortar Box Te	mperature	G	- 44	-75°C to +100°C	-11	11	10
A5-3	Grenade Launci	her Assembly Temp.	C	55	-75°C to +100°C	83	.0.	. 9.9
AS-4	Geophone Temp	perature	C	73	-200°C to +130°C	14	.0	.949
Hea	t Flow							
AH-1	Supply Voltage	e t	B & A2	29	0 to +5 volts	5% full scale	8	. 0185
AH-2	Supply Voltage	YZ	B & AZ	49	0 to -5 volts	0	.0.	11
AH-3	Supply Voltage	#3	B & A2	55	0 to +15 volts	0.4		3440
AH-4	Supply Voltage	¥4	B & A2	74	0 to -15 volts	10.0	. 100	. 9.9
AH-5	Not Assigned		DOME					
AH-6	Supply Voltage	#6	B & A2	57	Discrete	.000	0	10410
AH = 7	Supply Voltage	47	B & A2	75	11	25	10	

TABLE 1 (b) (CONT.) ANALOG HOUSEKEEPING CHANNEL USAGE

In Array A, these channels monitor fixed resistors, giving, typically, octal readings of 151-171 for channel 37 and 215-223 for channel 82.

TABLE 1 (b) (CONT.)

ANALOG HOUSEKEEPING CHANNEL USAGE

ble P.S. Voltage tron P.S. #1 tron P.S. #2 Converter Voltage ature of Physical Analyzer ature of Switchable P.S. ergy Detector Count Rate ergy Detector Count Rate	3,4 "" " " 1,2,4 1,2,4	25 89 40 10 11 90	0-4.5V 0-4.5V 0-4.5V 0-4.5V -30° to $+80^{\circ}C$ -39° to $+80^{\circ}C$	<u>+</u> 5% " " " "	8 " " "	. 0185 n n n 1 1
tron P. S. #1 tron P. S. #2 Converter Voltage ature of Physical Analyzer ature of Switchable P. S.	" " " 1,2,4	89 40 10 11 90	0-4.5V 0-4.5V 0-4.5V -30° to $+80^{\circ}C$ -39° to $+80^{\circ}C$	- 0 0 0	11 11 11 11	и 10 11 11
tron P. S. #2 Converter Voltage ature of Physical Analyzer ature of Switchable P. S. ergy Detector Count Rate	" " " 1, 2, 4	40 10 11 90	0-4.5V 0-4.5V -30° to +80°C -39° to +80°C	и и и и	11 11 11 11	и 10 11 11
Converter Voltage ature of Physical Analyzer ature of Switchable P. S. ergy Detector Count Rate	, n , n , n , n , n , n , n , n , n	10 11 90	0-4,5V -30° to +80°C -39° to +80°C		0 0	н. Н
ature of Physical Analyzer ature of Switchable P. S. ergy Detector Count Rate	" " 1, 2, 4	11 90	-30° to +80°C -39° to +80°C	н Н	b.	л
ature of Switchable P. S. ergy Detector Count Rate	"	90	-39° to +80°C	u		
ature of Switchable P. S. ergy Detector Count Rate	1, 2, 4					"
ergy Detector Count Rate ergy Detector Count Rate		70	10.106			
ergy Detector Count Rate ergy Detector Count Rate		70	10 106			
ergy Detector Count Rate			10-10 Counts/se	C +10%	8	.0185 ~
		85	10-10 ⁶ counts/se 10-10 ⁶ counts/se	C 110 /0	n.	.0185
Jutput	3	70	0-5.0V		8	.0185
ange	n	85	0-5.0V		'n	
8 Hour Bistatic	12	10		100		
8	Hour Bistatic 1/2 Month #1 1/2 Month #2	Hour Bistatic A2 1/2 Month #1 A2 1/2 Month #2 A2	Hour Bistatic A2 10 1/2 Month #1 A2 11 1/2 Month #2 A2 86 s HI = >200 _q LO = < 40 _o ; Init	ange " 85 0-5.0V Hour Bistatic A2 10 Alternately HI-LO 1/2 Month #1 A2 11 HI after 1 1/2 mon 1/2 Month #2 A2 86 HI after 1 1/2 mon	Hour Bistatic A2 10 Alternately HI-LO= 1/2 Month #1 A2 11 HI after 1 1/2 months* 1/2 Month #2 A2 86 HI after 1 1/2 months* 1/2 Month #2 LO = < 40 ; Initial and reset condition is I	Hour Bistatic A2 10 Alternately HI-LO= 1/2 Month #1 A2 11 HI after 1 1/2 months* 1/2 Month #2 A2 86 HI after 1 1/2 months* s HI = >200 LO = <40 ; Initial and reset condition is LO for AZ

MAGNETOMETER MEASUREMENTS

Scientific Measurements

Symbol	Location/Measurement	ALSEP Word	Frame	Rang	e			Sensor Accuracy			quency ponse	Bits / Samp		Sample/ Sec.	Sample/ Frame
**** DM-25	X-Axis Field	17, 49	Every	+100	, +200,	+400	gamma	*	~1	.5	cycle/se	ec. 10	0	3.3	2
**** DM-26	Y-Axis Field	19, 51	0	-"		- "	- 11	*	~	11	n (1 11			
***** DM-27	Z-Axis Field	21, 53				43	11	*	~	11	.00	e . u	5 C	0	11

These data are in Words 17, 19, 21, 49, 51, 53 and have the following format:

29	2 ⁸	27	26	25	24	2 ³	22	21	20
Polarity** Bit				Scienc	e Data	***			

* Resolution - 0.2% Full Scale Accuracy - 0.5% Full Scale

** 0 = Plus, 1 = Minus

***Calibrate levels of Science Data are 1/4, 1/2 and 3/4 of saturation level, or PCM counts of 128,

256 and 384.

**** ±50, ±100 and ±200 gamma for A-2.

Engineering Measurements

Housekeeping is located in ALSEP Word 5 which is sub- commutated over 16 frames as follows:

Bit in Word 5	29	28	27	26	25	24	23	22	2 ¹	z ⁰
Maariaa		Al	A2	A3	A4	A5	A6	A7		-
Meaning	F		Eng	gineeri	ing Da	ta			Bl	B2

Where B1, B2 are bistable status data

Al, A7 are bits derived from analog measurements

F locates the subcommutation start, F = 1 is frame 1 of the subcommutation and F = 0 elsewhere.

TABLE 3 (CONT.) MAGNETOMETER MEASUREMENTS

Engineering Measurements (Cont.)

		ALSEP		1.1 C	Sensor	Bi	ts/		Sample/	Sample
Symbol	Location/Measurement	Word	Frame	Range	Accuracy	Sa	mple		Sec	Frame
DM-1	Temperature #1 (X Sensor)	5	1, 9,	-30°C to +65°C	+3%		7		. 207	1/8
DM-2	Temperature #2 (Y Sensor)	5	2, 10,	41 11			n			110
DM-3	Temperature #3 (Z Sensor)	11	3, 11,	-4.9			n.		-11-	11
DM-4	Temperature #4 (Base)	2.0	4, 12,	11 11	47		- 11		-44	0
DM-5	Temperature #5 (Internal)		5, 13,	- n U	11				31	
DM-6	Level Sensor #1		6,14,	-15º to +15º					- 11	11
DM-7	Level Sensor #2	10	7, 15,	0 0					-40	
OM - 8	Supply Voltage	u.	8, 16,	0 to +6.25V	+0.1%		U.			
DM-9	X Flip Position		1	Discrete	7	2 :	statu	s bits	. 104	1/16
DM-10	Y Flip Position	11	2	11		Z	11	11	0	
DM-11	Z Flip Position		3	11		2	0	Tr.		12
DM-12	X Gimbal Position	0.1	4	v		1	.0.		11	11
DM-13	Y Gimbal Position		4	ie i		1	- ((13	- TC	
DM-14	Z Gimbal Position	- 0	5	10		1	11	11	3.4	
DM-15	Temperature Control Select	- 0	5	D		1	.0		21	21
DM-16	Measurement Range	11	7	10 J		Z		18	00	4.Y
DM-17	X Offset Field	11	See Table 4	10 L		3	11		.11 -	. 12
DM-18	Y Offset Field		See Table 4	" > See	Table 5	3	.0	0		- 11
DM-19	Z Offset Field	- 11 -	See Table 4	a (3	- 0.		- 11	
0M-20	Mode State	- 17	13	0		1	0	1.0	- 11	21
DM-21	Offset Address	100	14			2	- 0	- U		144
DM-22	Filter In/Out	- 10	15			1	64	- 6)	- 00	11
0M-23	Flip/Cal Inhibit Status	- 11	15	11		1	11	11	- 64 -	-01
M-24	Filler Bits	2.0	16	.0		2	.n.		21	
M-28	Heater Power Status	**	6	0		2	.0		-00	
0M-29	Filler Bits	11	6,8			2	11	21	198-	
M-30	LSM Frame ID	- 11 -	(Derived from F in Frame #1)			100				

Detail of the status-bit usage is shown in Table 4 and the status bit structure is shown in Table 5.

TABLE 1 (c)

SUMMARY OF ANALOG CHANNEL USAGE FLIGHTS 1 TO 4, A-2

	Flights 1 & 2	Flight 3	Flight 4	Array A-2
Central Station				
Data and Power Subsystem: (including timer)	s 38	38	38	44
Experiment On-Off Status	2	2	2	2
Structural/Thermal	13	13	13	13
RTG Temperatures TOTAL	4 57	<u>6</u> 59	<u>6</u> 59	$\frac{6}{65}$
Experiments				
Passive Seismic	8	8	8	8
Solar Wind		$i = i_{i}$	<u></u>	-
Magnetometer	_	_	-	—
SIDE	2		2	2
Heat Flow		6	-	6
CPLEE	_	6	6	-
Active Seismic	-	_	4	_
CCGE (MSC)	-	2		_
Dust Detector TOTAL	<u>6</u> 16	<u>6</u> 28	$\frac{6}{26}$	$\frac{6}{22}$
Not Assigned	17	3	5	3
TOTAL	90	90	90	90

PASSIVE SEISMIC MEASUREMENT, FLIGHT 1, 2, 3, 4 AND A2

Scientific Measurements:

Symbol	Location/Measurement	ALSEP Word	Frame	(Dynam) Range	ic)		Sensor Accuracy	Bits/ Sample	Sample/ Sec	Sample, Frame
0L-1	L. P. Seismic X	9, 25, 41, 57			10.4					
JL-1 JL-2			Every	1 mp to			5% of reading	10	6.025	4
	L. P. Seismic Y	11, 27, 43, 59		1 mµ to			100 DK			
DL-3	L. P. Seismic Z	13, 29, 45, 61		I mµ to				11		-11
3L-4	Tidal: X	35	Even		0" (arc)		н н		0.85	0.5
DL-5	Tidal: Y	37	Even		0" (arc)		A. 11	0	0.85	0.5
DL-6	Tidat: Z	35	Odd		o 8 mgal		0 0	0.		ы
DL-7	Sensor Unit Temp.	37	Ddd	107-143			+1% of reading	oderen die	-0	10
DL-8	Short Period Seismic: Z	Every Even Word Except	Every	1 mp to	10 µ		5% of reading	'n	48.0	49.6
How	sekceping Measurements	2, 46, 56, 24	F ***							
8 cha	nnels of Engineering Measureme	ats included in ALSEE	Word 33	11 0.5 VD	e.					
		Ghannel					Octal Count	36		
AL-1	L.P. Amp. Gain X, Y	23		Odb	0-0.4V		0 to 25	8	. 0185	
				-10db	0.6-1.4		37 to 110			
				-20db	1.6-2.4		122 to 172			
				-30db	2.6-4.0		205 to 314			
AL-Z	L. P. Amp. Gain Z	38		Odb	0-0.4V		0 to 25	8	0185	
	10.000 KS02 ALCOND			-10db	0.6-1.4		37 to 110	3		
				-20db	1.6-2.4		122 to 172			
				-30db	2.6-4.0		205 to 314			
4L~3	Level Direction and Speed	53		+low	0-0.4V		0 to 25	8	. 0185	
	and the second second second second second			-low	0.6-1.4		37 10 110	100	0.3.5.54	
				+high	1.6-2.4		122 to 172			
				-high	2 6 - 4.0		205 to 314			
AL-4	S.P. Amp. Gain Z	68		Odb	0-0.4V			а	D185	
1445-10	A STAR A COMPANY OF THE			-10db	0.6-1.4		0 to 25	a	0101	
				-20db	1.6-2.4		37 to 110			
				-30db	2.6-4.0		122 to 172			
				-3000	4.0-4.0		205 to 314			
AL-5	Leveling Mode and Coarse	24			ic, coarse level		0 to 25	8	-0185	
	Sensor Mode				coarse level out		37 to 110			
					tic, coarse level		122 to 172			
				Manual,	coarse level in	2.6-4.0	205 to 314			
AL-0	Thermal Control Status	39		Automat	tic Mode ON	0-0.4V	0 to 25	8	- 0185	
				Automat	ic Mode OFF	0.6-1-4	37 to 110	180	- second a	
				Manual	Mode ON	1.6-2.4	122 to 172			
				Manual	Mode OFF	2.6-4.0	205 to 314			
AL-7	Calibration Status LP & SP	54		Both ON	1. The second	0-0.4V	0 to 25	8	.0185	
					SP-OFF	0.6-1.4	37 to 110			
				LP-OFF		1.6-2.4	122 to 172			
				Both OF	F	2.6-4.0	205 to 314			
AL-8	Uncage Status****	69		Caged	0-0.4V		0.42.35		0195	
Martin Carlo	CONTRACTOR CONTRACTOR AND			Arm	0.6-1.4		0 to 25	8	.0185	
				Uncage	1.6-2.4		37 to 110			
				Surage.	1.0-0-3		122 to 172			

The exception of four ALSEP words occurs in Flight System A2. In Flight Systems B & C, word 46 & 24 are 3/2 used for Short Period. In Flight System A, word 24 is used for Short Period Z.

** 29 in Flight System A, 30 in Flight Systems B & C, 28 in A2

*** +0.05°C resolution.
**** Uncage locked-out on all ground tests.

MAGNETOMETER 16 POINT ENGINEERING SUBCOMMUTATION FORMAT

Magnetometer Subcommutation Frame	Frame Mark Bit	Data	Status Bits (bits 9 and 10 in word 5)
1.144110	Mark Dit	Data	[Dits 9 and 10 in word 5]
1	1	Temp #1	X-axis Flip Position - B ₁ B ₂
2	0	Temp #2	Y-axis Flip Position - B1 B2
3	0	Temp #3	Z-axis Flip Position - B ₁ B ₂
4	0	Temp #4	X-axis Gimbal Position - B ₁ Y-axis Gimbal Position - B ₂
5	0	Temp #5	Z-axis Gimbal Position - B1 Thermal Control Select - B2
6	0	Level #1	Spare Bit - B ₁ Heater Power Status - B ₂
7	0	Level #2	Measurement Range - $B_1 B_2$
8	0	Voltage #1	Filler Bits - B ₁ B ₂
9	0	Temp #1	X-axis Field Offset - B ₁ B ₂ 3 bit word
10	o	Temp #2	$ \begin{cases} X-axis Field Offset - B_1 \\ Y-axis Field Offset - B_2 \\ & & \\$
11	0	Temp #3	Y-axis Field Offset - $B_1 B_2$
12	o	Temp #4	Z-axis Field Offset - B ₁ B ₂
13	0	Temp #5	Z-axis Field Offset - B_1 Mode State - B_2
14	0	Level #1	Offset Address State -B1 B2
15	0	Level #2	Filter Status - B ₁ Flip/Cal inhibit status - B ₂
16	0	Voltage #1	Filler bits - B ₁ B ₂

MAGNETOMETER ENGINEERING STATUS BIT STRUCTURE

Status Flag	Commutator Point	B ₁	B2	Status
X-axis Flip Position	- 1	0	0	Not at 0°, 90°, or 180° position
n n n n n n n	1	0	1 1	0° position
H H H	1	1	0	90° position 180° position
A DESCRIPTION OF THE OWNER OWNER OF THE OWNER OWNER OF THE OWNER	1	1 0	0	180° position Not at 0°, 90°, or 180° position
Y-axis Flip Position	2	0	1	Not at 0°, 90°, or 180° position 0° position 90° position
0 0 0	2	1	0	0 position
	2	1	1 1	90 ^d position 180 ^d position
Z-axis Flip Position	3	0	0	Not at 0°, 90°, or 180° position
" " "	3	0	1	0° position
10. 10. 11	3	1	0	0 ⁰ position 90 ⁰ position
n, n n	3	1	T	90 [°] position 160 [°] position
X-axis Gimbal Position	4	1	1	Pre Site Survey Position
0 0 M	4	0	1	Post Site Survey Position
Y-axis Gimbal Position	4		1	Pre Site Survey Position
n n n	4	1	0	Post Site Survey Position
Z-axis Gimbal Position	5	1	1	Pre Site Survey Position
And a serie and a series of the	5	0	1	Post Site Survey Position
Temp Control State	5	1	1	X-axis Control Y-axis Control/Off
Heater Power Status	6,6		1	Heater ON /Heater OFF
Filler bits	6	1	0	Not Used
Measurement Range	7	ó	0	100 Y Range &
n n n	7	1 1	0	200 Y Range *
H H H	7	i	1	400 Y Range *
8 0 30	7	0	1	Error
Filler Bits	8	1	1	Not used
X-axis Field Offset	9	0	I	0% offset
	10	1		0% offset
0 H 0 H N N	9	1 1	0	-25% offset
	10	0	1	2 1-25% offset
	9	I	0	-50% offset
	10	1	1 .	- 1-50% offset
an ar 11	10	1	1 1	S-C-75% offset
n 16 11	9	0	0	-75% offset
u	10	0	U	+75% offset
29 - 20 40.	9	1 0	1 0	(+50% offset
11 11. 11	10	1 1	1	+ (+50% offset
M M H	9	i o	1	LS+25% offset
20. 10. 20.	10	0	1 1	+25% offset
Y-axis Field Offset	10		0	0% offset
9 H H	11	1 1	1	0% offset
N N N	10	1. 0.0	1	- 25% offset
0 0 0 0 0 0	11	1 0	0	2 - 45% offset
0 0 0 0 0 0	10	1 0	1 1	50% offset
	11	0	1 1	50% offset
ai ar a	11	1	1 0	-75% offset
a n n	10	1 1	0	175% offset
94 H H	11	0	0	475% offset
0 0 00	10		0	\$+50% offset
а а и	11	0	1 1	H+50% offset
	10		0	h (+25% offset
н н н	11	1	0	H+25% offset
Z-axis Field Offset	12	3	1	0% offset
	13	1 1		10% offset
11 11 III	12	1	0	1 25% offset
17 10 10	13	0		- 25% offset
17 11 AF	12	1	0	↓ 50% offset
n n n	13	1	1	P 1-50% offset
	12	1	1	- 75% offset
	13	0		- 75% offset
н н н	13	0	0	+ 75% offset
n. n. h.	13	0	0	W 75% offset
10 II II	13	1	v	H 50% offset
97 Ř – 10	12	i o	1	1 25% offset
11 ii u	13	0		+ 25% offset
Mode State	13		0	Calibrate ON
<i>n</i> <u>n</u>	13		L	Calibrate OFF (Science)
Offset Address State	14	0	0	Not at X, Y, or Z
n n n	14	1	D	X-axis position
31. 17 31	14	0	1	Y-axis position
a) (f ir	14	1	1	Z-axis position
Filter Status	15	1	1.5	Filter bypassed
	15	0		Filter not bypassed
Flip/Cal. Inhibit Status	15		1	Calibration Inhibited
523 (M.)	15	1	0	Calibration not inhibited
Filler bits	16	0	0	Not used

* +50, +100, +200 range for A-2

TABLE 6 SUPRATHERMAL ION DETECTOR AND COLD CATHODE GAUGE EXPERIMENT MEASUREMENTS

Symbol	Location/Name	SIDE Frame	Range [¢] *	Accuracy	Bit/ Sample	Sample/ Sec.
Following n	neasurements carried in ALSE	P Word 15 even, SIDE Word 1 and in i	indicated SIDE Frames.			
D1- I	*SIDE Frame Number	All	0-127	NA	7 bit 4 to 10∉ inclusive	
Following n	neasurements carried in ALSE	P Word 31 even, SIDE Word 2 and in i	indicated SIDE Frames.			
DI-2	+5 volts analog	0, 32, 64, 96	5V +0.15V		8	
DI-3	CCGE Output	1, 3, 5, 7, 9, 41, 73, 105, 121-127	***		ñ	
DI-4	Temp. #1	2, 34, 66, 98	100 to 400°K	+ 10°K	3.0	
DI-5	Temp. #2	4, 36, 68, 100	-90 to +125°C	+5°C	-0-	
DI-6	Temp. #3	6, 38, 70, 102	-90 to +125°C	+5°C	H	
DI-7	4.5 KV	8, 40, 72, 104	3.72 to 5.45KV	-	0	
D1-8	CCGE Range	10, 24, 42, 56, 74, 88, 106, 120	Range #1 6.9 to 9.0V		11	
			Range #2 4.2 to 5.7V		0.	
			Range #3 2.2 to 3.2V		11	
DI-9	Temp. #4	11,43,75,107	-50 to +90°C			
01-10	Temp. #5	12, 44, 76, 108	-50 to +90°C		11	
01-11	GND Plane Voltage	13, 15, 29, 31, 45, 47, 61, 63, 69			115	
		77, 79, 93, 95, 109, 111			51	
01-12	Solar Cell	14,78	15 mV to 600 mV	# 3%		
DI-13	+60 volts	16, 48, 80, 112	. 15 to 150 V		() -	
01-14	+30 volts	17, 49, 81, 113	. 15 to 150 V		9	
DI-15	+5 volts digital	18, 50, 82, 114	15 mV to 15V		10	
DI-16	Ground	19, 51, 83, 115	0 to 18 mV		н.	
DI-17	-5 volts	20, 52,84, 116	-15 mV to -15V		11 ·	
DI-18	-30 volts	21, 53, 85, 117	15 to -150V		**	
DI-19	Temp. #6	22, 54, 86, 118	-50 to +90°C			
01-20	-3.5 KV	23, 55, 87, 119	-2.9 to -4.25 KV		H	
01-21	+1.0 volt cal.	27, 59, 91	153 - 157 Count		n	
01-22	+30 mV cal,	25, 57, 89	20 - 34 Count		11	
01-23	+ A/D Ref. voltage	26, 58, 90	15 mV to 15V			
DI-24	Dust Cover and Seal	67,71			-1 <u>7</u>	
			Preset 3. 125 to 5. 5V		11	
			Seal only 1.875 to 3.125V		a a	
			Dust cover only . 625 to 1			
	A /D D F with	20 / 2 0/	Cover and seal 0 to . 625V			
DI-25	-A/D Ref. volt	30, 62, 94	-15 mV to -15V		11	
DI-26	-1.0 volt cal.	37, 101	153 - 157 Count			
DI-27	-12 volt cal.	39, 103	244 - 248 Count		H	
DI-28	+12 volt cal.	28,60,92	244 - 248 Count			
DI-29	Pre Reg Duty Fact,	65	68% to 100%			
DI-30	-30 mV cal.	46,110	12 - 34 Count			

(SIDE)

*See note on Page 21 for measurement content.

*** With HV (4.5 KV) OFF, cal. counts as follows:

** Range of sensor output

TABLE 6 (CONT.)

SUPRATHERMAL ION DETECTOR AND COLD CATHODE GAUGE EXPERIMENT MEASUREMENTS

SIDE

Symbol		Location/Name	SIDE Frame	Nominal Value	Tolerance	Bit/ Sample	Sample/ Sec.
			Size Libric	1,01700	- otorunot	oumpro	UGU,
DF-29		One Time Command	33, 35, 97, 99	Preset 0 to .625V		8	
		Register Status		Seal only . 625 to 1.875V			
		10 T. S.		Dust cover 1.875 to 3.125V		.0	
				Dust cover and Seal 3. 125 to 5.5V		T F	
Followi	ng measur	rements carried in ALSE	P Word 47 even, SIDE Word 3	and in indicated SIDE Frames.			
				Energy Filter Voltage			
DI-40	HECPA	Stepper Voltage	1,21,41,61,81,101	+437.5V		8	
01-41	(1		2, 22, 42, 62, 82, 102	406.25V		8	
01-42	11		3, 23, 43, 63, 83, 103	375.0V		43	
DI-43	ii.		4, 24, 44, 64, 84, 104	343.75V			
01-44	0		5, 25, 45, 65, 85, 105	312.5V		AT	
DI-45	14		6, 26, 46, 66, 86, 106	281.25V		11	
DI-46	11		7, 27, 47, 67, 87, 107	250.0V		16	
01-47			8, 28, 48, 68, 88, 108	218.75V		10	
01-48	11		9, 29, 49, 69, 89, 109	187.5V		12	
01-49	.0		10, 30, 50, 70, 90, 110	156.25V		.)(
01-50	3.8		11, 31, 51, 71, 91, 111	93.75V		11	
01-51	11		12, 32, 52, 72, 92, 112	93.75V			
DI-52	37		13, 33, 53, 73, 93, 113	62. 5V			
01-53			14, 34, 54, 74, 94, 114	31.25V		0	
01-54	11		15, 35, 55, 75, 95, 115	12.5V		11	
DI-55	0.1		16, 36, 56, 76, 96, 116	8.75V			
01-56	11		17, 37, 57, 77, 97, 117	6.25V			
01-57	4.4		18, 38, 58, 78, 98, 118	3,75V		16	
01-58	11		19, 39, 59, 79, 99, 119	2.5V		14	
1-59	1.0		20, 40, 60, 80, 100, 120	1.25V		. 11	
01-60			0, 121, 122, 123, 124, 125	0V		18	
			126, 127			10	
ollowin	ng measur	ements carried in ALSE	P Word 56 even, SIDE Word 4	and in indicated SIDE Frames.			
01-61**	#	HE Data - MSD#	A11	0 to 999 decimal		10	
ollowin	ng measur	ements carried in ALSEI	P Word 63 even, SIDE Word 5	and in indicated SIDE Frames.			
1-62.000	*	HE Data - LSD**	All	0 to 999 decimal		10	
				್ಯಾ ಸ್ಮಾರ್ಟ್ ಕಾಲ್ಗಳಲ್ಲಿ ಮನ್ನಾಗ ದರ್ಶರವು		10	
MSD -	Most sign	ificant data					
LSD - I	Least sign	ificant data					
	-						

*** For Calibration values, see end of table.

TABLE 6 (CONT.)

SUPRATHERMAL ION DETECTOR AND COLD CATHODE GAUGE EXPERIMENT MEASUREMENTS

SIDE

			Township Internation	SIDE Frame		Nominal	T-1-	Bits/	Samples
Symbol			Location/Name	SIDE Frame		Value	Tolerance	Sample	Sec.
				Normal Mode	Reset @ 9	Voltage			
DJ-92	Velocity	Filter	Voltage	120	120	29.0		8	
DJ-93	11	11	11	121	121	26.3			
DJ-94	**	11		122	122	23.8		0	
DJ-95		- ex		123	123	21.4		n.	
DJ-96	19	**		124	124	19.2			
DJ-97	-0	ñ	0	125, 126, 127	125, 126, 127	>29.0		2.4	
Following	measurer	nents	carried in ALSEP Word	47 odd, SIDE Word 8	and in indicated SIDE Fran				
					the second second second	Energy Filter			
				Normal Mode	Reset Vel. Filter @ 9	Voltage			
DJ-98		Stepp	er Voltage	0-19	0-9,60-69	12.15V		8	
DJ-99	7.6			20-39	10-19,70-79	4.050		11	
DF-0				40-59	20-29, 80-89	1.35		21	
DF-1	(2.6			60-79	30-39,90-99	. 450		93	
DF-2				80-99	40-49, 100-109	.150			
DF-3	(3.6			100-119	50-59,110-119	. 050		-11	
DF-4	(11			120-127	120-127	ov		n	
							Bits/	Sample/	
Symbol	Loca	tion/N	ame	SIDE Frame	Range	Accuracy	Sample	Sec.	
Following	measurer	nents	carried in ALSEP Word	56 odd, SIDE Word 9	and in indicated SIDE Fran	nes,			
DF-5	LE)ata - 1	MSD	АЦ	0 to 999 decimal		10		
Following	messurer	nents	carried in ALSEP Word	63 odd, SIDE Word 10	and in indicated SIDE Fran	nes,			
DF-6	LEI)ata - :	LSD	All	0 to 999 decimal		10		
Two SIDE	measure	ments	are included in ALSEP	Housekeeping Word 33	(Table 1)				
AI-1	Low Rat		y Detector Count	70	10 - 10 ⁶ counts/sec		8	.0185	
AI-2	High Rat		y Detector Count	85	10 - 10 ⁶ counts/sec		8	.0185	
		S	CIENCE CAL, DATA (N	ORMAL MODE)					
Symbol			Location/Name	SIDE Frame	PCM Count Range				
DI-61, 6	2		HE Data	0,124 121,125 122,126 123,127	618,800 to 646,800 0 to 4 150 to 158 19,375 to 20,175				

0 to 4

150 to 158

19, 375 to 20, 175 618, 800 to 646, 800

120, 124

121, 125

122, 126

123, 127

LE Data

DF-5, 6

T	AB	T	E	7
	nD		6	<u>c</u>

ACTIVE SEISMIC MEASUREMENTS

ALSEP-MT-03

Symbol	Location Name		Channel	Range	Second Accornes	Bits/ Sample	Samples Sec.
						Dampie	- Juli
	When the Active Seismic to through the 90-channel mu			urements are provided			
	Active Seismic Temperatu	res (From Ta	ble 1)				
AS-1	Central Station Package In	emb.	29	-40°C to +100°C	- 3°C		
A5-2	Mortar Box Temp.		44	-75°C to -100°C	- 3°C		
AS-3	Grenade Launcher Assemb	iv Temp	55	-75°C to -100°C	- 3°C		
AS-4	Geophone Temp.		73	-200°C to -130°C	Ξ 3°C		
	Active Seismic Measureme	1553					
		A 5 Word	Subword				
DS-17	Frame Sync	$ $	1, 2	N/A	N/A	10	16.5
DS-2	Geophone #2 Data	All	3]	2002	- 10" referre		530
D5-3	Geophone #3 Data	AC	+ (0		" input	5	530
D5-1	Geophone =1 Data	2	1		4	5	530
		2 through 1	n i)		2	-	530
AR-+	RIG Cold Frame Temp #1	Q3, 4	1	400°F to 600°F	- 50F	8	16.5
DS-T	Pitch Angle	5.5	i	+ 10°	= 20	8	16.5
D5-5	Mortar Box Ground Monito		1	0 to 400 mV	± 16.5 mV	8	16.5
DS-6	Roll Angle	9.10	1	+ 10°	- 20'	8	16.5
-	Not Used	11.12	i.			8	16.5
A5-3	Grenade Launcher Assy.	13,14	i	-75°C to +100°C	± 3°C	8	16.5
	Temp.	13,14		-13 C 10 -100-C		ø	10.5
DS-6	Geophone Calibrate Pulse	15,10	1	0 to +5V	÷ 150	ŝ	16.5
DS-11	A D Calibration 3.75V	17,16	ì	272 to 310 (Octal)	- 0, 5%	6	16.5
DS-10	A D Calibration 1.25V	19,20	î	76 to 104 (Octal)	+ 0.5%	3	16.5
A5-1	Central Station Package	21,22	1	-40°C to ÷100°C	- 3°C	5	16.5
11101	Temp,		5		23.5	0	10.5
AE-3	Converter Input Voltage	23, 24	1	0 to 20 VDC	- 2%	ż	16.5
AE-4	Input Current	25 20	1	0 to 5 A DC	+ 2%		
AR-1	RTG Hot Frame Temp #1	27,28	i	950°F to 1150°F	+ 2% + 5°F	2	16.5
DS-18	Mark Event	()z9	1	N/A	T/A	6.0	16.50 N/.
DS-19	Word Count	(1)30	1	N/A	N/A	5	N/
DS-19 DS-20	Event Bit Count	©31	1	N/A	N/A	5	N/
DS-20 DS-13	Mode ID	O 32	1	N/A	N/A	3	16.5
05-13	Mode ID	-1-		477.26			
Din the fir	st 10 bits of the word.						
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	States and Second Street	of the odd word. The last fou	+ hite of the		

measurement are carried in the first four bits of the even word. In each case the last (or fifth) bit of each subword is spare.

3 Mark code when Real Time Event occurs during prior frame (frame = 32 word sequence); mark code is 00100 (all zeroes if no event).

B Measures word in prior frame during which Real Time Event occurred.

Measures bit during which Real Time Event occurred in above word in prior frame.

35

follows:

0

TABLE 8 (CONT.)

CHARGED PARTICLE EXPERIMENT SCIENTIFIC MEASUREMENTS

Symbol	Measurement	ALSEP Words	* CPLEE Frame	Range (Counts)	Accuracy	T/M Bits Per Sample	Samples Per Second	Samples Per Frame
DG-61	DET. 1-A - 350	7, 17	21	0-524, 287	**	19	1/19.3	1/32
DG-62	DET. 2-A-350	19,23	21			19		31
DC-63	DET. 3-A-350	39, 55	21		>0	19	**	
DC-64	DET. 4-A-350	7, 17	22	U U	10	19	α	
DC-65	DET. 5-A-350	19,23	22	0-1048,575	- 11	20	11	hr
DC-66	DET. 6-A - 350	39, 55	22	n,	1110	20	10 °	a.
DC-67	DET. 1-B -350	7, 17	23	0-524, 287		19		
DC-68	DET. 2-B -350	19,23	23		200	19		
DC-69	DET. 3-B-350	39, 55	23	Ū.	-0	19		
DC-70	DET. 4-B350	7, 17	24	ū	- 01	19		
DC-71	DET, 5-B -350	19, 23	24	0-1048,575		20	. 11	.11
DC-72	DET. 6-B -350	39, 55	24	á	0	20		
DC-73	DET. 1-A -35	7, 17	25	0-524, 287		19		
DG-74	DET. 2-A -35	19,23	25	,	- H	19		
DC-75	DET. 3-A-35	39, 55	25	3.6	91 [°]	19		
DC-76	DET. 4-A-35	7, 17	26		- 345	19		<u>.</u>
DG-77	DET. 5-A-35	19,23	26	0-1048,575	+1	20	11	.0
DC-78	DET. 6-A-35	39, 55	26		n	20	н	п
DC-79	DET. 1-B -35	7, 17	27	0-524, 287	. 11	19		
DG-80	DET. 2-B-35	19,23	27			19		.0
DC-81	DET, 3-B-35	39, 55	27			19	- 11	
DC-82	DET. 4-B-35	7, 17	28	n		19	ii.	-0.
DC-83	DET. 5-B-35	19,23	28	0-1048,575		20		-0
DC-84	DET. 6-B -35	39, 55	28	"		20		
DC-85	DET. 1-A-0	7, 17	29	420,000+10%	10 counts	19		
DC-86	DET. 2-A.0	19,23	29	н		19		
DG-87	DET. 3-A-0	39, 55	29	**		19		n
DC-88	DET. 4-A.0	7, 17	30			19		**
DC-89	DET. 5- A-0	19,23	30			20		
DC-90	DET. 6-A-0	39, 55	30		17	20		-12

*CPLEE sampling may initialize at any step voltage but always starts with analyzer A, Detector 1 on an even ALSEP frame. "CPLEE Frame Numbers" are arbitrarily assigned to designate a position in the sequence.

** Error is stochastically related to count magnitude.

TABLE 8 (CONT.)

CHARGED PARTICLE EXPERIMENT SCIENTIFIC MEASUREMENTS

Symbol	Measurement	ALSEP Words	*CPLEE Frame	Range (Counts)	Accuracy	T/M Bits Per Sample	Samples Per Second	Samples Per Frame
DC-91	DET. 1-B-0	7,17	31	420,000+10%	10 counts	19	1/19.3	1/32
DC-92	DET. 2-B 0	19,23	31			19	11	11
DC-93	DET. 3-B-0	39,55	31	93.		19	α	
DC-94	DET. 4-B-0	7,17	32	- 11		19	U.	3.4
DC-95	DET. 5-B-0	19,23	32		11	20		
DC-96	DET. 6-B-0	39,55	32	и.		20	ii .	**
DC-97	Physical Analyzer ID	7	î. *	N. A.	N. A.	1	1/1.208	1/2
DC-98	Polarity of Deflection Voltage ID	19	1. *	N. A.	N. A.	1	н	
DC-99	Deflection Voltage	539	1. *	N. A.	N. A.	1		
	Level ID	17	2. *	N. A.	N. A.	1	11	24-

*Measurement DC-97 is the first bit of word 7, even ALSEP frames; one bit of DC-99 is the first bit of word 7, odd ALSEP frames. DC-98 is the first bit of word 19, even frames. The remaining bit of DC-99 is the first bit of word 39, even frames.

CPLEE ANALOG HOUSEKEEPING DATA

(ALSEP Word 33)

Symbol	Housekeeping Parameter	Channel	Range	Accuracy
AC-1	Switchable P.S. Voltage	25	0-4.5V	+5%
AC-2	Channeltron P.S. #1	89	0-4.5V	1.5.70
AC-3	Channeltron P.S. #2	40	0-4.5V	100
AC-4	DC-DC Converter Voltage	10	0-4.5V	**
AC-5	Temperature of Physical Analyzer	11	-30° to +80°C	
AC-6	Temperature of Switchable P. S.	90	-30° to +80°C	

TABLE 9 (a)

WORD FORMAT FOR HEAT FLOW EXPERIMENT

Each Heat Flow data point employs eight 10-bit words (ALSEP Word 21 (B) or 24 (A-2) in eight consecutive frames), arranged as follows:

Heat Flow					Bi	t Posi	tion			
Word	1	2	3	4	5	6	7	8	9	10
0	R ₂	R ₁	0	P4	P ₃	P2	P ₁	2 ¹²	2 ¹¹	2 ¹⁰
U	29	28	2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	z ²	2 ¹	2 ⁰
	R ₂	R ₁	м ₁	M ₂	M ₃	0	0	2 ¹²	2 ¹¹	2 ¹⁰
1	29	2 ⁸	27	2 ⁶	z ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰
	R ₂	R1	H ₄	H ₃	H ₂	н1	0	2 ¹²	2 ¹¹	2 ¹⁰
2	29	2 ⁸	27	z ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰
3	R2	R ₁	0	0	0	0	0	2 ¹²	2 ¹¹	2 ¹⁰
5	2 ⁹	2 ⁸	2 ⁷	26	2 ⁵	2 ⁴	2 ³	2 ²	z ¹	2 ⁰

Where:

- DH-90 M₁, M₂, M₃ are mode registers, (100) Gradient Mode, (010) Low Conductivity Mode, and (001) High Conductivity Mode, respectively.
- DH-91 P4, P3, P2, P1 are measurement identification as described in Table 9(b).
- DH-92 R2, R1 are binary equivalent of Heat Flow Word.
- DH-93 H4, H3, H2, H1 are conductivity heater registers (8 heaters).
- DH-94 HFE filler bits (shown as zeros in above chart).

TABLE 9(b)

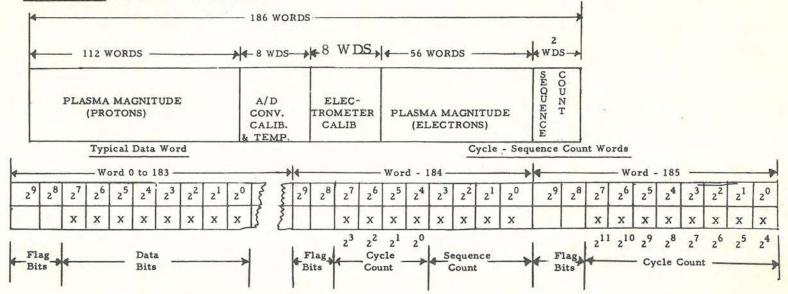
HEAT FLOW P-BIT MEASUREMENT DESIGNATIONS

P ₄	P3				P Identification Bits			Measurement	
		P2	$\underline{\mathbf{P}_1}$		P ₄	P ₃	P2	$\underline{\mathbf{P}_1}$	
0	0	0	0	∆ _{T11} H	1	0	0	0	т ₁₁
0	0	0	1	▲ T ₁₂ H	1	0	0	1	T ₁₂
0	0	1	0	∆ T ₂₁ H	1	0	1	0	^T 21
0	0	1	1	∆ T ₂₂ H	1	0	1	1	T22
0	1	0	0	ΔT ₁₁ L	1	1	0	0	T _{ref}
0	1	0	1	ΔT ₁₂ L	1	1	0	1	TC group, Probe 1
0	1	1	0	ΔT ₂₁ L	1	1	1	0	T _{ref}
0	1	1	1	ΔT ₂₂ L	1	1	1	1	TC group, Probe 2

Key to Measurement Name

The first subscript refers to the probe (probe 1 or probe 2), the second refers to the probe section (upper or lower, respectively)

ΔT _{ij} H	= Bridge measurement of probe temperature gradient, high sensitivity.
∆T _{ij} L	= Bridge measurement of probe temperature gradient, low sensitivity.
T _{ij}	= Total bridge resistance measurement of ambient temperature.
TC group	 Thermocouple measurements of probe cable ambient temperature, 4 measurements per probe.
T ref	 Bridge measurement of the temperature of the thermocouple reference junction,


HFE ANALOG (ENGINEERING) MEASUREMENTS (ALSEP Word 33)

Symbol	Data	Frame	Range	Accuracy	Bits/ Sample	Samples/ Sec
AH-1	Supply Voltage #1	29	0-160 (octal)	5% full scale	8	.0185
AH-2	Supply Voltage #2	45	0-160 (octal)	5% full scale	8	.0185
AH-3	Supply Voltage #3	55	0-160 (octal)	5% full scale	8	,0185
AH-4	Supply Voltage #4	74	0-160 (octal)	5% full scale	8	.0185
AH-5	Spare				8	.0185
AH-6	Low Conductivity Heater Power Status	57	2.0-2.5 volts ON Otherwise OFF		8	.0185
AH-7	High Conductivity Heater Power Status	75	2.0-2.5 volts OI Otherwise OFF		8	.0185

SOLAR WIND SPECTROMETER (SWS) MEASUREMENTS

Note: The SWS uses ALSEP Words 7, 23, 39 and 55 (in that order) to convey experiment data. The data is organized into 16 sequences of 186 words per sequence. Since the position of any element of data (Word) is indeterminate with respect to ALSEP Frames and Words, the channel designation is determined internally from information carried in the data. Therefore, in the following data, channel designation is not used but the data is identified by the SWS Word and by the first two bits (FB) which have been provided for Word identification within the sequence; and the sequence is identified by the Least Significant Bits (LSB) of Word 184 lying in the sequence being identified.

Basic Sequence, Repeated 16 times per cycle

ALSEP-MT-03