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Abstract 

As compared to driving on Earth, the presence of lower gravity and uneven terrain on planetary bodies makes high 

speed driving difficult. In order to maintain ground contact and control, vehicles need to be designed with special 

attention to dynamic response. The challenge of maintaining control on the Moon was evident during high speed 

operations of the Lunar Roving Vehicle (LRV) on Apollo 16, as at one point all four tires were off the ground; this 

event has been referred to as the “Lunar Grand Prix.” Ultimately, computer simulation should be used to examine 

these phenomena during the vehicle design process; however, experimental techniques are required for validation and 

the elucidation of key issues. The objectives of this study were to evaluate the methodology for developing a scale 

model of a lunar vehicle using similitude relationships and to test how vehicle configuration, six or eight wheel pods, 

and local tire compliance, soft or stiff, affect the vehicle’s dynamic performance. Each wheel pod was a self-contained 

running gear attached to the chassis through suspension elements. The Lunar Electric Rover (LER), a human driven 

vehicle with a pressurized cabin, was selected as an example for which a scale model was built. The scaled vehicle 

was driven over an obstacle and the dynamic response was observed and then scaled to represent the full-size vehicle 

in lunar gravity. Loss of ground contact, in terms of vehicle travel distance with tires off the ground, was examined. 

As expected, local tire compliance allowed ground contact to be maintained over a greater distance. However, 

switching from a six-pod configuration to an eight-pod configuration, with reduced suspension stiffness, had a 

negative effect on ground contact. It is hypothesized that this was due to the increased number or frequency of impacts. 

The development and testing of this scale model provided practical lessons for future low-gravity vehicle 

development. 
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1. Introduction 

Roving vehicles greatly improve the efficiency of planetary surface exploration. The Lunar Roving Vehicle 

(LRV) was used for the last three Apollo Program missions, which allowed astronauts to traverse an order of 

magnitude greater distance than the first three missions (Moreo, 1988). Like off-road vehicles on Earth, the travel 

speeds of planetary exploration vehicles can be limited by terrain roughness. Travel over rough terrain induces vertical 

accelerations and at a high enough speed causes loss of ground contact. 

On planetary bodies smaller than Earth, vehicles leave the ground more readily and for greater distances as the 

downward acceleration of gravity is relatively small. This was demonstrated on the Moon during Apollo 16 when 

astronauts filmed the LRV being driven at up to 10 km/hr during the so-called ‘Lunar Grand Prix’ (Jones, 1997). 

Video from this event shows the LRV pitching severely and its tires leaving the ground as it travels over terrain 

undulations. In the video the vehicle appears to travel in slow motion because the amount of time spent off of the 

ground is much more than what is expected on Earth. 
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Quasi-static testing of planetary rovers has become a standard practice for understanding terrain-vehicle 

interactions on earth (Lindemann, 2005) (Malenkov, 2016) (Meacham, Silva, & Lancaster, 2013). This type of test 

vehicle is constructed with the same mission weight in earth’s gravity field and assumes a quasi-static interaction with 

soil and obstacles. Testing of this type is adequate for understanding the performance and mobility of slow speed 

rovers. Because of the potential severity, the dynamic motions of high-speed planetary surface vehicles must be 

simulated as a part of their development process. Dynamic simulation would enable vehicles to be designed with 

appropriate compliance to contour to the terrain at high speeds and enable low-gravity driving techniques to be 

developed prior to deployment. Reliable experiments are required for validation and to elucidate the phenomena that 

should be represented by the computer models. At this time, scale model testing according to similarity laws is the 

most practical experimental technique to simulate low-gravity vehicle motions on Earth. Other notional solutions, 

such as dynamic off-loading of each vehicle mass or accelerating the full vehicle-terrain system using an airplane, are 

relatively complex and costly. 

The scale model method to simulate lunar vehicle dynamics depends on the ability to create a model that is 

dimensionally similar to the real vehicle operating in low gravity (Buckingham, 1914). As explained in (Markow, 

1963), dimensional similarity between a Moon vehicle and an Earth model can be achieved using a 1/6th length scale 

model. At this scale, video recordings of the model’s movements on Earth will appear exactly like the lunar vehicle 

when viewed at 6 times the original size and 1/6th the playback speed.  

The challenges associated with creating and testing a 1/6th scale version of the LRV were reported by the US 

Army Waterways Experiment Station (WES) just after the Apollo program (Lessem, 1972). Many of the issues were 

associated with creating a model with 1/216th mass (mass scales with the cube of length), while transducers and 

electronic equipment were not readily scalable. Tire torque, rotation, and acceleration sensors were used, but the 

sensors and telemetry available at that time made it difficult to gather reliable data, except when driving straight. 

Photographic techniques were desired for vehicle motion and slip measurement, but the video technology at the time 

made it impractical to capture tests longer than a few seconds. Finally, they had to invest in a custom telemetry system 

because there were no off-the-shelf solutions for this application. Technology improvements in manufacturing, 

sensing, computing, and wireless communication warrant the reevaluation of the scale model method. This leads to 

the first objective of the present work: 

1.1 Objective 1:  To manufacture a scale model with a similarity relationship to a full scale lunar 

vehicle. 

Scope and Assumptions 

 The reference lunar vehicle is parameterized in Table 1. These specifications are based on the high-speed 

piloted lunar vehicle concept, called the Lunar Electric Rover (LER), which was being developed for NASA’s 

Constellation program. The LER was proposed to be a pressurized module on a chassis with mobility 

provided by six wheel pods. Each wheel pod consisted of dual tires, propulsion and steering systems, and  

was attached to the chassis through active and passive suspension elements. An Earth prototype of this 

vehicle, created for technology development, is shown in Figure 1. 

 Testing has shown that the dual tire design used on the LER is not desirable and individual tires would likely 

be used on future designs. Thus, the scale model will employ individual tires.  

 The time and budget for manufacturing the scale model are limited to approximately 3-months and $10k, 

respectively, in order to help assess the practicality of using this tool for design work. 

 Vehicle dynamics similarity conditions are developed by simplifying the description of the reference lunar 

vehicle as follows. 

o The vehicle body and wheel pods are assumed to have relatively small deformations that do not 

influence vehicle mobility and are therefore represented by rigid masses. 

o The suspension and tires are assumed to have relatively small inertial forces and are therefore 

represented by massless springs and dampers. 

 

Grumman Aircraft Engineering Corporation also utilized 1/6th scale models, in the early 1960s to examine 

notional lunar vehicle configurations for the forthcoming Moon missions (Markow, 1963). From obstacle 

testing they determined that it was far more advantageous to reduce tire stiffness than suspension stiffness 

when considering impact forces and the motion response of the vehicle. This fact is only useful if tire stiffness 

is a free design variable; however, traction and handling requirements also affect the selection of tire stiffness. 



Recently, NASA and Goodyear invented a non-pneumatic tire called the ‘Spring Tire’, which enables both 

obstacle envelopment stiffness (local stiffness) and flat ground stiffness (global stiffness) to be controlled 

somewhat independently (Asnani et al., 2012). The Spring Tire can be designed with low enough local 

stiffness to contour around an obstacle, but also have sufficient global stiffness to be responsive. The use of 

such a tire for driving at high speeds in low gravity motivates the second objective of this work. 

1.2 Objective 2:  To implement obstacle impact testing in order to evaluate the effects of varying 

the local tire and suspension stiffnesses. 

Scope and Assumptions 

 The test matrix is limited to the four compliance configurations shown in Table 7. The configurations being 

evaluated are 1) A baseline case with 6-pods and nominal suspension and tire stiffness, 2) A case with reduced 

tire stiffness, 3) An eight-pod configuration, where suspension stiffness has been reduced proportionally to 

the weight on each pod, and 4) A configuration that is the combination of cases 2 and 3. Thus, case 1 is the 

least compliant and case 4 is the most compliant configuration.  

 The largest unavoidable obstacle height while driving on the Moon, estimated to be 15 cm, is used for impact 

testing. This choice was based on an educated guess considering the spatial distribution of rocks on the Moon 

in equatorial regions (Carrier III et al., 1991) and the state of the obstacle avoidance technology being 

developed for the LER at NASA Ames Research Center (Pedersen, 2009).  

 It is assumed that the relative performance between compliance configurations is unaffected by suspension 

damping and tire-to-ground friction. Therefore, no attempt was made to scale these parameters accurately. 

2. Scale model vehicle development 

2.1 Reference lunar vehicle 

The LER is selected as a reference lunar vehicle because it is a well-developed design intended for high-speed 

lunar surface travel. The Earth version of the LER (Figure 1) serves as a design reference because it is kinematically 

equivalent to the lunar version. According to the lunar mission architecture created for NASA’s Constellation 

Program, the lunar version of the LER would have the features listed in Table 1 under the column ‘Baseline’. 

Maximum travel speed was intended to be 20 km/hr, nearly twice as fast as the LRV was operated during Apollo 16’s 

Lunar Grand Prix speed test.  Thus, the vehicle’s dynamic response to obstacle impacts was critical. In addition, the 

LER was described to have 3000 kg vehicle mass with an additional 1000 kg payload, chassis length of 4m, and tire 

track of 3.5m. Like the Earth prototype (Figure 1), six wheel pods would propel the LER’s chassis, each with dedicated 

electric drive and steering systems. Each pod would also have an active suspension in series with the passive 

suspension, which would be used to change its relative position to the chassis and regulate the distribution of weight 

between tires. However, the active suspension would have a relatively low bandwidth and would not be effective in 

reducing impact force at high speeds (Bluethmann, et al., 2010). Thus, the passive portion of the suspension governs 

the vehicle’s dynamic motion response at high speeds, and the active suspension was not considered for the scale 

model vehicle development. In addition to the baseline configuration of the LER, a notional eight-pod configuration 

is being evaluated. The additional pair of wheel pods serves to reduce the suspension stiffness of each pod, which is 

intended to make the vehicle more compliant to ground height variations. As indicated in Table 1, this notional 

configuration has the same total mass but would have reduced payload to account for the mass of the additional pods.  

 

 

 

 

 

 

 



Table 1: Description of the reference lunar vehicle 

Parameter Units Baseline 
Notional 

configuration 

Number of Pods - 6 8 

Max travel speed km/hr 20 20 

Total Mass Kg 4000 4000 

Vehicle Mass kg 3000 3245 

Payload Mass kg 1000 755 

Chassis length / Track 

Width 
m/m 4/3.5 4/3.5 

 

 

Fig 1: Earth version of the Lunar Electric Rover, created for technology development 

2.2 Exact and approximate similarity 

As explained in (Schuring, 1966), exact similarity can be achieved if the scale model and reference vehicle are 

constructed with the same materials and they are related according to the conditions shown in Table 2. With the ratio 

of model-to-vehicle gravity defined by G, the time ratio, T, and the length ratio, L, must be 1/G. Considering a 

reference vehicle in lunar gravity, G = 6, therefore T = L = 1/6. If these conditions are satisfied, the scaled motions of 

the model operating on Earth will represent those of the lunar vehicle. 

 



Table 2: Vehicle dynamics similarity conditions 

-The only conditions required, when identical materials and exact scaling are used. 

# Ratio General Lunar  

1 Gravity G G = 6 

2 Length L=1/G L=1/6 

3 Time T=1/G T=1/6 

 

Creating an exact 1/6th scale lunar vehicle, however, is unnecessarily complicated when considering only the 

mobility aspect of similarity. By simplifying the reference vehicle into only the elements that significantly affect 

mobility, the scale model may be developed with a less detailed design and using dissimilar materials. In fact, all 

previous efforts to create scaled lunar vehicles have implicitly used this technique (Markow, 2007) (Lessem, 1972) 

(Schuring, 1966). The mathematics needed to define a simplified scale model for mobility testing are detailed here. 

As illustrated in Figure 2, the reference lunar vehicle is lumped into discrete sections represented by mass or 

compliance. Masses are used to represent sections of the vehicle where the deformations are assumed to be negligible 

with respect to vehicle mobility. Springs and dampers are used to represent compliant sections, where deformation is 

assumed to be influential but inertia is not. Accordingly, the lumped parameters equivalent system uses a single mass 

to represent the vehicle body and one mass for each wheel pod. Between each pod mass and the body are springs and 

dampers that represent the vehicle suspension and below is a network of springs that represent a tire. With this 

simplified representation, the Buckingham-Pi theorem (Buckingham, 1914) is employed to obtain similarity 

conditions that depend on the mechanical properties of each vehicle section rather than on exact design and material 

properties. 

 Fig 2: Schematic representation of the simplified lunar vehicle (side view) 

According to Newton’s second law, the governing equations of the simplified vehicle are weighted sums of the 

following characteristic force terms: 
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Where the variable definitions and associated units are listed in Table 3: 

Table 3: Characteristic variables for the simplified vehicle 

# Variables  Symbol Units 

1 Mass m kg 

2 Length l m 

3 Time t s 

4 Gravity g m/s2 

5 Stiffness k kg/s2 

6 Damping c kg/s   

 

The variables mass, length, and time are selected to form the unit basis of the other variables. Accordingly, the 

equations defining the dimensionless parameters of the equivalent system are: 
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where the π terms are the dimensionless parameters of a class of similar systems that can be represented by the 

lumped parameters model. The exponents (α, β, and γ) of these equations are solved algebraically to create the non-

dimensionality, yielding the following dimensionless parameter definitions: 
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 Since the scale model and the simplified lunar vehicle must have identical dimensionless parameters their 

terms are equated to form the following three conditions for similarity: 
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in which superscripts m and v are used to identify the terms associated with the scale model and simplified lunar 

vehicle, respectively. By defining the dimensionless ratios of model parameters to those of the simplified lunar vehicle, 
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the conditions for similarity can be simplified algebraically to, 
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then, by selecting T = 1/G, and C = 1/G2, the similarity conditions for this simplified system are made to be 

consistent with the three conditions for exact similarity that are listed in Table 2. However, the additional three 

conditions listed in Table 4 are needed for the simplified representation. Using all six similarity conditions, a 

dimensionally similar scaled model may be developed without matching the reference lunar vehicle design or 

materials. 

Table 4: Supplementary similarity conditions 

-For dissimilar materials, and lumped representation of motion 

# Ratio General Lunar  

4 Spring stiffness K=1/G K=1/6 

5 Damping coefficient C=1/G2 C=1/36 

6 Mass M=1/G3 M=1/216 

2.3 Satisfying the similarity conditions 

Gravity scaling (similarity ratio #1) is achieved naturally by testing in Earth gravity rather than lunar gravity. 

Time scaling (similarity ratio #3) is achieved using the experimental method explained in (Markow, 1963), whereby 

video of the scale model is captured and played back at 1/6th the frame speed. The other similarity conditions are 

achieved by controlling the geometric and mechanical parameters of the scale model. The relevant parameters for the 

simplified lunar vehicle are determined based on equations of dynamic motion for a vehicle with an arbitrary number 

of axles, detailed in (Ingram, 1973). Considering only the bounce, pitch, and roll motions of the body and just the 

bounce motions of the wheel pods, the variables to be controlled are listed in Table 5. The ‘Ref. value’ column 

indicates the estimated parameters of the reference lunar vehicle (the LER). The next column, ‘Scaled value’, lists the 

target parameters of the scale model. The final column, ‘Value realized’, shows the parameters of the scale model that 

was actually created. The disparities between the values realized and scaled values will be discussed in section 3.  

 

 

 

 



Table 5: Variables to be controlled 

-Values are shown for the reference lunar vehicle, the scaled value, and those realized by the scale model- 

 

6-pod 8-pod 6-pod 8-pod 6-pod 8-pod

Body mass (including payload) kg 4000 4000 18.5 18.5 18.5 18.5

Pod mass kg 122.5 122.5 0.57 0.57 0.73 0.73

Longitudinal distance

body CG to the ith pod
m

-1.72, 0, 

1.72, n/a

-1.72, -

0.58, 

0.58, 1.72

-0.287, 0, 

0.287, na

-0.287, -

0.097, 

0.097, 

0.287

-0.287, 0, 

0.287, na

-0.287, -

0.097, 

0.097, 

0.287

Vertical distance body CG to ground m 0.85 0.85 0.142 0.142 0.168 0.154

Radius of gyration pitch, roll m 1.04/0.95 1.02/.98 0.17/0.16 0.17/0.16 0.20/0.09 0.20/0.09

Radial tire damping N/(m/s)

Vertical suspension damping N/(m/s)

Vertical suspension stiffness kN/m 23.3 17.5 3.9 2.9 3.7 2.3

Undeflected tire radius m 0.74 0.74 0.12 0.12 0.13 0.13

Radial tire stifness kN/m

Definition Units
Ref. value Scaled value Value realized

DAMPING VALUES WERE NOT CONTROLLED

SEE TABLE 6 FOR TIRE  STIFFNESSES

 

3. Vehicle design and manufacturing 

3.1 Design approach:  

 To begin, the CAD model used to develop the Earth version of the LER was scaled down by a factor of six. Then 

the parts of the design that did not relate to vehicle mobility were eliminated. This provided a small-scale vehicle 

design with correct kinematics and full mechanical functionality (e.g. drive, steering, suspension, etc.). Most of the 

subsequent effort was dedicated to modifying the design to create the mechanical properties of the scaled lunar vehicle 

in Table 4, and making the parts manufacturable at the small-scale.  

As mentioned previously, a small-scale model with the identical materials as the reference vehicle would also 

have the mechanical properties that obeyed the scaling laws. However, a disproportionate amount of mass had to be 

removed from the structure for two reasons:  1) Electronic components tended to dominate the mass budget, once the 

structure was reduced to the small scale, and 2) The design of the Earth version of the LER was more massive than 

the lunar version would be in order to operate in Earth gravity. Alternative materials were used to reduce mass and 

3D printing was used to create detailed parts that would otherwise be time consuming to create. 

The design was made to be modular considering mechanical, electrical, data acquisition, and control aspects, so 

the vehicle could be reconfigured for this and future tests. All design decisions were made with consideration of the 

3-month time frame established for creating the scale model. Finally, it should be noted, that at the beginning of the 

design process the similarity conditions were not well understood. As such, some of the model parameters realized 

were different than the intended scaled values (Table 5). 

3.2 Chassis: 

 The scale model vehicle is depicted in Figure 3 in its eight-pod configuration. It was constructed to be strong 

enough to survive testing while lightweight to satisfy the scaling requirements. Additionally, it was desired that the 

chassis be lighter than the scaling requirements dictated so that additional masses could be added to achieve proper 

center of gravity and rotational inertia requirements. Honeycombed aluminum was selected as the main chassis 

material due to its high strength-to-weight ratio. Aluminum L brackets served as mounting points for the wheel pods 

and they distributed the suspension loads across the lightweight chassis. The chassis was built in four identical sections 



to allow for modularity and configurability in the vehicle. Each section contained a battery, two wheel pods, and two 

wheel pod controllers. Depending on vehicle configuration, three or four chassis sections were attached rigidly 

together to form one full vehicle. The total chassis length remained constant through different vehicle configurations. 

In order to achieve properly scaled mass and center of gravity locations, a weight rack was added to the chassis. The 

weight rack ran the length of the vehicle and had several steel masses that could be added and moved to change the 

relative center of gravity and rotational inertia required to satisfy the scaling requirements.  

 
Fig 3: Scale model of the LER 

3.3 Suspension: 

The suspension elements for the scale model were based on the original LER design. Since machining scaled 

replicas of the original suspension elements was costly and impractical, 3D printed prototypes were constructed. The 

3D models were adjusted to specifically take advantage of 3D printing techniques while keeping the kinematic 

relationships the same. The suspension arms were widened at the pivot points and the cross sectional area was 

increased to improve the off axis rotational strength and decrease the material stress. The suspension arms were 

hollowed out so that the increased size did not have a negative effect on the overall mass. DMX SL-100 was the 

chosen 3D printer material due to its relatively high strength-to-weight ratio (40 MPa/1.17 g/cm3) and its availability 

within the time and budget constraints. The stiffness values of the 3D printed components were not measured and 

were assumed sufficiently rigid to satisfy the model assumptions. The springs used on the scale model were suspension 

elements for a small remote controlled car. Different springs were used to change the effective vertical suspension 



rate of the wheel pods. The spring rates for each test configuration are listed in Table 1.  The suspension appeared to 

be lightly damped, but damping values were not measured. 

 

3.4 Wheel pods: 

 The LER is capable of steering each tire through continuous 360o of rotation. For the scale model it was 

determined that continuous rotation was outside of the scope, and only 180o degrees of rotation was necessary. The 

wheel pods were created in two parts, upper and lower. The upper part of the assembly housed a servo motor for 

steering and supports for the suspension arms. The lower part of the assembly was attached to the servo through a 

thrust bearing and housed the drive motor, encoder, and tire axle. The LER is capable of spinning each wheel pod 

about a point directly above the center of the drive axle and it was desired that the scale model do the same. To meet 

this requirement, the motor was positioned above the tire and connected by a plastic roller chain. The motors were 

sized such that 10 km/h travel speed was achievable. The wheel pod design went through several iterations to reduce 

mass, including the addition of complicated internal ribbing. The structure was 3D printed using DMX SL-100. 

Ultimately, the total mass of a single pod was 0.73 kg, which was 28% higher than the mass target of .57kg. This 

discrepancy was accepted, given the time constraints of the project. 

3.5 Control system: 

The control system was designed to be modular. Each wheel pod had a separate controller and shared a battery 

with the pod on the same chassis segment. The system was set up as a master/slave network with a single master 

sending signals to all the slave controllers. The slave controllers performed driving algorithms based on their pod 

location. Each wheel pod was equipped with a servo controller, wireless receiver, motor controller, and encoder input. 

The system was designed so that additional sensors could be added if desired, such as accelerometers or gyroscopes.  

The driving station was set up with two joysticks and a selector so that several driving modes, Ackermann, point and 

shoot, zero-point, and skid steer could be selected.  

3.6 Tires: 

One baseline tire and a tire with similar global and reduced local stiffness were selected for evaluation. The 

baseline tire was constructed from low density foam surrounded by rubber. The reduced local stiffness tires were 

constructed from foam without the rubber layer. To evaluate these designs, a common load was applied to each tire 

on a flat plate and then on a wedge, and the total tire deflection was measured. From this data the following stiffness 

metric, referred to as the ‘gamma ratio’, was calculated. 

plate

wedge




   

Here δplate and δwedge are the defections of the tire on the wedge and plate, respectively. A summary of the test 

results is shown in Table 6. The baseline tire had a gamma ratio of 0.74, while the gamma ratio of the reduced local 

stiffness tire was 0.43. Damping constants were not determined.  

  



Table 6: Summary of tire test results 

Load = 30.3 N 

Radius = 64 mm 
Baseline tire, 

SUL883 (Rubber) 
Reduced local stiffness tire, 

DAVWR50 (Foam) 

Flat Plate 
Deflection  

 

 
3.56 mm 5.6% tire radius 

 
4.06 mm 6.3% tire radius 

Wedge 
Deflection  

 

 

 
4.83 mm 7.5% tire radius 

 

 
9.40 mm 14.7% tire radius 

Global Stiffness 8500 N/m 7500 N/m 

Local Stiffness 6300 N/m 3200 N/m 

Gamma ratio 0.74 0.43 

4. Test method 

4.1 Test setup 

The test used to evaluate the scale model performance was similar to the SAE J2730 cleat test used to measure 

dynamic step impacts (Society of Automotive Engineers, 2006). A rectangular cleat with height 40% of the tire radius 

was placed in the path of the scale model.  Data was collected using a high speed Phantom V10 camera. The frame 

was 2000 by 1200 (width by height) pixels and data was acquired at a rate of 720 images per second. The full field of 

view was equivalent to approximately 3 by 2 lengths of the vehicle chassis at the focal length of the camera, giving a 

resolution of about 0.0015 vehicle lengths. The camera was positioned 10cm above the ground so that the scale model 

would pass from left to right through the vertical center of the view. A 1/6th scale lunar landscape was added to the 

background of the test for to help create the illusion that the scale model was actually a full sized vehicle when viewing 

video. The cleat was located in the view so that the tire motions could be observed before and after the cleat impact. 

Initially the cleat was placed to impact just the right side tires. Considering that roll motions could not be observed 

with the camera system, the cleat was subsequently placed to create impacts on both sides of the vehicle. This 



necessitated the addition of overhead rails to guide the vehicles approach angle and help to ensure the left and right 

tires contacted the cleat at similar time instants. 

 

Fig 4: Test setup 

4.2 Metrics, data processing, and analysis 

The vehicle performance was assessed through analysis of the recorded images. Specifically, Spotlight-8 software 

was used to evaluate wheel pod translation and vehicle velocity (Klimek & Wright, 2005). Figure 5 represents one 

frame of the video analysis. The software tracks features by identifying contrast. To improve the reliability of this 

method, the vehicle was painted flat black and white radial lines were added to the tires. The centers of the tires were 

manually selected in preliminary images by the user and the software automatically tracked the relative displacements 

in subsequent images.  Any increase in vertical motion after impact with the cleat was considered to be loss of contact 

with the ground. The horizontal distance traveled by the vehicle during loss of contact was used as a metric, since loss 

of contact was assumed to reduce maneuverability. It was also assumed that the vehicle reacted symmetrically, 

wherein the far side tires moved in the same manner as those on the near side.  

 

Fig 5: Screen shot from the analysis software Spotlight-8 

 

 

 

Cleat 

Spotlight-8 Software 

Automatic center tracking 



5. Vehicle testing 

5.1 Test configurations 

Two variables were controlled for the vehicle testing, tire type (gamma ratio) and number of wheel pods. The 

configurations for these tests can be seen in Table 7. All testing was done at a target velocity of 10 km/h; this was the 

maximum speed achieved during the Apollo rover operations. In order to satisfy the scaling requirements for vehicle 

mass, center of gravity and rotational inertia, ballast masses were added to the weight rack. The suspension stiffness 

was also reduced between six and eight-pod configurations, so that the total spring rate of the vehicle was similar.   

Table 7: Testing configuration matrix 

# Description 
Number of 

pods 

Suspension 

(kN/m) 
Г 

Added 

mass (kg) 

1 Baseline 6 3.7 0.74 6.8 

2 Reduced tire stiffness 6 3.7 0.43 6.8 

3 
Reduced suspension 

stiffness 
8 2.3 0.74 2.7 

4 Combined 2&3 8 2.3 0.43 2.7 

 

There were two key issues identified after the vehicle was built. The first issue was that the suspension system 

had more longitudinal compliance than intended. This problem was fixed by placing a third pivoting member parallel 

to the original suspension arms. The new joint was made of steel and provided significantly better support to the wheel 

pods. Unfortunately, this support eliminated the ability of the vehicle to steer and therefore a guide was built to direct 

the scale model’s angle of approach toward the cleat. The guide was suspended above the scale model and the weight 

rack served as the guide follower. The second issue was that the 3D printed material, DMX SL-100, did not retain its 

material properties with age. Testing began a year after the initial scale model was constructed and the material 

softened during that time. The weight of the chassis caused the wheel pods to warp and created an inward tire camber. 

Due to the vehicle degradation, the amount of testing performed on the scale model was limited.  

The test results for each vehicle configuration are shown in Table 8. The first column is the vehicle travel speed 

just prior to impact. The next three columns show the distances the vehicle traveled under conditions where tire contact 

was lost. As an example, the column ’≥1 pair‘ indicates the distances the vehicle traveled with 1 or more pairs of tires 

off the ground. The distance data is normalized with respect to the vehicle chassis length. Each test was performed at 

least three times and the results were averaged. 

 

Table 8: Test results 

Configuration 
Speed 

km/h 

≥1 pair  ≥2 pair  ≥3 pair  

(Distance traveled normalized to chassis length) 

#1 - 6 Pod Stiff 

Tires 

6.08 1.39 0.25 0 

5.93 1.29 0.19 0 

5.73 1.21 0.12 0 

 Average  5.91 1.3 0.19 0 

       

#2 - 6 Pod Soft 

Tires 

6.25 1.09 0.07 0 

6.01 1.05 0 0 

5.09 0.92 0 0 

 Average  5.79 1.02 0.02 0 

       



#3 - 8 Pod Stiff 

Tires 

8.18 1.78 0.63 0.13 

7.83 1.88 0.82 0.15 

7.26 2.01 0.66 0.15 

  Average 7.76 1.89 0.70 0.14 

       

#4 - 8 Pod Soft 

Tires 

5.24 1.35 0.34 0 

6.47 1.65 0.52 0 

5.87 1.53 0.48 0 

6.39 1.71 0.65 0.07 

 Average 5.99 1.56 0.50 0.02 

6. Results and discussion 

The travel speed for most of the tests was around 5.9 km/h, lower than the desired value of 10 km/h. Deterioration 

of the 3D printed parts made it impossible to achieve the target velocity without further damaging the vehicle. The #3 

configuration was an outlier, and had speeds about 30% higher than the average. Therefore this case cannot be directly 

compared to the others. The 6-pod, locally soft tire configuration performed better than the locally stiff tire 

configuration. Specifically, for configuration 1 (6-pod and locally stiff tires), the vehicle traveled an average of 1.3 

chassis lengths with at least one tire pair off the ground and 0.19 lengths with two pair off. Switching to the soft tires, 

configuration 2, reduced the distance traveled with 1-pair of tires off the ground by 22%. In addition, there was nearly 

zero distance traveled with 2 pairs of tires off the ground. The 6-pod, locally soft tire configuration also performed 

better than the equivalent eight-pod configuration. Specifically, configuration 2 (6-pod, locally soft) traveled about 1 

vehicle length with at least 1 pair of tires off the ground and traveled near zero distance with 2 pairs off the ground. 

Changing to the eight-pod configuration, configuration 4, increased the distance traveled with at least 1 pair of tires 

off the ground by 53%. In addition, the vehicle traveled about 0.5 chassis lengths with 2 pairs of tires off the ground. 

This limited dataset indicates that it is preferable to use locally soft tires over locally stiff and 6 over 8 wheel pods. 

It is not evident, however, that this metric of distance traveled with a specific number of tires off the ground is an 

adequate measure of performance. Additional testing would be required to relate tire contact to maneuverability. For 

instance, the additional pods could require fewer tires on the ground to maneuver adequately. It is also unclear as to 

why the 8-pod/low suspension stiffness configuration performed more poorly than the 6-tire configuration. Reduced 

suspension stiffness is generally associated with lower impact forces. However, the relatively high un-sprung mass of 

this vehicle type may cause high-speed impact forces to be relatively unaffected by suspension stiffness. On the other 

hand, the 8-pod configuration would have an increase number and frequency of impacts, which could have reduce its 

performance. This an unresolved issue at this point. 

Compared to the US Army Waterways Experiment station (Lessem, 1972), construction and testing of a scaled 

lunar vehicle was significantly improved by modern technology. 3D printing technology providing an economical 

means to produce small and light components with detailed features to enhance rigidity. The WES vehicle used 

magnesium for light-weighting, which is much more expensive and difficult to work with. On the other hand the 3D 

printing material used for this work suffered from creep and loss of strength over time. Thus future studies of this type 

should select materials that are superior in this aspect. Electronics have improved significantly since the WES vehicle 

was built such that telemetry and sensing hardware could be substantially reduced in size and capability. This helped 

to meet the overall mass budge of the vehicle. However, the wheel pods were 28% more massive than the target value. 

This was because the electric motors mass did not scale down proportionally to length. Perhaps the most beneficial 

advancement from the WES experiment was the data collection and processing through photogrammetry techniques. 

This eliminated the need for on-board data collection hardware and provided more accurate and detailed information 

about the vehicle motion. The particular test setup was for 2D motion tracking of specific features on the vehicle. 

However, 3D motion tracking of a full vehicle is commonly done using modern tools (Creager et al., 2015). 



7.  Summary 

The dynamic motions of planetary vehicles in low-gravity should be evaluated during early configuration studies, 

as this is a limiting factor for travel speed.  Scale model testing is the most practical experimental method currently 

available. The objectives of this study were to manufacture a scale model with a similarity relationship to a full-scale 

lunar vehicle and to implement obstacle impact testing to evaluate alternative vehicle configurations. Exact similarity 

can be achieved if a scale model and vehicle are constructed with the same materials. Creating an exact 1/6th scale 

lunar vehicle, however, is not necessary when considering only the mobility aspect of similarity. By simplifying the 

reference vehicle into only the elements that affect mobility, a scale model was developed with less a detailed design 

and using dissimilar materials. 

The Lunar Electric Rover was chosen as a reference vehicle as it was intended to travel across the lunar surface 

at speeds up to 20 km/h. The scale model was constructed using lightweight metal structures and detailed 3D printed 

parts. The objective of construction was to make the scale model easy to configure for different test objectives. The 

result was a modular six or eight wheel-pod vehicle that could be controlled wirelessly. Each pod was a self-contained 

running gear attached to the chassis through a suspension. The final scale model was close to specifications, but had 

higher wheel-pod mass and did not control for damping. The 3D printed material lost strength over time, which limited 

the vehicle testing speed and number of tests.  

The test vehicle was driven over a square cleat that impacted the tires on both the left and right sides. 

Combinations of locally stiff or locally soft tires and six or eight wheel-pods were tested. The different types of tires 

were selected to represent a conventional tire and the new ‘Spring Tire’ design that has reduced local stiffness (Asnani, 

2012). The dynamic response of the vehicle was observed and measured through photogrammetry techniques, and the 

distance traveled with tires off the ground was computed. Using locally soft tires had a benefit for maintaining ground 

contact, which was an intuitive result. The configuration with 8 wheel pods performed more poorly than that with 6 

pods, and it was hypothesized that this was due to the increased number or frequency of impacts with the cleat. This 

work showed that the scale model method is practical for evaluating lunar vehicle dynamics and several lessons were 

provided to contribute to future work in this area. 

  



 

List of notations  

C Damping ratio between scaled model and reference vehicle 

ci Suspension damping of the ith wheel pod 

Fc Force due to damping 

Fg Force due to gravity 

Fi Force due to inertia 

Fk Force due to compliance 

g  Acceleration due to gravity 

G Gravity ratio between scaled model and reference vehicle 

Jb Rotational inertia of the vehicle body 

K Spring constant ratio between scaled model and reference vehicle 

ki Suspension stiffness of the ith wheel pod 

kt Stiffness of the tire 

L Length ratio between scaled model and reference vehicle 

M Mass ratio between scaled model and reference vehicle 

mb Mass of the vehicle body 

mi Mass of the ith wheel pod 

rt Radius of the tires 

T Time ratio between scaled model and reference vehicle 

xi x position of the ith wheel pod 

zb z displacement of the vehicle body 

zi z displacement of the ith wheel pod 

zobstacle z height of the obstacle 

Γ Gama ratio of local to global tire stiffness  

δplate Deflection of a tire when loaded against a flat plat 

δwedge Deflection of a tire when loaded against a wedge 

θb Rotational displacement of the vehicle body 

π1 Gravitational dimensionless parameter 

π2 Compliance dimensionless parameter 

π3 Damping dimensionless parameter 
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