The Differentiation History of the Terrestrial Planets as Recorded on the Moon

Lars Borg

Lawrence Livermore National Laboratory
Chemical Sciences Division
Outline

1) Factors Leading to Lunar Magma Ocean Model for Planetary Differentiation

2) Rationale for Magma Oceans on Other Planets Means for early efficient differentiation (Works on Moon why not here?)

3) Some Inconsistencies between the Lunar Magma Ocean Model and Observations
Factors Leading to Lunar Magma Ocean Model

1) Role of Plagioclase
 Large amounts of plagioclase-rich crust
 Eu anomalies in basalt source regions

2) Role of KREEP
 Mechanism to produce large volume evolved component

3) Role of Experimental Petrology
 Permits predictions (E.g., ilmenite in high Ti sources
 Low pressure, volatile depleted, limited fO$_2$

4) Ability to account for observed compositional variations
 by mixing experimentally produced sources with observed
 (KREEPy) materials
MAGMA OCEAN MODEL
Early, Rapid, & Extensive Differentiation on a Planetary Scale

Magma Ocean (liquid)

± Core

Low P
anhydrous
e.g. Moon

plag

cpx + plag
+ ilm

opx + cpx

ol + opx

ol

High P
hydrous?
e.g. Mars

Trapped liquid (KREEP)

cpx + ilm

cpx + opx

opx + cpx

ol + opx

maj

Low P
anhydrous
e.g. Moon

plag

cpx + plag
+ ilm

opx + cpx

ol + opx

ol

High P
hydrous?
e.g. Mars

Trapped liquid (KREEP)

cpx + ilm

cpx + opx

opx + cpx

ol + opx

maj
Little strong evidence that requires differentiation by magma ocean solidification
No Plagioclase-rich crust, KREEP, or high Ti sources

Instead differentiation by magma ocean solidification simplifies differentiation models
Examples:
(1) Core formation on large bodies
(2) Satisfies criteria for rapid and extensive differentiation
Examples From My Research on Martian Meteorites

Model Isochron suggesting differentiation of Mars occurred at ~4.52 Ga

Initial $\varepsilon_{\text{Nd}}^{143}$ at 175 Ma

Present-day $\varepsilon_{\text{Nd}}^{142}$
Mixing of Martian Basalt Sources

KREEP from Warren & Wasson (1979)

Mafic cumulates calculated by Snyder et al. (1992)
Inconsistencies Between LMO Model and Ages of Lunar Differentiation and Crust Formation

- Signifies positive initial Nd
Inconsistencies Between LMO Model and Compositions of Some Lunar Rocks

Apollo 17 troctolite 76535

Olivine-plagioclase cumulate
Plagioclase 58% An$_{96}$
Olivine 37% Fo$_{88}$
Conclusions

1) Differentiation via solidification of a magma ocean is derived from geologic observations of the Moon.

2) Although geologic observations on other bodies are often consistent with differentiation via magma ocean solidification, it is not generally required.

3) There are some fundamental inconsistencies between observed lunar data and the model, that will require this model to be modified.

4) Nevertheless, the Moon is the only location we know of to study magma ocean process in detail.