# Physics of Solar Wind and Terrestrial Magnetospheric Plasma Interactions With the Moon

R.P. Lin

Physics Dept & Space Sciences Laboratory
University of California, Berkeley

with help from J. Halekas, M. Oieroset, & M. Fillingim

# Plasma Interaction with the Moon and Dust

Plasma Physics of the Distant Magnetotail

Plasma Interaction with Mini-Magnetospheres



## Extreme Surface Charging

Surface potentials of up to several kV (negative) found:

- In the terrestrial plasmasheet, where we encounter high plasma temperature.
- During Solar Energetic Particle events





• Green in color bar indicates magnetospheric tail passages, red indicates major SEP events

#### The Earth's magnetic shield



**Dungey, Philos. Mag. 55, (1953)** 

## Wind observed 10 hours of reconnection flows at lunar distance $(X_{GSE}=-60 R_{E})$





#### Hall magnetic fields in the diffusion region



(Øieroset et al., NATURE, 2002)

# Wind satellite observations in distant magnetotail, 60R<sub>E</sub>



### A trapped electron in the magnetotail



The magnetic moment: 
$$\mu = \frac{mv_{\perp}^2}{2B} = \frac{m(v^2 - v_{\parallel}^2)}{2B}$$

#### Drift kinetic modeling of Wind data

- Applying  $f(\mathbf{x}_0, \mathbf{v}_0) = f_{\infty}(|\mathbf{v}_1|)$  to an X-line geometry consistent with the Wind measurements
- A potential,  $\Phi_{\infty}$  needed for trapping at low energies
- Ion outflow: 400 km/s, consistent with acceleration in Φ



## Orbit with $v_{\perp}=0$



#### High energy particle observations



Apollo 15 Subsatellite



#### **Lunar Shadowing**





#### **Lunar Prospector**

Lunar Shadows (Fillingim et al 2006)







## Crustal Magnetic Fields



Lunar magnetic field



# Solar Wind Interaction with Lunar Crustal Fields: Example "Limb Shock"





## Solar Wind Interaction with Lunar Crustal Fields: Electron Energization and Waves



- Significant electron energization and broadband turbulence observed during LEME 1.
- Little energization during LEME 2, but monochromatic circularly polarized waves.

Solar Wind Interaction with Lunar Crustal Fields: Variability



• Lower temperature, gyroradius, and beta favored. For LEMEs far from the limb, also high Alfven velocity and low Mach number (enabling larger standoff distance).

# Comprehensive measurements of plasma and fields around the Moon will illuminate fundamental plasma physics phenomena in unique ways

#### **Lunar Explorer for Elements & Hazards (LEEAH)**

- Magnetic & Electric Fields Ion composition



#### CUTTING EDGE SCIENCE with PROVEN SYSTEMS

- Finalist for LRO Secondary Payload; funded Phase A development in 2006
- High-heritage instruments and spacecraft (TRL 7-9) from THEMIS, Lunar Prospector
- Science, operations, management teams in place;
   2.25 yr development schedule
- Low cost secondary (<\$60M) or primary (<\$100M) mission options on EELV, Minotaur, Delta-II

#### SCIENCE

- Lunar surface charging in response to solar and plasma environment
- Dust transport and dusty plasmas/exosphere
- Map surface composition and volatiles
- Fundamental space plasma physics and lunarsolar interactions

#### **EXPLORATION**

- Identify resources, including H2O
- Quantify dust electrification and motion
- Correlate with environmental drivers for prediction and mitigation



