NH₃ INFRARED EMISSION IN COMETS. K. Magee-Sauer¹, M. J. Mumma², B. P. Bonev³, Y. L. Radeva⁴, M. A. DiSanti², G. L. Villanueva⁵, N. Dello Russo⁶, E. L. Gibb⁷, W. M. Anderson³, ¹Dept of Physics & Astronomy, Rowan University, Glassboro, NJ 08028, ²NASA's GSFC, ³CUA/NASA's GSFC, ⁴UMd/NASA's GSFC, ⁵APP/NASA's GSFC, ⁶JHU APL, ⁷UMSL

 NH_3 is the dominant (observable) nitrogencontaining volatile in comets, present at $\sim 1\%$ relative to water. At infrared wavelengths (ν_1 band), NH_3 is difficult to detect since it requires a significant geocentric velocity to shift the strongest NH_3 emissions out of the terrestrial atmospheric water absorption. Only a few comets have offered a Doppler shift sufficient to observe the strongest Q-branch lines. Other comets offer only the fainter P- and R-branch lines for possible NH_3 detection, however these lines are possibly blended with other cometary emission from daughter molecules (NH_2 or OH, for example).

We revisit our highest quality data sets (obtained with CSHELL (NASA IRTF) and NIRSPEC (Keck 2)) and present a summary and discussion of ammonia detections in past comets to date using updated fluorescence models and data analysis algorithms.

KM-S would like to acknowledge support from the National Science Foundation's Research at Undergraduate Institution (RUI) Program.