RELATIONSHIP BETWEEN IRON VALENCE STATES OF SERPENTINE IN CM CHONDRITES AND THEIR AQUEOUS ALTERATION DEGREES. T. Mikouchi¹, M. Zolensky², W. Satake¹, and L. Le³, ¹Dept. of Earth and Planetary Science, University of Tokyo, Hongo, Tokyo 113-0033, Japan (mikouchi@eps.s.u-tokyo.ac.jp), ²Astromaterials Research and Exploration Science, KT, NASA Johnson Space Center, Houston, TX 77058, USA, ³Jacobs ESCG, Houston, TX 77058, USA.

The 0.6-0.7 µm absorption band observed for Ctype asteroids is caused by the presence of Fe^{3+} in phyllosilicates [1]. Because Fe-bearing phyllosilicates, especially serpentine, are the most dominant product of aqueous alteration in the most abundant carbonaceous chondrites, CM chondrites [e.g., 2,3], it is important to understand the crystal chemistry of serpentine in CM chondrites to better understand spectral features of C-type asteroids. CM chondrites show variable degrees of aqueous alteration [4,5], which should be related to iron valences in serpentine. It is predicted that the Fe³⁺/ Σ Fe ratios of serpentine in CM chondrites decrease as alteration proceeds by Si and Fe³⁺ substitutions from end-member cronstedtite to serpentine [4], which should be apparent in the absorption intensity of the 0.6-0.7 um band from C-type asteroids. In fact, the JAXA Hayabusa 2 target (C-type asteroid: 1993 JU3) exhibits heterogeneous spectral features (0.7 µm absorption band disappears by rotation) [6].

From these points of view, we have analyzed iron valences of matrix serpentine in several CM chondrites which span the entire observed range of aqueous alteration using Synchrotron Radiation X-ray Absorption Near-Edge Structure (SR-XANES). In this abstract we discuss the relationship between obtained Fe³⁺/ Σ Fe ratios and alteration degrees by adding new data to our previous studies [7.8].

We have so far analyzed Murray, Nogoya, ALH 84029 [7], Murchison, Cold Bokkeveld and a clast of CM1 lithology within Tagish Lake (thin section KN1) [8], and we newly analyzed Kivesvaara (Table 1). The SR-XANES analyses were performed at BL-4A of the Photon Factory (PF), KEK in Tsukuba, Japan. The beam size was *ca*. 6 x 5 μ m. We used kaersutite amphibole for the Fe²⁺ and Fe³⁺ standards whose Fe³⁺/ Σ Fe ratios were determined by wet chemistry [9], and estimated the Fe³⁺/ Σ Fe ratio of CM serpentine by a linear relationship between the centroid energy position of XANES Fe K pre-edge spectra and the Fe³⁺/ Σ Fe ratio (±10% error).

In our previous study, we did not observe clear difference between Fe³⁺/ Σ Fe ratios of serpentine and alteration degree, although we analyzed samples showing a wide range of aqueous alteration [7,8]. We saw only limited ranges of Fe³⁺/ Σ Fe ratios of serpentine, showing mostly Fe³⁺-rich compositions (Table 1). Our newly-obtained Fe³⁺/ Σ Fe ratios of serpentine in Kivesvaara is ~0.9-1 for intermediate Mg-Fe serpentine, but Mgrich serpentine clearly has a lower Fe³⁺/ Σ Fe ratio of ~0.5. Because Kivesvaara is a minimally altered sample among CM chondrites studied, we expect that its Fe³⁺/ Σ Fe ratio in serpentine is the most Fe³⁺-rich. However, we again found no correlation between Fe³⁺/ Σ Fe ratios of serpentine and alteration degree [7,8].

We suggest that the analyzed serpentine contains submicron Fe oxide or oxyhydroxide phases that affect XANES spectra in some samples. For example, the original serpentine compositions in heavily-weathered samples were heterogeneous (Fe^{2+} -rich), but terrestrial oxidation has made much of the Fe^{2+} into Fe^{3+} to form nano-phase ferrihydrite [3]. In contrast, minimally weathered samples contain small amounts of Mg-Fe anhydrous silicates (Fe^{2+} -rich) with Fe^{3+} -rich serpentine. Probably, smaller spatial resolution may be required for iron valence analysis of CM serpentine [10].

Table 1. Alteration degrees and $Fe^{3+}/\Sigma Fe$ ratios of serpentine in CM chondrites using SR-XANES.

Sample	Alteration index ^[4]	Petrographic type ^[5]	Fe ³⁺ /ΣFe (Mg-rich)	Fe ³⁺ /ΣFe (Intermediate)	Fe ³⁺ /ΣFe (Fe-rich)
Kivesvaara	-	2.5	0.5	0.90-1.0	-
Murchison ^[7]	1.57	2.5	0.82-0.84	-	0.81
Murray ^[6]	1.43	2.4/2.5	0.87-0.88	-	0.76-0.88
Nogoya ^[6]	1.03	2.2	0.82-0.84	0.85-0.90	0.75-0.79
Cold Bokkeveld ^[7]	0.97	2.2	0.80	0.83	0.84
ALH84029 ^[6]	-	-	0.87-0.94	-	0.18-0.73
Tagish Lake (KN1) ^[7]	-	1	0.80-0.82	-	0.78

References: [1] Vilas F. and Gaffey M. J. (1989) Science, 246, 790-792. [2] McSween H. (1987) GCA, 51, 2469-2477. [3] Zolensky M. et al. (1993) GCA, 57, 3123-3148. [4] Browning L. et al. (1996) GCA, 60, 2621-2633. [5] Rubin A. E. et al. (2003) GCA, 71, 2361-2382. [6] Vilas F. (2008) Astron. J., 135, 1101-1105. [7] Zolensky M. et al. (2010) Meteoritics & Planet. Sci., 45, A226. [8] Mikouchi T. et al. (2012) LPS XVIII, Abstract #1496. [9] Monkawa A. et al. (2006) Meteoritics & Planet. Sci., 41, 1321-1329. [10] Zega T. et al. (2003) American Mineral., 88, 1169-1172.