6430.pdf

SEARCHING FOR KBO FLYBY TARGETS FOR THE NEW HORIZONS MISSION. M. W. Buie¹, J. R. Spencer¹, A. H. Parker², S. A. Stern¹, M. J. Holman², D. J. Tholen³, D. Borncamp¹, D. E. Trilling⁴, D. J. Osip⁵, P. L. Gay⁶, C. Fuentes⁴, J. J. Kavelaars⁷, J.-M. Petit⁸, S. Fabbro⁹, S. D. Benecchi¹⁰, S. S. Sheppard¹⁰, F. DeMeo¹¹, R. P. Binzel¹¹, L. H. Wasserman¹², A. J. Steffl¹, T. Fuse¹³, H. Karoji¹⁴, D. Kinoshita¹⁵, T. Yanagisawa¹⁶ S. Miyazaki¹⁷, H. Furusawa¹⁸, F. Yoshida¹⁸, T. Yamashida¹⁸, A. Tajitsu¹⁸. ¹Southwest Research Inst. (buie@boulder.swri.edu), ²Harvard-Smithsonian Center for Astrophys., ³U. Hawaii, ⁴Northern Arizona U., ⁵Las Campanas Obs., ⁶Southern Illinois U., ⁷Hertzberg Inst. Astrophys., ⁸U. Franche Comté, ⁹U. Victoria, ¹⁰Carnegie Inst. Washington, ¹¹Massachusetts Inst. Technology, ¹²Lowell Obs., ¹³Natl. Inst. Information Communications Tech., Tokyo, ¹⁴U. Tokyo, ¹⁵National Central, U., Taiwan, ¹⁶JAXA, ¹⁷Grad. U. Advanced Studies, Tokyo, ¹⁸Natl. Astron. Obs. Japan.

Introduction: NASA's New Horizons mission [1] will fly by Pluto in July 2015 and will then continue deeper into the Kuiper Belt, providing the possibility of a close encounter with one or more small Kuiper Belt objects. This will be the only opportunity for close-up observations of small KBOs for the foreseeable future. However, potential targets must first be discovered, and we are thus currently engaged in a search for targetable KBOs. Objects numerous enough to be targetable with available delta-V are likely to be in the 50 km size range, with apparent R magnitudes near 26 [2]. The search area lies in the Milky Way, in Sagittarius, so KBOs must be found against a very high density of background stars. Large telescopes with wide-field imagers and excellent seeing are thus required.

The Search: A preliminary search was carried out in 2004 and 2005 with SuprimeCam at the Subaru telescope. The search area was then about 7 deg². A deeper search is now under way, starting in 2011, again using Subaru SuprimeCam and also Megacam and IMACS on Magellan and MegaPrime on CFHT: the search area is now only $\sim 2 \text{ deg}^2$.

Data Reduction: Separation of KBOs from the dense star background is challenging. We visit each field multiple times and make difference images, after matching PSFs [3], to remove static background sources. Nevertheless, images are dominated by subtraction artifacts, and the discovery rate is a very strong function of seeing: only with seeing <0.6" does detection efficiency (estimated by implanting artificial KBOs) approach that expected from sky noise alone. Search of background-subtracted images has been done both by the team and using the citizen science "Ice Hunters" web site, with similar results.

Results so Far: We have identified 24 KBOs in the 2004/2005 data, some with arc lengths up to 1 year, and so far about 18 unique KBOs in the 2011 data (Table 1), though analysis of the 2011 data is not yet complete. No KBO yet found is reachable by New Horizons, but the closest one to the NH trajectory would require less than twice the available onboard delta-V to be targeted, so we expect that continued data reduction, and continued searching in 2012, has a good

chance of finding the object that will become the first small KBO to receive a visitor from Earth.

References: [1] S. A. Stern (2008) *Space Sci. Rev.*, *140* 3 -21. [2] J. R. Spencer et al. (2003) *Earth, Moon, Planets, 92,* 483-491. [3] C. Alard, R. H. Lupton (1998). A Method for Optimal Image Subtraction *ApJ* 503, 325.

nternal	arc length,	Distance from	
Name	days	Earth	inclination
Subaru 2	004/2005		
VI001	1.0	40(2)	4(2)
NI002	61.8	32.1(4)	9.1(7)
VI003	420.0	40.94(3)	3.164(2)
VI004	35.9	39(1)	13(2)
NI005	2.1	45(3)	34(15)
NI006	2.1	38(2)	4(1)
NI007	37.0	42(1)	3.0(3)
NI008	1.0	42(2)	11(4)
NI009	420.0	45.04(3)	3.063(2)
NI010		37.9(6)	7.1(5)
NI011		41(3)	4(2)
NI012		40(2)	4(1)
NI013		37.3(4)	8.5(5)
NI014	-	37(2)	5(2)
NI016		33(1)	0.96(6)
NI017		43.3(2)	2.272(5)
NI018		36.5(7)	6.2(7)
NI019		37(1)	19(3)
NI020	420.0	43.3(2)	6.64(1)
NI021	1.0	43(2)	3(2)
NI022		45(3)	13(5)
NI025	1.0	33(2)	0.8(2)
NI030		36(2)	7(2)
VI034		45.6(8)	2.5(3)
ubaru 2	011 Only		
NI023		31.8(9)	3.7(4)
NI024		45(4)	4(10)
NI031		40(2)	6(5)
NI032		41(3)	4(5)
NI3016		41(3)	22(13)
NI3017		43(3)	7(12)
	1 2011 Only		<u> </u>
VI2000		42.6(4)	1.87(2)
NI2001	33.0	42.2(2)	2.60(6)
NI2003		46.6(2)	6.7(2)
NI2006		42.7(6)	3.2(2)
NI2007		42.6(4)	2.43(4)
NI2008		34(12)	19(23)
NI2009		51(4)	5.6(4)
NI2010		31(18)	25(38)
	Magellan 2011	/	
NI015		36.5(1)	14.5(2)
NI027		35.2(2)	13.0(3)
NI028		46.2(3)	3.30(7)
NI033		27(3)	31(18)