The physics of atmospheres is discussed, followed by descriptions of terrestrial planet climate models

Chairs: Sanjay Limaye
 Jeffery Hollingsworth

8:30 a.m. Schubert G. * Mitchell J.
Planetary Atmospheres as Heat Engines [#8032]
We review the workings of Earth’s atmospheric heat engine and describe the energy exchanges that support the atmospheric circulation. We apply these concepts to Venus, Mars, and Titan.

9:00 a.m. Covey C. * Haberle R. M. McKay C. P. Titov D. V.
The Greenhouse Effect and Climate Feedbacks [#8026]
We review the theory of the greenhouse effect and climate feedback. We also compare the theory with observations, using examples taken from all four known terrestrial worlds with substantial atmospheres: Venus, Earth, Mars, and Titan.

9:30 a.m. Schmidt G. A. *
Issues in Building a Coherent Terrestrial Planet Climate Model [#8088]
Given the conceptual similarity in many aspects of terrestrial planet climatology, there may be much to be gained from building and using a consistent climate model framework. What would be the costs and benefits of such an approach?

10:00 a.m. Read P. L. * Lewis S. R. Mendonca J. Montabone L. Mulholland D. P. Ruan T. Wang Y.
Climate Regimes on Terrestrial Planets Within a Hierarchy of Dynamical Models [#8048]
We present an overview of the circulation regimes that may be exhibited in simplified and full-physics GCMs. These include cases that correspond to Earth, Mars, Titan, and Venus, classified by dimensionless numbers such as the thermal Rossby number.

10:30 a.m. BREAK