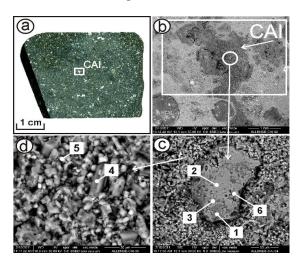
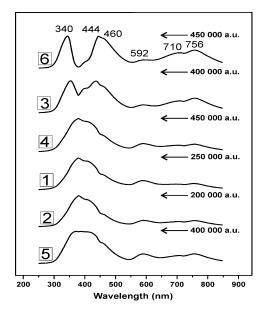
LUMINESCENT DETECTION OF ACTIVE STRESS IN MELILITE-ANORTHITE CAI GRAINS OF ALLENDE CV3 CHONDRITE (MEXICO).

Garcia-Guinea J.¹, Tormo L.¹, J., Azumendi, O.², Ruiz J.², Museo Nacional Ciencias Naturales. CSIC. 28006. Madrid. Spain. Dept. Geodinamica. Fac. C. Geologicas. Univ. Complutense 28040. Madrid. Spain *Author for correspondence*: guinea@mncn.csic.es

Introduction: Calcium-aluminum-rich inclusions (CAIs) are the oldest known materials formed in the Solar System (Petaev & Jacobsen, 2009). FoBs are important forsterite-bearing Type B CAIs because of their intermediate chemistry and refractory inclusions. The studied Allende CAI has Forsterite (Fo) grains Alrich clinopyroxene (Cpx), spinel (Sp), Mg-rich melilite (Mel) and minor anorthite (An) intergrown with Cpx forming a core surrounding Fo-Cpx as a discontinuous Al-rich mantle of Mg-depleted melilite. Many melilite grains are almost completely pseudomorphed by grossular (Gr) and monticellite (Mo). Anorthite-melillite grains shows zonings of extreme mineral chemical disequilibrium between their cores and mantles which could be producing the inferred Si-O strained structures as probable responsible emission-defects of the 340 nm CL emission peak.




Figure 1.- (a) Allende CV3 chondrite (b) FoB-CAI (c) Melillite-Anothite grain (b) Matrix with Fo, CPx, Sp, An, Me, Mo, Gr.

Spectra blue luminescence : We previously published on the luminescence emission band at 340 nm of stressed tectosilicate lattices (Garcia-Guinea et al., 2007) observed just only in stressed silicon–oxygen lattices. The non-bridging-oxygen or silicon vacancyhole centers associated with Si–O strained structures are the probable responsible emission-defects. The 340 nm CL emission is rarely detected in stressed aluminum-silicates and quartz with large amounts of Al³⁺-alkali⁺ substituying silicon. At low temperature silicates enhance its 340 nm peak by cryogenic stress. The

340 nm emission peak can be observed in microcline with hatch-cross texture (Correcher et al., 1999).

ESEM-EDS analyses taken on the CL spots

	1	2	3	4	5	6
Na_2O	1,85	0	0,35	9,82	1,17	0,98
MgO	1,82	2,35	2,13	2,65	10,08	11,17
Al_2O_3	33,96	32,92	26,23	35,48	26,72	45,57
SiO_2	41,82	25,08	38,04	39	35,19	19,93
CaO	18,85	38,45	30,83	8,85	18,75	16,93
Fe_2O_3	1,7	1,2	1,9	2,12	3,89	5,1
TiO ₂	0	0	0,52		4,2	0,32
K_2O	0	0	0	2,08	0	0
	100	100	100	100	100	100

Spectra CL plots of melilite-anorthite grains of FoB-CAI in the Allende CV3 Chondrite (Mexico).

References: Petaev M. I., Jacobsen S. B. (2009) Petrologic study of SJ101, a new forsterite-bearing CAI from the Allende CV3 chondrite. Geochim. Cosmochim. Acta, 73 5100–5114.

Correcher V., Garcia-Guinea J., Delgado A. and Sanchez-Muñoz L. (1999) Spectra thermoluminescence emissions and continuous trap distribution of a cross-hatch twinned low microcline. Rad. Protec. Dosim. 84, 503–506.

Garcia-Guinea J., Correcher V., Sanchez-Munoz L., Finch A.A., Hole D.E., Townsend P.D. (2007) Luminescence emission band at 340nm of stressed tectosilicate lattices. Nucl Instr Meth Phys Res A 580, 648–651.