Bombardment History of the Galilean Satellites and Derived Ages

G. Neukum, R. Wagner, U. Wolf (DLR), J. W. Head III, R. Pappalardo (Brown Uni.), C. R. Chapman, W. Merline (SWRI), M. S. Belton (NOAO)

During the first seven Galileo flybys, high resolution imagery of the three Galilean moons, Europa, Ganymede and Callisto have been obtained. The new imaging data allow to measure crater diameters as small as tex2html_wrap_inline11 100 m. In combination with Voyager data, size-frequency distribution characteristics in the size range of tex2html_wrap_inline11 100 m to tex2html_wrap_inline11 100 km have been determined. Crater distributions show steep slopes (cumulative index about -3) at smaller diameters on each satellite and are shallower at larger diameters, similar to what is seen on the Moon and the asteroids Gaspra and Ida. Crater densities on the most heavily cratered regions on both Ganymede and Callisto are fairly comparable. On Europa, crater densities have turned out to be about a factor of 10 lower than on the youngest bright terrain in the Uruk Sulcus region of Ganymede. The similarity to crater size-frequency distributions found in the inner solar system suggests a similar origin of the projectiles, probably mainly stemming from the asteroid belt, and the impact rate on the Galilean satellites may have had a lunar-like decay with time. Under this assumption, absolute ages may be derived making use of the idea of the ''marker horizon'', i. e. formation of the youngest basins, such as Gilgamesh on Ganymede, about 3.8 b.y. ago. Thus, the most densely cratered dark terrains on both Ganymede and Callisto have likely ages of 4.1 - 4.3 b.y. Basins such as Neith (on Ganymede) or Adlinda (on Callisto) yield likely ages of about 3.9 b.y. Some areas on Europa may be as old as 3 - 3.3 b.y. Other scenarios based on values proposed for the present-day comet impact rate in the Jovian system with non-lunar-like flux time dependences are conceivable and would result in generally younger ages, possibly as young as 10 m.y. These young ages and impact rates for Europa, however, would result in ages for Ganymede and Callisto which are in serious conflict with the geologic evolution of these two moons as we understand it now.