SPECTRAL REFLECTANCE DIVERSITY OF SILICA-RICH MATERIALS: INSIGHTS INTO STRUCTURE AND PETROGENESIS AND IMPLICATIONS FOR MARS. E. A. Cloutis¹, M. S. Rice², J. F. Bell III², S. A. Mertzman³, D. L. Bish⁴, and R. Renaut⁵, ¹University of Winnipeg, Dept. of Geography, 515 Portage Ave., Winnipeg, MB, Canada R3B 2E9; <u>e.cloutis@uwinnipeg.ca</u>. ² Dept. of Astronomy, 424 Space Sciences Building, Cornell University, Ithaca, NY, USA 14853; <u>mrice@cornell.edu</u>, <u>jfb8@cornell.edu</u>, ³ Dept. of Geosciences, Franklin and Marshall College, Lancaster, PA, USA; <u>stan.mertzman@fandm.edu</u>, ⁴Dept. of Geological Sciences, Indiana University, Bloomington, IN, USA 47405-7000; <u>bish@indiana.edu</u>, ⁵ Dept. of Geological Sciences, University of Saskatchewan, Saskatoon, SK, Canada S7N 5E2; <u>robin.renaut@usask.ca</u>.

Introduction: Recently silica-rich materials have been discovered on the surface of Mars. They have been identified directly at Gusev crater by the APXS instrument on the MER rover [1] and spectrally by mini-TES [2], Pancam [3], and in the Valles Marineris area by CRISM [4]. To determine whether reflectance spectra of silica-rich materials can be applied to constrain possible formation conditions, we have undertaken a spectral reflectance study of a diverse suite of silica-rich materials and are subjecting a silica-rich sinter (opal-A) to long-duration (since Aug. 2008) exposure to simulated Mars surface conditions [5].

Background: Silica-rich materials can form on Earth in a wide variety of environments, including sedimentary, metamorphic, and igneous. Initially this suggests that the spectral reflectance detection and characterization of silica-rich materials on Mars may not be able to provide insights into petrogenetic conditions. However, the spectral reflectance properties of different silica-rich materials do vary as a function of formation and environmental conditions.

Spectral properties of silica-rich materials: Figure 1 shows the reflectance spectrum of common (non-gem quality) opal. Silica is spectrally featureless in the 0.35-2.5 μ m region, and all the absorption bands arise from OH and H₂O, which can be present in a variety of forms, such as fluid inclusions and silanol (Si-O-H) groups. The absorption bands seen in the spectrum can be assigned as follows:

~0.95 μ m: H₂O: $2v_1 + v_3$ and OH: $3v_{OH}$ ~1.14 μ m: H₂O: $v_1 + v_2 + v_3$ ~1.36 μ m: H₂O: $v_1 + v_3$ ~1.41 μ m: OH: $2v_{OH}$ ~1.46 μ m: H₂O: $2v_2 + v_3$ ~1.78 μ m: H₂O: rotational 2nd overtone (2d)+ v_1 or v_3 and OH: 2d + v_{OH} ~1.9 μ m: H₂O: $v_2 + v_3$ ~1.94 μ m: H₂O: $v_2 + v_3$

~2.25 μ m: (Si-)OH: d + v_{OH}

Many silica-rich materials are sufficiently transparent to discern low wavelength absorption bands. The fine structure seen in the 1.9 μ m region was also noted by [6], who resolved two bands: a higherenergy (lower wavelength; ~1.91 μ m) (A) and lowerenergy (higher wavelength; ~1.96 μ m) (B) band. The strength of the B band relative to the A band was found to increase from amorphous to partially ordered opal. The A band was attributed to isolated H₂O molecules encased in the silica structure, free from hydrogen bonding. The broader B band was attributed to hydrogen-bonded more liquid-like H₂O molecules, as would be expected for H₂O molecules in larger voids.

The 2.2 μ m region also exhibits two overlapping absorption features. Both are attributable to Si-OH rotation plus stretching with the difference being due to differences in hydrogen bonding. The higherenergy (lower wavelength; ~2.22 μ m) (A) band has weaker hydrogen bonding than the lower-energy (higher wavelength; ~2.26 μ m) (B) band. This suggests that the type A-OH molecules are present within the SiO₂ matrix while the type B OH molecules are present as surface silanol (SiOH) groups [6].

From this brief overview, it is evident that silicarich materials yield a variety of OH/H2O absorption bands that can potentially provide clues to both formation and environmental conditions. Conditions such as desiccation and freezing [7] should have variable effects on silica-rich reflectance spectra. For example, the loss of readily removed H₂O molecules should manifest iself in decreases in absorption band depths in the 1.94 and 2.26 µm regions versus the 1.91 and 2.22 µm regions. Fine structure in the lowerwavelength H₂O bands (<1.4 µm) has previously not been examined in as great detail. Upon freezing, spectral changes are expected in all of the H2O-associated absorption bands with the exception of the 1.91 and 2.22 μ m features; i.e., all of the H₂O bands where H₂O is present in clusters capable of forming an ice-like structure [7]. It is worth noting that the first few layers of H₂O molecules in contact with silanol groups may not be capable of forming an ice-like structure at lower temperatures due to strong hydrogen bonding with the underlying silanol groups [9].

Opal spectrum – temperature effects: The opal spectrum shown in Figure 1 provides a good illustration of some of the spectral details of silica-rich materials. The 1.4 μ m region displays at least two partially overlapping absorption bands, near 1.41 and 1.46 μ m. The shorter-wavelength band is assigned to the 2 v_{OH} overtone, while the longer-wavelength band is associated with the H₂O 2 v_2 + v_3 combination/overtone (see table above) [6, 7]. The 1.9 μ m region feature is also asymmetric looking, indicative of multiple absorption bands, specifically near 1.90 and 1.94 μ m.

The shapes of the 1.4 and 1.9 μ m absorption features are different between the -60°C and +20°C spectra. The silanol bands in the 2.25- μ m region appear unaffected. Upon freezing, H₂O molecules in larger clusters can assume an ice-like structure, which has different band positions than liquid water [7]. The increase in relative intensity of the 1.46 and 1.94 μ m bands is also seen in transmission spectra [7].

Silica gel spectrum – temperature effects: These spectral variations can extend to shorter wavelengths. Figure 2 shows spectra of silica gel exposed to 100% RH for 22 hours measured at 22° and -13° C. The 0.96µm region feature is to longer wavelengths at lower temperature (0.963 vs 0.962 µm), as expected.

Silica sinter – low pressure effects: Figure 3 shows reflectance spectra of a silica sinter (opal-A) from Wairakei, NZ. The spectra were acquired seven months apart, during which the sample was exposed to 5 Torr CO₂. The spectral changes include a shift of the 1.4 μ m absorption feature to shorter wavelengths, a decrease in the 1.9 μ m absorption feature depth, and the appearance of an absorption feature near 2.2 μ m. Collectively these changes suggest a change in the form of the H₂O (1.4 μ m feature), a loss of H₂O (depth of 1.9 μ m feature), and an increase in silanol groups (appearance of 2.2 μ m feature). They also indicate that exposure of silica-rich materials to Mars surface conditions can have dramatic spectral effects due to loss and rearrangement of any preexisting H₂O.

Discussion: Spectral detection of silica rich materials on Mars has been based on a downturn in Pancam reflectance from 934 to 1009 nm [3] and on the position, width and symmetry of the SiOH absorption feature in the 2.21-2.26 μ m region [4].

The results from this study suggest that temperature, H_2O content and form of H_2O/OH can affect all of these spectral parameters. Ongoing studies are elucidating the effects of all of these parameters on reflectance spectra of silica-rich materials.

References: [1] Squyres S. W. et al. (2008) *Science*, *320*, 1063-1067. [2] Ruff S. W. et al. (2008) *LPS XXXIX* Abstract #2213. [3] Rice M. S. et al.

(2009) *Icarus*, in press. [4] Milliken R. E. et al. (2008) *Geology*, *36*, 847-850. [5] Cloutis E. A. et al. (2008) *Icarus*, *195*, 140-168. [6] Langer K. and Flörke O. W. (1974) *Fortschr. Miner.*, *52*, 17-51. [7] Aines, R. D. et al. (1984) *Phys. Chem. Min.*, *11*, 204-212.

Acknowledgments: This study is supported by research grants from NSERC, the Canadian Space Agency, the University of Winnipeg, and NASA MFRP.

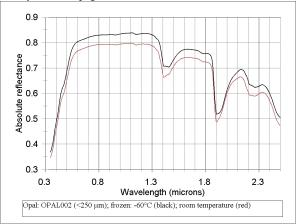


Fig. 1. Reflectance spectra of opal: room T and -60°C.

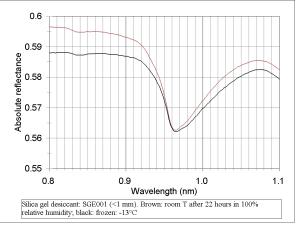
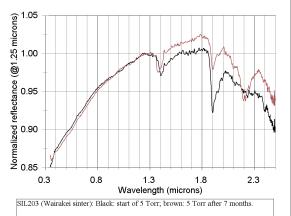



Fig. 2. Reflectance spectra of silica gel: room T and -13°C.

Fig. 3. Reflectance spectra of silica sinter (opal-A): ambient conditions and 5 Torr after seven months.