Planetary Drill Technology and Applications to Future Space Missions

J.L. Guerrero, Principal Investigator
J.W. Reiter, Systems Engineer

28 October 2005

Space Resources Roundtable VII:
Lunar Exploration Analysis Group
League City, TX
Presentation Outline

- Past Drill Missions
- Future Drill Mission Objectives
- Future Drill Mission Technology Needs
- Swales Planetary Drilling Technology
- Swales Drill Technology – Features
- 2-5m Drill System on Lander Platform
- 2-4m Drill on Large (Mega) Rover Platform
- Planetary Drilling: Ongoing Efforts
Past Drill Missions

- In 1972, Apollo 16 Mission used the first Lunar drill system called the Apollo Lunar Surface Drill (ALSD).
- Apollo 17 mission drilled to 2m and obtained core rock samples.
- Manual operations – astronauts conducted drilling and sampling operations.
- Sample cross-contamination was not actively prevented.

- First successful automated lunar soil sample return was Luna 16 on September 20, 1970.
 - Designed to extract 100 grams of rock and soil to a depth of 35 cm.
- Deep soil sample return was attempt in Luna 20.
- In 1976 Luna 24, drilled 2 meters and deep soil sample return was successful.
- Mission objective was to collect only one continuous sample.
Future Drill Mission Objectives

Drilling Technology facilitates the following Lunar and Mars Investigation Goals In support of Human Exploration

- Soil Engineering Measurements:
 - Characterize surface soil
 - Soil samples from different locations
 - Vertical soil density profile
 - Soil Cohesion

- ISRU Water Measurements:
 - Water ground truth
 - Ice deposits in Lunar Polar Craters and Mars Polar regions
 - Survey locations and depths for water/ice deposits
Future Drill Mission Technology Needs

- Technology Needs
 - Ability to operate in extreme Lunar and Martian environments
 - Lunar Temperature range -200 to 150°C
 - Mars Temperature range -120 to 20°C
 - Extreme cold level and vacuum (Lunar Polar Craters)
 - Lunar debris concern with mechanical joints
 - Ability to operate with 200W-hr/sol
 - Low power levels below 80-100W
 - High durability and reliability of drilling components
 - Drilling several boreholes/multiple locations
 - Drilling greater depths in hard dense, basalt.
 - 10cm to 20m depth drill systems
 - Maximize sample core recovery
 - Enable intact ice-sample recovery in-situ
 - Drilling Automation Technology
 - Low mass: 5 to 50 Kg
 - Sample Management System
Swales Planetary Drill Technology

- 1998 NASA Mars/Comet Drill Study
- 1999 (TRL-2) 1-meter Segmented Coring Auger Drill (SCAD) demonstration, dry drilling method verified.
- 2001 (TRL-3) SCAD complete 2m and rock hardness lab tests.
- 2002 (TRL-4) Subsurface Planetary Exploration Core Extracting System (SPECES) drill developed and NASA field-proven to 10-meters using less than 100W.
- 2003 NASA Astrobiology Mission - 2.5m Rover Drill System Study
- 2003 NASA Mars Deep Drill Mission Study – 50m Drill System
- 2004 NASA Lunar Precursor Mission - 2.5m Drill System Study
- 2004 NASA Contract Award to develop Modular Planetary Drill Systems (MPDS), capable of 0.5 to 20 meters (TRL-5 & 6).
- 2005 NASA Mars Very Deep Drill Study to evaluate drilling technologies and develop drill concepts for 100 to 1000 meter depths.
Swales Drill Technology - Features

- Field-Proven Low-Power Dry Drill Technology
- Core samples are continuously collected during drilling operations.
- Samples are maintained in separate containers.
- Cuttings and cores are collected for review and scientific evaluation.
- Obtained core samples while drilling rock with hardness from 1-6.
- Technology supports down-hole and surface platform instruments.
- Down-hole logging shows minimal temperature effects during drilling.
- Proven record of continuous cuttings removal.
- Successful, field proven borehole stabilization method.
- Automated multi-stem assembly.
- Operational Drill Research Laboratory.

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Power (W)</th>
<th>Core (°F)</th>
<th>Drill Rate</th>
<th>Images</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Actual Drill</td>
<td>Total System</td>
<td>m/s</td>
<td>Cores</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>82</td>
<td>1.1</td>
<td>0.5</td>
</tr>
<tr>
<td>2</td>
<td>17</td>
<td>91</td>
<td>-1.1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>18</td>
<td>92</td>
<td>6.4</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>13</td>
<td>87</td>
<td>9.0</td>
<td>1.5</td>
</tr>
<tr>
<td>5</td>
<td>13</td>
<td>87</td>
<td>4.1</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>23</td>
<td>97</td>
<td>8.5</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>22</td>
<td>96</td>
<td>1.7</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>27</td>
<td>101</td>
<td>1.6</td>
<td>5</td>
</tr>
<tr>
<td>9</td>
<td>36</td>
<td>110</td>
<td>8.3</td>
<td>5</td>
</tr>
<tr>
<td>10</td>
<td>31</td>
<td>105</td>
<td>9.9</td>
<td>5</td>
</tr>
</tbody>
</table>

George M. Low Award
Mission Type 1:

- Estimated Mission Budget: < $500M
- Supports ground truth data
- Soil Engineering and ISRU Water investigations

- Precision Soft landing approach, 760 Kg Live Lander. The drill system 30-50kg, 0.5m diameter by 1m. in stowed position, will be mounted on the static Lander, and drill 2-5m boreholes within lander access. The drill system may be given 10-15 sols and a 200 W-hr/sol power budget. Down-hole science instruments may be considered for long-term data collection.
• **Mission Type 2:**

- Estimated Mission Budget: > $500M
- Soil Engineering and ISRU Water investigations
- Soft landing approach, 580kg (1279 lbs.) rover. The drill system 30kg (0.5m diameter x 1m envelope) will be mounted on a Mega rover and drill 1-3m depths (three to ten boreholes). The drilling operations (including sample analysis) may be given 5-10 sols per 1m drilled and a 200 w-hr/sol power budget.
Planetary Drilling: Ongoing Efforts

- Define Initial Drill Mission Goals
 - Allowable Sample Contamination (5% or <0.5%?)
 - Sample core/fines volume Goals
 - Time to Depth
 - Mission Operational Duration Goals
 - Sample Management Process
 - Science Mission Objectives and Priorities
 - Instrument Interfaces

- Collaboration to develop Mission System Concepts
 - Mission objectives
 - Roadmap
 - Evaluate Mission Risk
 - Power and mass envelopes

- Establish team field tests
 - Integration of Instruments & Drill
 - Increase Operational Experience
 - System Validation

20-50m Drill System on Lander Platform