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Introduction:  The poles of the Moon evidently 

harbor enhanced concentrations of hydrogen [1,2]. The 
hydrogen could be in several chemical and physical 
forms.  In addition to solar wind implanted hydrogen, 
seen in returned samples, there may be stably cold-
trapped ice in locations of sufficiently low subsurface 
temperatures.  The lack of polar topography data pre-
vented the accurate estimation of lighting conditions 
and hence annualized near-surface regolith tempera-
tures.  Nevertheless, using imagery from Clementine it 
was possible to roughly estimate permanently-
shadowed regions (PSRs), and to perform image re-
constructions of the Lunar Prospector epithermal neu-
tron flux maps [3,4].  

A key assumption in the image reconstruction 
analyses was that any location that was not a PSR 
could only have solar wind hydrogen abundances 
(<200 ppm), whereas PSRs themselves could have any 
amount of hydrogen that the fit required, from 100% to 
zero. Preliminary Kaguya/LALT topography data pro-
vided greatly improved estimates of PSR locations [5], 
and additional reconstructions were performed under 
the same assumptions.  Several PSRs were identified 
as containing > 1 wt% water-equivalent hydrogen 
(WEH).  These reconstructions  are excellent, statisti-
cally consistent fits to the model.  In fact, reconstruc-
tions that did not treat the PSRs at all were statistically 
inferior to those that decoupled PSRs from non-PSRs.   
Nevertheless, models are only as good as their assump-
tions. 

New Measurements: New results from 
Chandrayaan and NASA’s Lunar Reconnaissance Or-
biter are revising our picture of conditions at the lunar 
poles.  Data from the Diviner Lunar Radiometer Ex-
periment indicate extensive areas of very low tempera-
tures (<100K) in the south polar region, and these ar-
eas are not limited to locations of permanent shadow 
[6].  Such cold terrain has subsurface temperatures low 
enough to keep shallow buried ice stable for 1 Ga or 
longer [7]. Moreover, Earth-based telescopic spectral 
reflectance observations [8] have suggested the possi-
ble presence of phyllosilicates in the near-polar re-
gions. Both of these results indicate that the confine-
ment of potentially high hydrogen concentrations to 

permanent shadow is overly restrictive.  The Lunar 
Prospector epithermal data can now be used to fit a 
model that includes these three possible hydrogen re-
positories. 

Modeling:  Permanently-shadowed regions com-
prise a subset of the more areally extensive terrains 
that have annualized subsurface temperatures low 
enough to permit stable water ice.  For that reason, 
reconstructions are likely to have lower average hy-
drogen abundance than in the PSR-only reconstruc-
tions.  In effect, the same amount of hydrogen is 
placed into a larger area, resulting in lower average 
abundances.  

We will present the results of performing pixon re-
constructions using new spatial constraints, such as 
regions of near-subsurface ice stability, and compare 
these with our previous results.   Also under investiga-
tion are topographic effects on neutron leakage flux 
and the expected signatures of present-day relict ice 
resulting from the emplacement of abundant polar ice 
following a cometary impact in the distant past. 
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