Quantitative Approaches to Lunar Economic Analysis

Brad R. Blair

Mining Engineer, Mineral Economist, Idaho Springs, Colorado

2009 Annual Meeting of the Lunar Exploration Analysis Group (LEAG), Houston, Texas

November 16, 2009

Introduction

Human Space Exploration is currently at Risk

"The U.S. human spaceflight program appears to be on an unsustainable trajectory ..." "... pursuing goals that do not match allocated resources ..." Augustine II

"... Constellation Program cost and schedule will remain uncertain until a sound business case is established" GAO

Solutions include

- Reduce expectations
- Increase NASA budget (ask Congress for a bailout)
- International collaboration
- Innovative commercial partnerships

Sustainability has *multiple aspects*

- Biological
- Logistical
- Economic

Overview

- Economic value *framework* for lunar resources
- Prior art: Quantitative lunar economic modeling at Colorado School of Mines (CSM)
- Recommendations for development of a "sustainable" lunar exploration architecture

Acknowledgements

- Researchers and Staff at the CSM Center for Space Resources (formerly the Center for Commercial Applications of Combustion in Space or CCACS)
- Our NASA sponsors at JSC, JPL and KSC
- Canadian Partners (MDA and Norcat)
- A special thanks to Dr. Mike Duke

The 'Expendable Honda' model

(an analogy for how we currently conduct space transportation)

- Model Assumptions
 - Replacement car must be purchased when fuel tank is empty
 - Standard driving conditions = 12,000 miles per year
 - Standard options, Minimum vehicle price
 - Fuel tank capacity + MPG used in analysis
 - Assume highway mileage applies through life of vehicle

2006 Ridgeline \$27,700 MSRP Fuel Tank Capacity: 22.0 (gal.) EPA Mileage Estimates: 16 mpg / 21 mpg (Cty/Hwy) Payload Capacity: 1,550-lb.

2005 Civic \$13,675 MSRP Fuel Tank Capacity: 13.2 gal. EPA Mileage Estimates: 32 mpg / 38 mpg (Cty/Hwy) Payload Capacity: 13 cubic ft

2005 Insight \$19,845 MSRP Fuel Tank Capacity: 10.6 gal. EPA Mileage Estimates: 60 mpg / 66 mpg (Cty/Hwy) Payload Capacity: 16 cubic ft

EH Model – Annual Results

- Annual capital cost of driving: \$330,000-\$720,000
- Not included: Operations, maintenance, fuel cost
- Question: How would this change automobile demand?

Rocket Stages are Discarded after their first use!

AVA	The	Expendable Hond	a m	odel (B. Bla	air, (CSM-CCACS	5, 4-	14-05)
	ſ	Vodel	Rid	geline	Civ	vic	Ins	sight
		Гуре	truck s			dan	hy	brid
	Ň	Year		2006		2005		2005
A	2	2005 MSRP	\$	27,700	\$	13,675	\$	19,845
AUA	F	⁻ uel Cap (gal)		22.0		13.2		10.6
AAA	1	MPG-H		21		38		66
AUA	Annu	ual number of vehi	cles	s purchas	ed	(12,000 m	iles	per year)
				26.0		23.9		17.2
4 4 4	Tota	I Annual Cost (FY	05	US\$)				
ANA			\$	719,481	\$	327,153	\$	340,395

Extending EH range to >500mi

Systems Requirements for a single cross-country road trip (remember - no filling stations)

Action	Range	Cost		
Load passenger into EH		500mi	\$15,000	
Load onto expendable flatbe	ed	1000mi	\$50,000	
Load flatbed onto tractor-tr	ailer	2000mi	\$250,000	
Load tractor-trailer onto tra	in	3500mi	\$1,250,000	

A linear increase in distance incurs an exponential cost!

Transportation Cost vs. Distance (notional)

- Assumptions
 - Cost = production + ops + fuel
 - Ops cost is constant
 - Production cost is incurred once
 - Fuel cost follows previous chart

"What if" ISRU were available during Apollo?

The Saturn V model

Imbedded excel spreadsheet tool used to estimate reduction of launch stack based on refueling and spacecraft element reuse assumptions (scenario tool shows set points)

mult				kgs								
total Name		Dry Ma	ass	Wet Mass	s Pro	p Mass	Inter	stage	Cum	lsp	Delta ∨ (m/s) cum
100.0% S-IC (first stage)		132	2791	2285713	3 2	2152922	2	4536	2961668	304	3867	3867
100.0% S-II (second stag	e)	36	923	492564	4	455641		3629	671419	421	4683	8 8550
100.0% LE (launch esca	be sys)	L	128	4128	3	C)	0	175226			
100.0% S-IVB (third stag	e)	12	2111	120703	3	108592	2	2041	171098	421	415	5 12705
100.0% LD (lunar descer	t)	2	2790	11658	3	8868	3	0	48354	311	2423	8 15128
100.0% LA (lunar ascent		2	2132	4513	3	2381		0	36696	311	2286	5 2286
100.0% LMA (adaptor)		1	814	1814	4	C)	0	32183			
100.0% SM (service mod	ule)	6	5101	24517	7	18416	5	0	30369	314	2869	5155
100.0% CM (command n	nodule)	5	5851	585	1	C)	0	5851			
	Mass of	Percent of				Refueled		Reused		Removed	Fuel 1	otal Fuel
SCENARIO	Stack (ton)		Syste			Systems		System	s reuses	Systems	Required	
Refuel	,	72.9%			5.5% L			n/a		LD	2381	2381
Refuel M+	.1 1,004	33.9%	S-IC	16	5.0 % L			n/a		LD	4763	23179
						SM		n/a			18416	
Refuel M+L1+LE	0 355	12.0%			D.0% L			n/a		LD, S-IC	4763	55757
			S-IVE	3 30	0.0%		0.30				32578	
						SM		n/a			18416	
Refuel M+L1+LEO, Reuse L	A 268	9.0%			5.0% S			LA	2	LMA, LA,		48155
			S-IVE		3.0 % S		0.23			LD, S-IC	24976	
fuel M+L1+LEO, Reuse LA+S-Ⅳ	B 119	4.0%	S-II		0.0 % r			LA		SM, LMA,		29739
			S-IVE	3 1'	1.5% 5	S-IVB	0.12	S-IVB	0.12	LD, LE, S-	IC 24976	

Propellant from the Moon could revolutionize our current space transportation approach

Markets for Lunar Propellant

NASA-Science Military Missions Debris Management Satellite Servicing & Refueling International Space Station Human Exploration Space Solar Power Self-Sustaining Colonies

Potentially reusable elements in today's launch fleet (LOX/LH2 cryo stages)

Three elements will be examined in detail

The Centaur Upper Stage

Currently discarded when empty!

Atlas Centaur II-A upper stage

- Gross mass 19,100kg
- Empty mass 2,300kg
- Propellant mass 16,800kg
- ISP 449 sec
- Standard payload to LEO 8,600kg (Atlas IIAS, standard config)

- Approximate payload of a fully fueled Centaur HA in LEO To GEO – 7,700kg To LLQ – 8,900kg
- Centaur upper stages are currently classified as "orbital debris"
- Number of Centaurs remaining in orbit > 90 (out of more than 170 launches)
- Location

LE0	GTO	GEO	MEO	HEO	Unknown	Other
6	31	7	2	24	18	1

- Conclusion
 - Transportation infrastructure is already accumulating in Earth orbit
 - These *could be* stranded assets

		S002764		Centaur D AC-12	Centaur D AC-12		1967 Apr 17	In Earth orbit					
		\$002883 \$003598	196 7-068 196 8-110B	Centaur D AC-11 Centaur AC-16	Centaur D AC-11 Centaur 13D	NASA LeR NASA LeR	1967 Jul 14 1968 Dec 7	In Earth orbit In Earth orbit		CLO LEO/I	15937.92 100.21	167 x 406653 x 30.5 722 x 815 x 35.0	
		S003350	196 9-0148		Centaur 17D	NASA LeR	1969 Feb 25	In Earth orbit			NO.L	122 X 015X 530	
		S003845	196 9-030		Centaur 16D	NASA LeR	1969 Mar 27	In Earth orbit		CTO	702.10	2227	
		S004069 S004882	196 9-069 197 1-0068		Centaur 15D Centaur 20D	NASA LeR NASA LeR	1969 Aug 12 1971 Jan 26	In Earth orbit	1969 Sep 25 1971 Mar 1	GTO GTO	703.18 654.37	2237 x 37394 x 17.4 598 x 36580 x 28.1	
		S005267	197 1-051B	Centaur AC-23	Centaur 21D	NASA LeR	1971 M ay 30	In Earth orbit					
		S005816 S006058	197 2-003 197 2-0418		Centaur 20D Centaur 26D	NASA LeR NASA LeR	1972 Jan 23 1972 Jun 13	In Earth orbit In Earth orbit	1972 Feb 23	GTO GTO	654.35 653.29	560 x 36618 x 28.3 558 x 36565 x 27.0	
		S006155	197 2-065		Centaur 19D	NASA LeR	1972 Aug 21		1972 Sep 20	LEO/I	99.59	698 x 780 x 35.0	
		S006779	197 1-116	Centaur AC-26	Centaur 23D	NASA LeR	1971 Dec 20	In Earth orbit		CTO.			
		\$006797 \$007545	197 4-093		Centaur D-1A AC-31 Centaur D-1A AC-32	NASA LeR			1973 Sep 24 1974 Dec 28		655	609 x 36601 x 27.5 569 x 36605 x 25.8	
		\$007902	197 5-042		Centaur D-1A AC-35	NASA LeR	1975 M ay 22			GTO	655.16	597x 36621x 26.1	
		\$008111 \$008272	197 5-075E 197 5-083I		Centaur D-TT TC-4 Centaur D-TT TC-3		1975 Aug 20 1975 Sep 9	In Earth orbit		·			
ueled		S008331	197 5-091E	Centaur D-1AR AC-36	Centaur D-1AR AC-36	NASA LeP	1975 Sep 26	In Earth orbit		GTO	656.55	470 x 36820 x 21.6	
		\$008583 \$008621	197 6-003 197 6-0108		Centaur D-1T TC-5 Centaur D-1AR AC-37	NASA LeR NASA LeR	976 Jan 15 1976 Jan 29	In Earth orbit In Earth orbit	1976 Feb 29	GTO	655.14	595 x 36623 x 21.7	
		S008840	197 6-042					In Earth orbit	1976 Jun 16	GTO	649.34	651x 36271x 21.8	
		\$009329 \$010025	197 6-073 197 7-041E			NASA LeR NASA LeR	1976 Jul 22 1977 M ay 26	In Earth orbit In Earth orbit	1976 Aug 24	GTO GTO	648.17 649.74	583 x 36279 x 21.8 605 x 36337 x 21.8	
		S0102272	197 7-076		Centaur D-ITI TC-7		1977 Aug 20	In Earth orbit		010	043.74	057 505577 210	
		S010322	197 7-084		Centaur D-IT TC-6		1977 Sep 5	In Earth orbit		070	050.07	614	
		\$010722 \$010779	197 8-002 197 8-035			NASA LeR NASA LeR	1978 Jan 7 1978 Mar 31		1978 Mar 16	GTO GTO	650.97 649.15	624 x 36382 x 212 64 x 36299 x 219	
		S010912	197 8-051E	Centaur D-1AR AC-50	Centaur D-1AR AC-80		1978 M ay 20	In Earth orbit					
alaccit	fied as	S010976 S011003	197 8-068 197 8-078			NASA LeR NASA LeR	1978 Jun 29 1978 Aug 8	In Earth orbit In Earth orbit		GTO	649.68	618 x 36321 x 21.9	
c1a5511	icu as	S012069	198 0-087	8 Centaur AC-57	Centaur D-1AR AC-57	NASA LeR	1980 Oct 31	In Earth orbit	1981 Jan 30	HEO	570.94	165x 32674x 26.2	
		S012363 S012445	198 1-018B 198 0-098	Centaur AC-42 3 Centaur AC-54	Centaur D-1AR AC-42 Centaur D-1AR AC-44		1981 Feb 21 1980 Dec 6		1981 M ar 26 1981 Feb 20	GT0 HE0	650.34 541.39	624 x 36349 x 20.5 15 x 31101 x 23.5	
		S012497	198 1-050E		Centaur D-1AR AC-56		1981 M ay 23	In Earth orbit		HEO	586.38	174 x 33483 x 24.4	
1	00	S013007	198 1-119B	Centaur AC-55	Centaur D-1AR AC-55	NASA LeR	1981 Dec 15		1982 Nov 8	HE0	506.53	202 x 29139 x 23.5 297 x 34219 x 23.2	
orbit >	90 (out	S015874 S016102	198 5-055E 198 5-087E		Centaur D-1AR AC-64 Centaur D-1AR AC-65		1985 Jun 30 1985 Sep 28	In Earth orbit In Earth orbit	1985 Jul 30	GTO GTO	602.75 603.69	322 × 34243 x 22.9	
	<i>y</i> u (c	S020713	199 0-065	Centaur AC-69	Centaur I AC-69	GD/A	1990 Jul 25		1990 Aug 25	HEO	593.72	339 x 33705 x 18.1	
		S021804 S021907	199 1-083E 199 2-013E		Centaur II(3) AC-102 Centaur I AC-72	GD/A GD/A	1991 Dec 7 1992 Mar 14	In Earth orbit In Earth orbit	1992 Jan 29 1992 Apr 13	HEO GTO	753.45 638.34	844 x 41255 x 16.6 1095 x 35264 x 19.6	
		S022788	199 3-056	Centaur AC-75	Centaur I AC-75	GD/A	1993 Sep 3	In Earth orbit	1993 Oct 4	HEO	272.38	222 x 14859 x 26.9	
		S022989 S023247	199 4-009 199 4-054		Centaur TC-12 Centaur TC-11	USAF USAF	1994 Feb 7 1994 Aug 27	In Earth orbit In Earth orbit		GEO/ID	1434.81	35733x 35790 x 12.0	
		S023468	199 5-003		Centaur II(3) AC-112	MM/A	1995 Jan 29	In Earth orbit		HEO	477.56	287x 27433 x 26.9	
		S023554 S023568	199 5-019E		Centaur IIA(4N) AC 114	LMA	1995 Apr 7		1995 May 8	GTO	711.33	229 x 39807 x 26.4	
nown	Other	S023590	199 5-022 199 5-027		Centaur TC-17 Centaur II(3) AC-116	USAF LM A	1995 May 14 1995 May 31	In Earth orbit In Earth orbit		HEO	459.76	274 x 26434 x 26.9	
	Outor	S023610	199 5-034	Centaur TC-8	Centaur TC-8	USAF	1995 Jul 10	In Earth orbit				13	
10	1	\$023629 \$023697	199 5-038 199 5-057E		Centaur IIA(4) AC-118 Centaur II(3) AC-119	LM A LM A	1995 Jul 31 1995 Oct 22	In Earth orbit In Earth orbit	1995Nov 21	HEO	477.79	266 x 27467 x 26.9	
18	1	S023713	199 5-060	Centaur TC-13	Centaur TC-13	USAF	1995Nov 6	In Earth orbit	1995 Nov 14	GE0/ID	1434.81	35783 x 35790 x 9.8	
		\$023727 \$023840	199 5-065 199 6-020		Centaur IIA(4N) AC-121 Centaur IIA(4) AC-122	LM A LM A	1995 Dec 2 1996 Apr 3		1996 Apr 10 1996 May 3	GT0	97.59 642.28	264 x 1023 x 97.9 1031 x 35530 x 21.9	
		S023968	199 6-042	3 Centaur AC-125	Centaur II(3) AC-125	LMA	1996 Jul 25	In Earth orbit	1996 Aug 24	HEO	473.55	296 x 27198 x 26.8	
		S024675 S024937	199 6-070 199 7-050		Centaur IIA(4) AC-129 Centaur IIA (1N) AC-146	LMA	1996 Dec 18 1997 Sep 4	In Earth orbit In Earth orbit		GTO HEO	647.58 79167	1015 x 35817 x 22.5 304 x 43636 x 19.0	
1		S025009	199 7-061E		Centaur TC-21KER MIT	NASA LeR		In Earth orbit		TIL O	13101		
eady		S025035	199 7-068		Centaur TC-16	USAF	1997 Nov 8		1998 Mar 18	GTO	709.61 718.59	12.0 x 38740 x 64.7 794 x 39600 x 63.4	
5		S025149 S025259	199 8-005 199 8-016		Centaur IIA AC-109 Centaur II(3) AC-132	LM A LM A	1998 Jan 29 1998 M ar 16		1998 Jan 30 1998 Apr 15	HEO/M HEO	412.1	224 x 23708 x 26.9	
		S025337	199 8-029		Centaur TC-18	USAF	1998 M ay 9		1998 M ay 11	GEO/S		35780 x 35800 x 0.1	
		\$025349 \$025372		3 Centaur TC-15 3 Centaur AC-153	Centaur TC-15 Centaur IIA AC-153	USAF LM A	1996 Apr 24 1998 Jun 18		1996 May 1 1998 Aug 4	GEO/S GTO	1436.27 616.01	35.80 x 35800 x 0.1 96 x 35011x 23.1	
		S025502	199 8-058	Centaur AC-130	Centaur IIA AC-130	LMA	1998 Oct 20	In Earth orbit	1998 Nov 23	HEO	447.13	2 9 x 25703 x 26.9	
		S025725 S025968		3 Centaur TC-14 3 Centaur AC-136	Centaur TC-14 Centaur IIA AC-136	USAF LM A	1999 Apr 30 1999 Nov 23			M EO HEO	454.15	702 x 5156 x 28.2 270 x 26116 x 26.9	
		S026053	200 0-0018	Centaur AC-138	Centaur IIA(4) AC-138	LMA	2000 Jan 21	In Earth orbit	2000 M ar 1	GTO	615.93	232 x 34971 x 25.9	
		S026072 S026353	200 0-007		Centaur IIA AC-158 Centaur IIA	LMA DIA			2000 Feb 15 2000 M ay 13		823.76 752.77	211x 45250 x 18.7 247 x 41819 x 20.1	
		S026330	200 0-028		Centaur IIIA	LM A	2000 M ay 24			HEQ	812.77	230 x 44713 x 20.3	
		S026389 S026576	200 0-034 200 0-065		Centaur IIA Centaur IIA AC-140	LM A	2000 sun 30	In Earth orbit	2000 Jul 8	HE0	480.34 620.68	235x 27642 x 26.9	
		S026636	200 0-080		Centaur IIA AC-157	LMA	2000 Dec 0		2000 Dec 6	NTO I	663.55	217 x 35232 x 26.0 266 x 37378 x 26.5	
		S026716	200 1-0098		Centaur TC-22	USAF LM A	2001Feb 27		2001Feb 28 2001Jun 28		1435.04 346.38	35764 x 35768 x 4.5	
			200 1-0268	Centaur AC-156 Centaur AC-160	Centaur AC-156 Centaur AC-160	LMA	0015ep 8		2001Sep 9	MEO EO/I	107.26	9810 x 10110 x 44.8 1100 x 1100 x 63.0	
		S026949	200 1-0468	Centaur AC-162	Centaur IIA AC-162	LM A	20010ct 11	In Earthord t	20010ct 11	G 10	666.85	274 x 37538 x 26.5	
		\$027169 \$027390	200 2-001E 200 2-011B		Centaur TC-19 Centaur AC-143	USAF LM A	2002 Jan 16 2002 Mar 8	In Earth orbit In Earth orbit		`~ ~	504.86	236 x 29012 x 27.0	
		S027500	200 2-038	3 Centaur AV-001	Centaur SEC AV-001	LMA 🥇	2002 Aug 21	In Earth orbit	2002 Aug 28		789.74	272 x 43575 x 17.9	
		\$027567 \$027712	200 2-055		Centaur IIA AC-144 Centaur TC-23	LM A USAF	2002 Dec 5 2003 Apr 8	In Earth orbit	2002 Dec 5	HEO GEO/ID	545.38 1431.7	205 x 31262 x 26.9 35696 x 35705 x 3.7	
		S027712 S027812	200 3-0120		Centaur AV-002	LMA			2003 Apr 8 2003 May 22		658.22	373 x 79685 x 17.5	
		\$027853 \$027828	200 3-033		Centaur AV-003	LM A	2003 Jul 17	In Earth orbit	2003 Ju 18	GTO	689.95	3787 x 35186 x 17.6	
		\$027938 \$028096	200 3-041 200 3-054		Centaur TC-20 Centaur AC-164	USAF LM A	2003 Sep 9 2003 Dec 2		2003 Sep 10 2003 Dec 2	GEO/S	1456.27 107.41	35780 x 35800 x 2.0 1002 x 1211 x 63.6	
		S028118	200 3-057	Centaur AC-203	Centaur IIA AC-203	LMA	2003 Dec 18	In Earth orbit	2003 Dec 18	GTO	635.08	287 x 35905 x 27.0	
LEAG 2	009, Houston,	, TX S028155 S028185		3 Centaur AC-165 3 Centaur AC-202	Centaur IIA AC-165 Centaur IIIA	LM A LM A	2004 Feb 5 2004 Mar 13	In Earth orbit	2001 Fleb 14	emb	er 2990	9 ^{221x 35650 x} 125	
										-			

S000694 196 3-047A Centaur AC-2

Centaur 2B

NASA LeR 1963 Nov 27 In Earth orbit 1963 Dec 31 LEO/I

107.89 485 x 1773 x 30.3

- Largest vehicle in the international launch fleet
 - All components utilize LOX/LH2 cryogenic propellants
 - The HDCUS upper stage is potentially reusable
 - The central core stage can be put into LEO, and is also a candidate for reuse
- The potential LLO payload of a LEO refueled Delta-IV core booster is more than 3x the LLO payload of the Saturn V

Boeing Delta IV-Heavy: Upper Stage

Refueled in LEO: Extended Payload GEO – 13,200kg LLO – 15,000kg L1 – 17,000kg

Boeing Delta IV-Heavy: Core Booster

Refueled in LEO: Extended Payload GEO - 80,600kg LLO - 93,100kg L1 - 106,600kg

The Case for Commercial Lunar Ice Mining

by

Brad R. Blair, Javier Diaz, Michael B. Duke, Center for the Commercial Applications of Combustion in Space, Colorado School of Mines, Golden, Colorado

Elisabeth Lamassoure, Robert Easter, Jet Propulsion Laboratory, Pasadena, California

Mark Oderman, Marc Vaucher CSP Associates, Inc., Cambridge, Massachusetts

December, 2002

http://www.isruinfo.com//docs/LDEM_Draft4-updated.pdf

Architectures Studied

Two architectural variants were modeled:

Architecture 1

Has an L1-based transportation system for getting payloads from LEO to GEO

Architecture 2

Is a LEO-based system, which requires that propellant be shipped to LEO

Conservative Technology assumptions:

Cryogenic Vehicles $(H_2/O_2 \text{ fuel})$ Lunar Lander Orbital Transfer (OTV) Fuel Depot(s) Solar Power Electrolysis (fuel cell) Tanks for H₂, O₂ and H₂O

- NAFCOM99: Analogy-based cost model
 - Architecture 2 WBS shown on right panel
 - Conservative methodology used
- SOCM: Operations cost model
 - Estimates system-level operating costs
 - Conservative methodology used
- Launch Costs: \$90k/kg Moon, \$35k/kg GEO, \$10k/kg LEO

SRD Architecture 2 Cost Model (\$M FY02 NAFCOM Estimate)	Mass (kg)	D&D	STH	FU	Prod	Total Cost
GRAND TOTAL	37470.2	5393.2	1018.1	1264.5	1264.5	
SYSTEM 1: Lunar Surface Mining & Procesing Equipment	13980.7	3972.1	750.5	927.1	927.1	
SYSTEM 2: L1 Depot	6806.8	569.1	74.2	93.8	93.8	737.1
SYSTEM 3: Lunar Lander	7747.8	446.8	83.5	105.4	105.4	635.7
SYSTEM 4: OTV (LEO-GEO-L1)	8934.8	405.2	109.8	138.2	138.2	653.2

SRD Architecture 2 Cost Model (\$M FY02 NAFCOM Estimate)	Mass (kg)		ети	E 11	Prod	Total Cost
GRAND TOTAL	37470.2			1264.5	1264.5	7675.8
SYSTEM 1: Lunar Surface Mining & Procesing Equipment	13980.7		750.5	927.1	927.1	5649.7
HARDWARE TOTAL	13980.7	1861.6	750.5	577.3	577.3	3189.5
Regolith Excavator	274.0	19.5	17.7	13.6	13.6	50.8
Structure	68.5	8.2	5.7	4.4	4.4	18.3
Mobility	68.5	3.9	6.4	4.9	4.9	15.3
Excavation	68.5	0.8	1.4	1.1	1.1	3.3
Soil Handling	65.5	6.1	3.7	2.8	2.8	12.6
CC&DH	3.0	0.5	0.4	0.3	0.3	1.3
Regolith Hauler	356.0	27.7	25.5	19.6	19.6	72.8
Structure	117.7	10.0	6.7	5.2	5.2	22.0
Mobility	117.7	5.3	9.3	7.2	7.2	21.8
Soil Handling	117.6	11.0	8.3	6.4	6.4	25.8
CC&DH	3.0	1.3	1.1	0.9	0.9	3.3
Thermal Extraction	2736.9	602.3	24.1	18.5	18.5	644.8
Water Electrolysis	736.0	90.6	38.2	29.4	29.4	158.2
Hydrogen Liquefier	25.0	2.9	0.6	0.4	0.4	3.9
Hydrogen Liquefier Radiators	425.0	26.9	1.6	1.3	1.3	29.8
Oxygen Liquefier	92.0	5.6	1.6	1.3	1.3	8.4
Oxygen Liquefier Radiators	92.0 131.0	14.9	0.6	0.5	0.5	16.1
Water Tanks	520.0	7.0	1.0	0.5	0.5	8.7
		6.6	0.9	0.8	0.8	8.2
Hydrogen Tanks	469.0					
Oxygen Tanks	1999.0	14.6	2.2	1.7	1.7	18.6
Power System (Nuclear)	3420.9	565.1	442.7	340.5	340.5	1348.3
Maintenanace Facility	1000.0	374.1	152.6	117.4	117.4	644.0
Mobility	200.0	78.9	10.4	8.0	8.0	97.3
Sensors	200.0	140.2	51.7	39.8	39.8	231.6
Manipulators	200.0	7.1	13.5	10.4	10.4	31.1
CC&DH	200.0	108.6	61.3	47.1	47.1	217.0
Spare Parts	200.0	39.4	15.6	12.0	12.0	67.0
Ancillary Equipment	1796.0	103.9	41.3	31.7	31.7	176.9
SYSTEM INTEGRATION		2110.5		349.7	349.7	2809.9
SYSTEM 2: L1 Depot	6806.8	569.1	74.2	93.8	93.8	737.1
HARDWARE TOTAL	6806.8	280.3	74.2	57.1	57.1	411.6
Water Electrolysis	692.0	154.4	48.7	37.4	37.4	240.5
Hydrogen Liquefier	63.0	4.6	1.2	0.9	0.9	6.7
Hydrogen Liquefier Radiators	1096.0	43.2	3.5	2.7	2.7	49.4
Oxygen Liquefier	236.0	8.9	3.4	2.6	2.6	14.9
Oxygen Liquefier Radiators	236.0	20.1	1.0	0.8	0.8	21.9
Water Tanks	369.0	20.1	0.8	0.6	0.6	7.2
Hydrogen Tanks	615.0	7.6	1.1	0.8	0.8	9.6
Oxygen Tanks	2624.9	17.0	2.6	2.0	2.0	21.6
Power System (solar)	256.0	2.7	5.3	4.1	4.1	12.2
Ancillary Equipment	619.0	15.9	6.6	5.1	5.1	27.6
SYSTEM INTEGRATION		288.8		36.7	36.7	362.3
		446.8	83.5	105.4	105.4	635.7
SYSTEM 3: Lunar Lander	7747.8				64.2	355.9
SYSTEM 3: Lunar Lander HARDWARE TOTAL	7747.8	208.1	83.5	64.2		
			83.5 24.9	64.2 19.2	19.2	100.5
HARDWARE TOTAL	7747.8	208.1				
HARDWARE TOTAL Propulsion System	7747.8 2180.0	208.1 56.4	24.9	19.2	19.2	5.7
HARDWARE TOTAL Propulsion System Water Tanks	7747.8 2180.0 239.0	208.1 56.4 4.5	24.9 0.6	19.2 0.5	19.2 0.5	5.7 4.2
HARDWARE TOTAL Propulsion System Water Tanks CC&DH Structure	7747.8 2180.0 239.0 13.0 3481.9	208.1 56.4 4.5 1.6 68.8	24.9 0.6 1.5 42.4	19.2 0.5 1.1 32.6	19.2 0.5 1.1	5.7 4.2 143.8
HARDWARE TOTAL Propulsion System Water Tanks CC&DH Structure Power	7747.8 2180.0 239.0 13.0	208.1 56.4 4.5 1.6	24.9 0.6 1.5	19.2 0.5 1.1	19.2 0.5 1.1 32.6	5.7 4.2 143.8 7.5
HARDWARE TOTAL Propulsion System Water Tanks CC8DH Structure Power Landing System	7747.8 2180.0 239.0 13.0 3481.9 15.0	208.1 56.4 4.5 1.6 68.8 7.2 69.6	24.9 0.6 1.5 42.4 0.2	19.2 0.5 1.1 32.6 0.1 10.8	19.2 0.5 1.1 32.6 0.1 10.8	5.7 4.2 143.8 7.5 94.4
HARDWARE TOTAL Propulsion System Water Tanks C C2DH Structure Power Landing System SYSTEM INTEGRATION	7747.8 2180.0 239.0 13.0 3481.9 15.0 1819.0	208.1 56.4 4.5 1.6 68.8 7.2 69.6 238.6	24.9 0.6 1.5 42.4 0.2 14.0	19.2 0.5 1.1 32.6 0.1 10.8 41.2	19.2 0.5 1.1 32.6 0.1 10.8 41.2	5.7 4.2 143.8 7.5 94.4 321.0
HARDWARE TOTAL Propulsion System Water Tanks CC2DH Structure Power Landing System SYSTEM INTEGRATION SYSTEM 4: OTV (LEO-GEO-L1)	7747.8 2180.0 239.0 13.0 3481.9 15.0 1819.0 8934.8	208.1 56.4 4.5 1.6 68.8 7.2 69.6 238.6 405.2	24.9 0.6 1.5 42.4 0.2 14.0 109.8	19.2 0.5 1.1 32.6 0.1 10.8 41.2 138.2	19.2 0.5 1.1 32.6 0.1 10.8 41.2 138.2	5.7 4.2 143.8 7.5 94.4 321.0 653.2
HARDWARE TOTAL Propulsion System Water Tanks CC8DH Structure Power Landing System SYSTEM INTEGRATION SYSTEM 4: OTV (LEO-GEO-L1) HARDWARE TOTAL	7747.8 2180.0 239.0 13.0 3481.9 15.0 1819.0 8934.8 8934.8	208.1 56.4 4.5 1.6 68.8 7.2 69.6 238.6 405.2 173.2	24.9 0.6 1.5 42.4 0.2 14.0 109.8 109.8	19.2 0.5 1.1 32.6 0.1 10.8 41.2 138.2 84.5	19.2 0.5 1.1 32.6 0.1 10.8 41.2 138.2 84.5	5.7 4.2 143.8 7.5 94.4 321.0 653.2 367.5
HARDWARE TOTAL Propulsion System Water Tanks CC8DH Structure Power Landing System SYSTEM INTEGRATION SYSTEM 4: OTV (LEO-GEO-L1) HARDWARE TOTAL Propulsion System	7747.8 2180.0 239.0 13.0 3481.9 15.0 1819.0 8934.8 8934.8 8934.8	208.1 56.4 4.5 1.6 68.8 7.2 69.6 238.6 405.2 173.2 55.1	24.9 0.6 1.5 42.4 0.2 14.0 109.8 109.8 24.3	19.2 0.5 1.1 32.6 0.1 10.8 41.2 138.2 84.5 18.7	19.2 0.5 1.1 32.6 0.1 10.8 41.2 138.2 84.5 18.7	5.7 4.2 143.8 7.5 94.4 321.0 653.2 367.5 98.0
HARDWARE TOTAL Propulsion System Water Tanks CC&DH Structure Power Landing System SYSTEM INTEGRATION SYSTEM INTEGRATION SYSTEM 4: OTV (LEO-GEO-L1) HARDWARE TOTAL Propulsion System CC&DH	7747.8 2180.0 239.0 13.0 3481.9 15.0 1819.0 8934.8 8934.8 8934.8 2088.0 13.0	208.1 56.4 4.5 1.6 68.8 7.2 69.6 238.6 405.2 173.2 55.1 1.6	24.9 0.6 1.5 42.4 0.2 14.0 109.8 109.8 24.3 1.5	19.2 0.5 1.1 32.6 0.1 10.8 41.2 138.2 84.5 18.7 1.1	19.2 0.5 1.1 32.6 0.1 10.8 41.2 138.2 84.5 18.7 1.1	5.7 4.2 143.8 7.5 94.4 321.0 653.2 367.5 98.0 98.0 4.2
HARDWARE TOTAL Propulsion System Water Tanks CC&DH Structure Power Landing System SYSTEM INTEGRATION SYSTEM 4 OTV (LEO-GEO-L1) HARDWARE TOTAL Propulsion System CC&DH Structure	7747.8 2180.0 239.0 13.0 3481.9 15.0 1819.0 8934.8 8934.8 2088.0 13.0 3314.9	208.1 56.4 4.5 1.6 68.8 7.2 69.6 238.6 405.2 173.2 55.1 1.6 67.0	24.9 0.6 1.5 42.4 0.2 14.0 109.8 24.3 1.5 40.9	19.2 0.5 1.1 32.6 0.1 10.8 41.2 138.2 84.5 18.7 1.1 31.5	19.2 0.5 1.1 32.6 0.1 10.8 41.2 138.2 84.5 18.7 1.1 31.5	5.7 4.2 143.8 7.5 94.4 321.0 653.2 367.5 98.0 4.2 139.4
HARDWARE TOTAL Propulsion System Water Tanks CC8DH Structure Power Landing System SYSTEM INTEGRATION SYSTEM 4: OTV (LEO-GEO-L1) HARDWARE TOTAL Propulsion System CC8DH Structure Power	7747.8 2180.0 239.0 13.0 3481.9 15.0 1819.0 8934.8 8934.8 8934.8 2088.0 13.0 3314.9 15.0	208.1 56.4 4.5 1.6 68.8 7.2 69.6 238.6 405.2 173.2 55.1 1.6 67.0 7.2	24.9 0.6 1.5 42.4 0.2 14.0 109.8 24.3 1.5 40.9 0.2	19.2 0.5 1.1 32.6 0.1 10.8 41.2 138.2 84.5 18.7 1.1 31.5 0.1	19.2 0.5 1.1 32.6 0.1 10.8 41.2 138.2 84.5 18.7 1.1 31.5 0.1	5.7 4.2 143.8 7.5 94.4 321.0 653.2 367.5 98.0 4.2 139.4 7.5
HARDWARE TOTAL Propulsion System Water Tanks CC&DH Structure Power Landing System SYSTEM INTEGRATION SYSTEM 4 OTV (LEO-GEO-L1) HARDWARE TOTAL Propulsion System CC&DH Structure	7747.8 2180.0 239.0 13.0 3481.9 15.0 1819.0 8934.8 8934.8 2088.0 13.0 3314.9	208.1 56.4 4.5 1.6 68.8 7.2 69.6 238.6 405.2 173.2 55.1 1.6 67.0	24.9 0.6 1.5 42.4 0.2 14.0 109.8 24.3 1.5 40.9	19.2 0.5 1.1 32.6 0.1 10.8 41.2 138.2 84.5 18.7 1.1 31.5	19.2 0.5 1.1 32.6 0.1 10.8 41.2 138.2 84.5 18.7 1.1 31.5	100.5 5.7 4.2 143.8 7.5 94.4 321.0 653.2 367.5 98.0 4.2 139.4 7.5 118.4 339.5

Cost Buildup & Production Rates

Market Breakdown Structure

N	lar	ket Breakdown Structure		Orbit Util	ization _{(N}	ote:Bold X i	ndicates po ten	tial location	for fuel or ma	aterials dema	nd)
			LEO	MEO	GTO	GEO	Polar	L1	Moon	Mars	Ásteroid
1	\square	Communications Market (commercial)									
1	Π	Fixed Satellite Service	Х		Х	X					
2		Direct Broadcast Service	Х		Х	X					
2		Space Manufacturing (potential)									
1	_	Space Manufacturing	Х								
2		Space Processing	Х								
3		Government Missions									
1	П	Existing Government Missions									
	1	NASA Missions (Excluding Station)	Х	Х	Х	Х	Х	X	Х	Х	Х
	2	DOD Missions	Х	Х	Х	Х	Х				Х
2		Increased Space Station Missions									
	1	Station Deployment	Х	Х							
	2	Station Resupply	Х	Х							
	3	Station Reboost	Х	Х							
3		Human Planetary Exploration									
	1	Lunar Base Program	Х		Х				X		
	2	Mars Design Reference Missions	Х		Х			Х		Х	
	3	Asteroid Exploration	Х		Х			Х			X
4		Asteroid Detection/Negation	Х		Х			Х			X
5		Technology Development Testbed	Х		Х	Х					
4		Transportation									
1		Space Servicing and Transfer	Х	Х	Х	Х		Х			
2		Hazardous Waste Disposal	Х		Х			Х	X		
3		Space Tourism	Х		Х			X	X	X	
5		New Missions									
1		Space Debris Management	Х	Х	Х	X	Х	X			
2		Multiuse LEO Business Park	Х								
3		Space Settlements	Х			Х		X	X	X	Х
6		Space Utilities									
1	_	GEO Solar Power Satellites	Х		Х	X					
2		Lunar Based Power Station	Х		Х			Х	X		
3		Space to Space Power Beaming	Х	Х		X	Х	Х			

Space to Space Power Beaming

Х

Orbital Transfer (Deployment), Construction Materials

- Baseline Market Model
 - Commercial GEO payload delivery (Note: this is an existing market)
 - Modeled quantity = 150 tons/yr of GEO Satellite delivery mass 2010-2016 (Based on FAA/OCST 1999 and 2002 forecasts)
 - Market capture function starts at 10% in 2010 and ends at 100% in 2016
 - Modeled price = \$20,000/kilogram of Satellite delivered to GEO

• Other near-term cryogenic fuel / H_2O markets

- Not included in current version of model
- Satellite servicing (Orbital Express bus)
- ISS / Commercial business park (fuel + consumables)
- DOD Missions (Orbital Express bus)
- Orbital debris management
- Human exploration missions (fuel + consumables)
- Space materials processing/manufacturing (fuel, metals, ceramics, etc.)
- Asteroid detection/negation
- Solar powered satellites

FY02 Feasibility Modeling

Feasibility Process Summary:	Version	Summary	Description
Version $0 =$ Baseline (most conservative)			•
Versions 1-3: Relax assumptions	1.1c.0 1.2.0	Baseline	Baseline Version -all assumptions the same as previously except for demand and architecture changes
Version 4 shows a positive rate of return for	1.1c.1 1.2.1	No Non-Rec. Investments	Assumes the public sector pays for the Non-Recurring Investments (design, development and first unit cost)
private investment (6%)	1.1c.2 1.2.2	No Non-Rec. Investments, 30% Production Cost Reduction	Assumes the above, and Reduces the First unit production cost of all elements by 30%
Version 4 Assumes:	1.2.2		ciclicity 5070
Zero non-recurring costs (DDT&E)	1.1c.3	No Non-Rec. Investments, 30%	Assumes all the above, and a Concentration of Water in Lunar
30% Production cost reduction	1.2.3	Production Cost, 2x Lunar Water Concentration Reduction	Regolith twice higher than the current best estimate.
2% Ice concentration	1.1c.4	No Dev. Cost, 30% Production Cost	Same as above, and Double the Demand
2x Demand level (i.e., 300T/yr)	1.2.4	Reduction, 2x More Water on Moon, 2x Demand	

FY02 Commercial Model Results

CSP Financial Summary (Architecture 2, Version 4)

INCOME STATEMENT	2007		2008	2009		2010	2011		2012		2013		2014		2015		2016	Cu	mulative
Revenues	\$	0 \$	0	\$	0	\$ 600	\$ 1,200	\$	1,800	\$	2,400	\$	3,600	\$	4,800	\$	6,000	\$	20,401
Gross Profit	\$	0 \$	0	\$	0	\$ 539	\$ 1,078	\$	1,617	\$	2,155	\$	3,233	\$	4,311	\$	5,388	\$	18,321
EBITDA	\$ (4) \$	(9)	\$ (1	0)	\$ 527	\$ 1,065	\$	1,604	\$	2,142	\$	3,219	\$	4,296	\$	5,373	\$	18,205
EBIT	\$ (4) \$	(9)	\$ (1	0)	\$ 373	\$ 610	\$	910	\$	1,257	\$	1,970	\$	2,195	\$	3,272	\$	10,565
Net Income	\$ ((4) \$	(9)	\$ (1	0)	\$ 184	\$ 225	\$	337	\$	510	\$	924	\$	1 ,058	\$	1,708	\$	4,924
CASH FLOW	2007		2008	2009		2010	2011		2012		2013		2014		2015		2016	Cu	mulative
Net Cash From Operations	\$ (4) \$	i (9)	\$ (1	0)	\$ 338	\$ 680	\$	1,031	\$	1,395	\$	2,173	\$	3,159	\$	3,809	\$	12,563
Net Changes in Working Capital	\$	0 \$	0	\$	0	\$ (45)	\$ (45)	\$	(45)	\$	(45)	\$	(90)	\$	(90)	\$	(90)	\$	(448)
CAPEX/NRE	\$	0 \$	0	\$ 1,54	.8	\$ 3,018	\$ 3,013	\$	2,384	\$	1,910	\$	3,649	\$	4,105	\$	4,410	\$	24,039
Taxes	\$ -	\$	-	\$-		\$ 107	\$ 150	\$	225	\$	340	\$	616	\$	706	\$	1,138	\$	3,282
Annual Cash (Shortfall) Surplus	\$ (4) \$	(8)	\$ (1,55	7)	\$ (2,725)	\$ (2,378)	\$	(1,399)	\$	(560)	\$	(2,928)	\$	(2,224)	\$	(1,391)	\$	(15,174)
Equity Financing	\$ 10	4 \$	8	\$ 1,55	7	\$ 1,363	\$ 1,189	\$	699	\$	280	\$	1,464	\$	1,112	\$	695	\$	8,472
Debt Financing	\$ -	\$	-	\$-		\$ 1,363	\$ 1,189	\$	699	\$	280	\$	1,464	\$	1,112	\$	695	\$	6,802
Principal and Interest Payments	\$-	\$	-	\$-		\$ 82	\$ 235	\$	348	\$	407	\$	1,792	\$	1,620	\$	1,126	\$	5,610
	2007	_	2000	2002	_	0010	0011		2012		2042	_	2011	_	2015		0040		
BALANCE SHEET	2007		2008	2009	-	2010	2011	_	2012	_	2013	_	2014	_	2015	_	2016		
Total Assets	\$ 10		100	\$ 1,64	.8	\$ 4,562	\$ 7,170	\$	8,911	\$	9,987	\$	12,486	\$	14,590	\$	16,999		
Short and Long Term Liabilities	*	0\$	1	\$	1	\$ 1,369	\$ 2,563	\$	3,267	\$	3,552	\$	3,664	\$	3,597	\$	3,603		
Shareholder Equity	\$ 10	4 \$	112	\$ 1,67	0	\$ 3,032	\$ 4,221	\$	4,921	\$	5,200	\$	6,665	\$	7,777	\$	8,472		
Retained Earnings	\$ (4) \$	(13)	\$ (2	:3)	\$ 161	\$ 386	\$	724	\$	1,234	\$	2,158	\$	3,216	\$	4,924		

Production and delivery rates for water at Lunar cold trap and L1 (Architecture 2, Version 4)

Year	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
Total Market Demand [MT]	300	300	300	300	300	300	300	300	300	300
Market Share and Growth	0%	0%	0%	10%	20%	30%	40%	60%	80%	100%
Actual Demand [MT]	0	0	0	30	60	90	120	180	240	300
Number of deployed production units	0	0	0	2	4	6	8	12	16	20
Non-Recurring Investments (Development) [\$M]	\$4,378	\$2,368	\$ 550	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -
Recurring CAPital EXpenditures (Production & Launch) [\$M]	\$-	\$-	\$ -	\$1,533	\$3,013	\$2,384	\$1,910	\$3,649	\$4,105	\$4,410
Tons Produced - Moon (MT)	0	0	0	491	981	1472	1963	2944	3925	4907
Tons Delivered - L1 (MT)	0	0	0	225	451	676	902	1353	1804	2255
Annualized cost/ton - Moon (\$M/t)				\$ 3.12	\$ 3.07	\$ 1.62	\$ 0.97	\$ 1.24	\$ 1.05	\$ 0.90
Annualized cost/ton - L1 (\$M/t)				\$ 6.80	\$ 6.68	\$ 3.53	\$ 2.12	\$ 2.70	\$ 2.28	\$ 1.96

• Results provide an Upper Bound on Propellant Unit Costs

2003 DARPA Study

- "Lunar Manufacturing" fresh start in Spring 2003
- Partnership between CSM and MDA (U.S. Canada collaboration)
- Refined architectural assumptions including ISRU and transportation system models
- Expanded propellant market models to include DoD payloads

RASC;

Executive Summary

Project Title: Space Transportation Architecture Based On ISRU Supplied Resources Study

- Purpose
 - Identify ISRU-based space transportation scenarios and compare them to Earth supplied scenarios to provide architecture trade crossover points for cost, mass, and schedule
 - Identify architecture sensitivities and drivers
 - Identify key technology needs/drivers to help prioritize ISRU technology development

Scope

- Develop & model ISRU production and product transportation and storage architecture options
- Define & model elements for space transportation architecture options
- Define & evaluate emplacement and buildup scenarios
- Model & evaluate architecture option operations, costs, and business/commercial potential
- Perform technology driver and cost analysis sensitivity studies

Study Summary: Preliminary Findings & Conclusions

- Development of ISRU and transportation elements still in work (study end date 6/04)
- Earth-Moon L1 point is most optimal position for propellant depot for Earth orbit satellite servicing and satellite delivery tugs from Low Earth Orbit (LEO) to Geostationary Orbit (GEO)
- Commercial potential of combined ISRU propellant/L1 Depot could significantly influence architecture and reduce cost to NASA

Application to NASA Future Mission Needs

- ISRU and transportation element concepts, models, and databases developed in this study can be applied to future Design Reference Missions (DRMs)
- In-situ production of mission critical consumables (propellants, life support, fuel cell reagents, science gases) provides early mission benefits with minimal infrastructure requirements

Acknowledgements

- Johnson Space Center (JSC)
 - Study Lead

RASC

- Verification/validation of architecture
- Vehicle sizing and consumables requirements
 - Scott Baird
 - Kris Romig
 - Gerald Sanders
- Colorado School of Mines (CSM)
 - Economic modeling
 - Architecture development
 - Excavating (lunar focus)
 - Product integration
 - Final Report
 - Brad Blair
 - Begonia Diaz
 - Javier Diaz
 - Mike Duke
- Kennedy Space Center (KSC)
 - Lunar Processing Plants development
 - Mars Processing Plants development
 - Chemical processing methodology
 - Dale Lueck
 - Clyde Parrish
- Florida Institute of Technology
 - Assist KSC with processing plant development
 - Jonathan Whitlow

Architecture Elements

Earth surface-to-LEO transportation

RASC

- Existing Capabilities: Shuttle, Delta IV Heavy, Atlas V
- New "Magnum" class heavy lift expendable
- LEO Station
 - ISS
- Near-Earth Neighborhood and Earth-Mars Transfer Vehicles
 - Hybrid Propulsion Module (HPM)
 - Chemical Transfer Module (CTM)
 - Nuclear Electric Propulsion (NEP)
 - Solar-Electric Rocket
- Crew Transport Vehicle
 - Crew Exploration Vehicle (CEV)
- Lagrange Point Stations [E-ML1,2, S-EL1,2, S-ML1,2]
 - Earth-Moon L1 will act as a staging point for Mars bound missions
 - Propellants and other consumables supplied from hunar surface
 - Fuel Depots at Earth-Moon L1, Mars-Sun L1
 - Gateway Station (L1)
- Lunar Surface Base
 - Manned habitats and surface excursion vehicles
 - Surface production plants
- Lunar surface-to-Lunar Orbit transportation
 - Single Use
 - Reusable
- Mars Surface Base
 - Manned habitats and surface excursion vehicles
 - Surface production plants
- Mars surface-to-Mars Orbit transportation
 - Single Use
 - Reusable

ISRU Supplied Resources Architecture - Resupply Nodes

Mission Design

Mission Destinations & Staging Points

ISRU Supportable Missions

Mission Velocity Requirements (ΔV)

TO: FROM	ES	LEO	GEO HEO	E-ML	S-EL	LS	S-ML	MO	MS
ES		12,000	15,000	-	-	-	-	-	-
LEO	114		2,700	4,040	3,150	5,930	TBD	5,600	4,800
GEO/HEO	-	2,700		TBD	-	-	-	-	-
E-ML	-	4,040	TBD		TBD	2,620	7,450	TBD	TBD
S-EL	-	TBD	TBD	TBD		TBD	TBD	TBD	TBD
LS	-	2,740	-	2,700	TBD		-	-	-
S-ML	-	TBD	-	7,450	TBD	-		TBD	6,000
MO	-	1,800	-	TBD	TBD	3,200	TBD		850
MS	-	5,800	-	TBD	TBD	-	TBD	4,000	

Lunar ISRU Architecture

B. Blair

Mars ISRU Architecture

B. Blair

- Model Structure
 - Architecture
 - Parametric sizing
 - Demand models
 - Cost model
 - Feasibility
- Goals of Modeling
 - Determine feasible conditions (Go / No Go)
 - Insight into critical assumptions
 - Insight into systems dynamics (sensitivity)
 - Identification of critical risk factors
 - Technology sensitivity analysis (investment prioritization)

A Bold Vision for Space Exploration

- Complete the International Space Station
- Safely fly the Space Shuttle until 2010
- Develop and fly the Crew Exploration Vehicle no later than 2014 (goal of 2012)
- Return to the Moon no later than 2020
- Extend human presence across the solar system and beyond
- Implement a sustained and affordable human and robotic program
- Develop supporting innovative technologies, knowledge, and infrastructures
- Promote international and commercial participation in exploration

"It is time for America to take the next steps.

Today I announce a new plan to explore space and extend a human presence across our solar system. We will begin the effort quickly, using existing programs and personnel. We'll make steady progress – one mission, one voyage, one landing at a time"

> President George W. Bush – January 14, 2004

Cost/Benefit Modeling

(lunar 10yr scenario)

- Cost Model includes
 - DDT&E, Production & Integration costs from NAFCOM
 - Operations cost of \$57M per element per mission
 - Launch costs, including options for Saturn V, Delta 4, Atlas 3
 - Discounting of out-year costs at 8%
- Comparison of ISRU to Baseline
 - Baseline assumes Apollo-style expendable systems
 - Choice of Saturn, Delta, Atlas for cargo missions
- Benefit Model includes
 - Rate of return, comparing relative benefit of ISRU model to Baseline

- Discounted Rate of Return (ROR) vs. Baseline = 49.4%
 - ISRU 10-yr mission cost = \$40.1 Billion
 - Baseline 10-yr mission cost = \$59.9
 Billion
- Suggested Model Improvements Include
 - Add/improve links for sensitivity analysis
 - Preliminary technology improvements modeling
 - Review & update launch cost roll-ups

40 Veer ICDII Ceenarie Ceet Superson	Data	2017	2019	2010	2020	2024	2022	2022	2024	2025	2026	2027	2028	2020	2020
10 Year ISRU Scenario Cost Summary	Date		2018	2019	2020	2021		2023		2025	2026	2027	2020	2029	2030
Development Cost		\$1,927	\$ 5,935	\$ 7,472	\$ 4,593	\$ 1,370	\$ 530	\$ 814	\$ 641	\$ 149	\$ -	\$ -	\$ -	\$ -	\$-
Production Cost		\$ -	Ş -	ş .	\$ 1,309	\$ 3,917	\$ 4,625	\$ 2,712	\$ 2,708	\$ 3,320	\$ 2,843	\$ 3,033	\$ 3,119	\$ 3,247	\$ 2,250
Launch Cost		ş -	\$ -	\$ -	\$ 1,281	\$ 2,722	\$ 3,807	\$ 2,510	\$ 3,294	\$ 3,623	\$ 2,720	\$ 2,697	\$ 2,770	\$ 2,168	\$ 1,193
Operations Cost		\$ -	Ş.	ş.	\$ 192	\$ 696	\$ 1,200	\$ 1,368	\$ 1,584	\$ 1,992	\$ 2,352	\$ 2,712	\$ 3,144	\$ 3,648	\$ 3,936
Replacement Cost		\$ -	\$ -	\$ -	\$ 120	\$ 431	\$ 823	\$ 1,010	\$ 1,173	\$ 1,393	\$ 1,563	\$ 1,725	\$ 1,855	\$ 1,987	\$ 2,029
10-Year Scenario Total Cost per Year		\$1,927	\$ 5,935	\$ 7,472	\$ 7,495	\$ 9,135	\$10,985	\$ 8,414	\$ 9,401	\$10,477	\$ 9,478	\$10,167	\$10,888	\$11,051	\$ 9,408
Discounted Annual Cost (2004=base year)		\$ 558	\$ 1,563	\$ 1,789	\$ 1,631	\$ 1,807	\$ 1,976	\$ 1,376	\$ 1,397	\$ 1,416	\$ 1,164	\$ 1,135	\$ 1,105	\$ 1,020	\$ 789
Undiscounted Total Cost (\$M)	\$	122,234													
Net Present Cost (\$M)	\$	18,727													
10-Year Non-ISRU (all expendable) Baseline															
10-Year Non-ISRU Total Cost per Year		\$1,568	\$ 4,850	\$ 6,149	\$ 6,324	\$ 9,493	\$16,153	\$14,394	\$17,895	\$20,213	\$22,525	\$24,689	\$27,001	\$30,530	\$32,832
Discounted Annual Cost (2004=base year)		\$ 454	\$ 1,277	\$ 1,472	\$ 1,376	\$ 1,878	\$ 2,905	\$ 2,354	\$ 2,660	\$ 2,731	\$ 2,767	\$ 2,757	\$ 2,741	\$ 2,818	\$ 2,755
Crossover point		0	0	0	0	0	1	1	1	1	1	1	1	1	1
Breakeven		\$ (359)	\$(1,443)	\$(2,766)	\$(3,868)	\$(4,328)	\$ (1,846)	\$ 3,149	\$ 9,593	\$17,264	\$26,461	\$37,001	\$49,051	\$61,990	\$77,430
Undiscounted Total Cost (\$M)	\$	234,616													
Net Present Cost (\$M)	\$	30,946													
Rate of Return of ISRU vs. Expendable		39.5%													

48

One-way missions with no transportation system reuse

Libration-based Fuel Depots

Libration Fuel Depots enable Solar System Access

Conclusions

- ISRU is an up-front Investment that could generate long-term returns, but it depends on developing a *sustainable market* for lunar-derived products
- Return on investment (ROI) can be quantitatively demonstrated for lunar propellant under certain conditions
- NASA has the ability to help create or enhance those conditions

Necessary v. Sufficient Conditions

- Is space commercialization a **necessary** condition for human space exploration?
 - Yes. It is a necessary element of a rational cost reduction plan.
 - Leveraged capabilities and cost effectiveness could dramatically increase.
- Is space commercialization a **sufficient** condition for space colonization?
 - No. There is still a dependence on NASA to lead the way, reduce risks and build infrastructure that can be later privatized.
 - Technologies with space *and* terrestrial applications are a potential offsetting factor and are currently attracting industry investment.

Lunar Commercialization Could Enable Budget for Mars

G. Sanders/JSC, gerald.b.sanders@nasa.gov

Mar. 25, 2005 4 of 13

	Amounts	Billions)		
	Limit	Current		
Iotal	\$12,798.14	\$4,169.71		
Federal Reserve Total	\$7,765.64	\$1,678.71		
Primary Credit Discount	\$110.74	\$61.31		
Secondary Credit	\$0.19	\$1.00		
Primary dealer and others	\$147.00	\$20.18		
ABCP Liquidity	\$152.11	\$6.85		
AIG Credit	\$60.00	\$43.19		
	\$1,800.00	\$241.31		
Maiden Lane (Bear Stearns)	\$29.50	\$28.82		
Maiden Lane II (AIG)	\$22.50	\$18.54		
Maiden Lane III (AIG)	\$30.00	\$24.04		
Term Securities Lending	\$250.00	\$88.55		
Term Auction Facility	\$900.00	\$468.59		
Securities lending overnight	\$10.00	\$4.41		
Term Asset-Backed Loan Facility		\$4.71		
Currency Swaps/Other Assets	\$606.00	\$377.87		
MMIFF	\$540.00	\$0.00		
GSE Debt Purchases	\$600.00	\$50.39		
GSE Mortgage-Backed Securities		\$236.16		
Citigroup Bailout Fed Portion	\$220.40	\$0.00		
Bank of America Bailout	\$87.20	\$0.00		
	\$300.00	\$7.50		
Commitment to Buy Treasuries	\$300.00	ę/.ju		
FDIC Total	\$2,038.50	\$357.50		
Public-Private Investment*	\$500.00	0.00		
FDIC Liquidity Guarantees	\$1,400.00	\$316.50		
GE	\$126.00	\$41.00		
Citigroup Bailout FDIC	\$10.00	\$0.00		
Bank of America Bailout FDIC	\$2.50	\$0.00		
Treasury Total	\$2,694.00	\$1,83 <mark>3.5</mark> 0		
TARP	\$700.00	\$599.50		
Tax Break for Banks	\$29.00	\$29.00		
Stimulus Package (Bush)	\$168.00	\$168.00		
Stimulus II (Obama)	\$787.00	\$787.00		
Treasury Exchange Stabilization		\$50.00		
Student Loan Purchases	\$60.00	\$50.00		
Support for Fannie/Freddie	\$400.00	\$200.00		
Line of Credit for FDIC*	\$500.00	\$0.00		
HUD Total	\$300.00	\$300.00		
Hope for Homeowners FHA	\$300.00	\$300.00		

he FDIC's commitment to guarantee lending under the Legacy Loan Program and the Legacy Asset Program includes a \$500 billion line of credit from the U.S. Treasury.

Recommendations for NASA

- Continue development of ISRU technology
- Conduct focused research and modeling related to *In-Space Markets* for ISRU products
- Support and nurture small-scale robotic ISRU demonstration missions (commercial and international partnerships)
- Nurture entrepreneurial enterprise through prizes, competitions and outsourcing