Quantitative Approaches to Lunar Economic Analysis

Brad R. Blair
Mining Engineer, Mineral Economist,
Idaho Springs, Colorado
2009 Annual Meeting of the Lunar Exploration Analysis Group
(LEAG), Houston, Texas

November 16, 2009

Introduction

Human Space Exploration is currently at Risk

"The U.S. human spaceflight program appears to be on an unsustainable trajectory ..." "... pursuing goals that do not match allocated resources ..." Augustine II
"... Constellation Program cost and schedule will remain uncertain until a sound business case is established" GAO

Solutions include

- Reduce expectations
- Increase NASA budget (ask Congress for a bailout)
- International collaboration
- Innovative commercial partnerships

Sustainability has multiple aspects

- Biological
- Logistical
- Economic

Overview

- Economic value framework for lunar resources
- Prior art: Quantitative lunar economic modeling at Colorado School of Mines (CSM)
- Recommendations for development of a "sustainable" lunar exploration architecture

Acknowledgements

- Researchers and Staff at the CSM Center for Space Resources (formerly the Center for Commercial Applications of Combustion in Space or CCACS)
- Our NASA sponsors at JSC, JPL and KSC
- Canadian Partners (MDA and Norcat)
- A special thanks to Dr. Mike Duke

The 'Expendable Honda' model

(an analogy for how we currently conduct space transportation)

- Model Assumptions
- Replacement car must be purchased when fuel tank is empty
- Standard driving conditions $=12,000$ miles per year
- Standard options, Minimum vehicle price
- Fuel tank capacity + MPG used in analysis
- Assume highway mileage applies through life of vehicle

2006 Ridgeline \$27,700 MSRP Fuel Tank Capacity: 22.0 (gal.) EPA Mileage Estimates:
$16 \mathrm{mpg} / 21 \mathrm{mpg}$ (Cty/Hwy) Payload Capacity: 1,550-Ib.

2005 Civic $\$ 13,675$ MSRP Fuel Tank Capacity: 13.2 gal.
EPA Mileage Estimates:
$32 \mathrm{mpg} / 38 \mathrm{mpg}$ (Cty/Hwy)
Payload Capacity: 13 cubic ft

2005 Insight \$19,845 MSRP Fuel Tank Capacity: 10.6 gal.
EPA Mileage Estimates:
$60 \mathrm{mpg} / 66 \mathrm{mpg}$ (Cty/Hwy)
Payload Capacity: 16 cubic ft

EH Model - Annual Results

- Annual capital cost of driving: \$330,000-\$720,000
- Not included: Operations, maintenance, fuel cost
- Question: How would this change automobile demand?
- Rocket Stages are Discarded after their first use!

The Expendable Honda model (B. Blair, CSM-CCACS, 4-14-05)

Model	Ridgeline	Civic	Insight
Type	truck	sedan	hybrid
Year	2006	2005	2005
2005 MSRP	\$ 27,700	\$ 13,675	\$ 19,845
Fuel Cap (gal)	22.0	13.2	10.6
MPG-H	21	38	66

Annual number of vehicles purchased (12,000 miles per year)

\qquad26.0 23.9 Total Annual Cost (FY05 US\$)
$\$ 719,481$ $\$ 327,153$ $\$ 340,395$

Extending EH range to $>500 \mathrm{mi}$

Transportation Cost vs. Distance (notional)

- Assumptions
- Cost $=$ production + ops + fuel
- Ops cost is constant
- Production cost is incurred once
- Fuel cost follows previous chart

Distance \longrightarrow

"What if" ISRU were available during Apollo?

The Saturn V model

Imbedded excel spreadsheet tool used to estimate reduction of launch stack based on refueling and spacecraft element reuse assumptions (scenario tool shows set points)

Markets for Lunar Propellant

Potentially reusable elements in today's launch fleet
 (LOX / LH2 cryo stages)

Three elements will be examined in detail

The Centaur Upper Stage

Currently discarded when empty!
Atlas Centaur II-A upper stage

- Gross mass
$19,100 \mathrm{~kg}$
- Empty mass
$2,300 \mathrm{~kg}$
- Propellant mass $16,800 \mathrm{~kg}$
- ISP

449 sec

- Standard payload to LEO
$8,600 \mathrm{~kg}$ (Allas IIAS, standard config)

Centaur Reuse

Boeing Delta IV-Heavy

- Largest vehicle in the international launch fleet
- All components utilize LOX/LH2 cryogenic propellants
- The HDCUS upper stage is potentially reusable
- The central core stage can be put into LEO, and is also a candidate for reuse
- The potential LLO payload of a LEO refueled Delta-IV core booster is more than 3x the LLO payload of the Saturn V

Boeing Delta IV-Heavy: Upper Stage

Technical Specifications
Gross Mass - 30,200kg
Empty Mass - $3,500 \mathrm{~kg}$
Propellant Mass - 27,000kg
ISP - 462 sec
Delta IV Standard Payload
LEO - $25,800 \mathrm{~kg}$
GTO - 10,800kg
LLO - 6,700kg (est)

Refueled in LEO: Extended Payload

$$
\begin{aligned}
& \text { GEO - 13,200kg } \\
& \text { LLO - 15,000kg } \\
& \text { L1 - 17,000kg }
\end{aligned}
$$

Boeing Delta IV-Heavy: Core Booster

Technical Specifications
Gross Mass - 226,400kg
Empty Mass - 26,800kg
Propellant Mass - 199,600kg
ISP - 420 sec
Delta IV Standard Payload
LEO - $25,800 \mathrm{~kg}$
GTO - 10,800kg
LLO $-6,700 \mathrm{~kg}$ (est)

Refueled in LEO: Extended Payload
 > GEO - 80,600kg

 GEO - 80,600kg

 GEO - 80,600kg
 LLO - 93,100kg
 L1 - 106,600kg

The Case for Commercial Lunar Ice Mining

by
Brad R. Blair, Javier Diaz, Michael B. Duke, Center for the Commercial Applications of
Combustion in Space, Colorado School of Mines, Golden, Colorado
Elisabeth Lamassoure, Robert Easter, Jet Propulsion Laboratory, Pasadena, California
Mark Oderman, Marc Vaucher
CSP Associates, Inc., Cambridge, Massachusetts
December, 2002

Architectures Studied

1874
LORA

Two architectural variants were modeled: Architecture 1

Has an L1-based transportation system for getting payloads from LEO to GEO
Architecture 2
Is a LEO-based system, which requires that propellant be shipped to LEO

Conservative Technology assumptions:

Cryogenic Vehicles ($\mathrm{H}_{2} / \mathrm{O}_{2}$ fuel)
Lunar Lander
Orbital Transfer (OTV)
Fuel Depot(s)
Solar Power
Electrolysis (fuel cell)
Tanks for $\mathrm{H}_{2}, \mathrm{O}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$

FY02 Parametric Engineering Model

Technology assumptions		Lunar Surface Plant		ARCH2
Cryogenic Vehicles ($\mathrm{H}_{2} / \mathrm{O}_{2}$ fuel)		Lexar Surface Plant		${ }^{\text {Mass }}$ (k97)
		Haurers	273	${ }^{354}$
Lunar Lander Orbital Transfer (OTV)		Extactors	209 564	${ }_{732}$
Fuel Depot(s)		Hydrogen liquefers		${ }^{24}$
Solar Power		Hycrogen licuefer rad	326 70	423 91
Electrolysis (fuel cell)		Oxygen liueferer radiators	100	130
Tanks for $\mathrm{H}_{2}, \mathrm{O}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$		Water tanks	554	554
			${ }^{497}$	${ }^{497}$
Vehicle	mass (k9)	Aerobrake proauction system		
Moon-L4 (Lander / fuel carrier)		Powers system (nuciear)	2624	3405
opusion ssstem		Ancliary equipment (25\% of tota)		2832
elecomm	10	Total		${ }^{4158}$
Water storage (0.01\%)	256	Annual refurbishmert		${ }_{847}$
C880		L-1 Fuel Depot	(kg)	(kg)
Structurs	${ }^{3882}$	eetrolyzers		
Power		Hydrogen licuefers	18	
	${ }_{1801}^{18}$	Hyyrogen liquefier radiators	308	-092
Li-LE0-L1 Venicice fuel carrier)	1424	Oxygen licuefers		
opusion system	${ }^{3}$	Oxyen Ilueferer radiators		
Telecomm		Water tanks	316	
Water storage (0.01%) C8DH	200	Hycrogent tanks		613 2615 2615
c80\% Structures	$5{ }_{50}$		$\stackrel{823}{72}$	$\begin{array}{r}2616 \\ 265 \\ \hline 25\end{array}$
Power		Ancllary ecuipment		
L1-LEO Aerobrate	3214	Total	2264	678
O-GE0-LEO Vehicle epayload transport)		Anvual refurbishment	${ }_{8} 8$	
ropusion sys	${ }^{362}$	LEOFuel Depot		
Teleco		Eectrolyzers		
${ }_{\text {cter }}$	2032	Hydorgen icuefiers	${ }_{389}^{22}$	
Power		Oxyen liqueferis	${ }_{84}$	
EO-CEO.-LEO Aerobrake	513	Oxyen licueferer radiators	${ }^{84}$	
1-LE0-L1 Vehiciele fluel carier)		Water tanks	180	
ropusion system		Hydrogent tanks	299	
(eeeconm		Oxygentanks		
Stuctur	3315	Power system (solar)	${ }_{310}^{910}$	
Power		Total	349	
LEO-L1-LEO Aerobrake	3504	Anmual returishment	170	

FY02 Cost Model Development

- NAFCOM99: Analogy-based cost model
- Architecture 2 WBS shown on right panel
- Conservative methodology used
- SOCM: Operations cost model
- Estimates system-level operating costs
- Conservative methodology used
- Launch Costs: $\$ 90 \mathrm{k} / \mathrm{kg}$ Moon, $\$ 35 \mathrm{k} / \mathrm{kg}$ GEO, $\$ 10 \mathrm{k} / \mathrm{kg}$ LEO

SRD Architecture 2 Cost Model (\$M FY02 NAFCOM Estimate)	Mass (kg)	D\&D	STH						FU	Prod	Total Cost
GRAND TOTAL	37470.2	5393.2	1018.1	1264.5	1264.5	7675.8					
SYSTEM 1: Lunar Surface Mining \& Procesing Equipment	13980.7	3972.1	750.5	927.1	927.1	5649.7					
SYSTEM 2: L1 Depot	6806.8	569.1	74.2	93.8	93.8	737.1					
SYSTEM 3: Lunar Lander	7747.8	446.8	83.5	105.4	105.4	635.7					
SYSTEM 4: OTV (LEO-GEO-L1)	8934.8	405.2	109.8	138.2	138.2	653.2					

SRD Architecture 2 Cost Model (SM FY02 NAFCOM Estimate)	lass (kg)		STH	FU	Prod	Total Cost
GRAND TOTAL	37470.2	5393.2	1018.1	1264.5	1264.5	7675.8
SYSTEM 1: Lunar Surface Mining \& Procesing Equipment	13980.7	3972.1	750.5	927.1	927.1	5649.7
HARDWARE TOTAL	13980.7	1861.6	750.5	577.3	577.3	3189.5
Regolith Excavator	274.0	19.5	17.7	13.6	13.6	50.8
Structure	68.5	8.2	5.7	4.4	4.4	18.3
Mobility	68.5	3.9	6.4	4.9	4.9	15.3
Excavation	68.5	0.8	1.4	1.1	1.1	3.3
Soil Handing	65.5	6.1	3.7	2.8	2.8	12.6
CC\&DH	3.0	0.5	0.4	0.3	0.3	1.3
Regolith Hauler	356.0	27.7	25.5	19.6	19.6	72.8
Structure	117.7	10.0	6.7	5.2	5.2	22.0
Mobility	117.7	5.3	9.3	7.2	7.2	21.8
Soil Handing	117.6	11.0	8.3	6.4	6.4	25.8
CCEDH	3.0	1.3	1.1	0.9	0.9	3.3
Thermal Extraction	2736.9	602.3	24.1	18.5	18.5	644.8
Water Electrolysis	736.0	90.6	38.2	29.4	29.4	158.2
Hydrogen Liquefier	25.0	2.9	0.6	0.4	0.4	3.9
Hydrogen Liquefier Radiators	425.0	26.9	1.6	1.3	1.3	29.8
Oxygen Liquefier	92.0	5.6	1.6	1.2	1.2	8.4
Oxygen Liquefier Radiators	131.0	14.9	0.6	0.5	0.5	16.1
Water Tanks	520.0	7.0	1.0	0.8	0.8	8.7
Hydrogen Tanks	469.0	6.6	0.9	0.7	0.7	8.2
Oxygen Tanks	1999.0	14.6	2.2	1.7	1.7	18.6
Power System (Nuclear)	3420.9	565.1	442.7	340.5	340.5	1348.3
Maintenanace Facility	1000.0	374.1	152.6	117.4	117.4	644.0
Mobility	200.0	78.9	10.4	8.0	8.0	97.3
Sensors	200.0	140.2	51.7	39.8	39.8	231.6
Manipulators	200.0	7.1	13.5	10.4	10.4	31.1
CC8DH	200.0	108.6	61.3	47.1	47.1	217.0
Spare Parts	200.0	39.4	15.6	12.0	12.0	67.0
Ancillary Equipment	1796.0	103.9	41.3	31.7	31.7	176.9
SYSTEM INTEGRATION		2110.5		349.7	349.7	2809.9
SYSTEM 2: L1 Depot	6806.8	569.1	74.2	93.8	93.8	737.1
HARDWARE TOTAL	6806.8	280.3	74.2	57.1	57.1	411.6
Water Electrolysis	692.0	154.4	48.7	37.4	37.4	240.5
Hydrogen Liquefier	63.0	4.6	1.2	0.9	0.9	6.7
Hydrogen Liquefier Radiators	1096.0	43.2	3.5	2.7	2.7	49.4
Oxygen Liquefier	236.0	8.9	3.4	2.6	2.6	14.9
Oxygen Liquefier Radiators	236.0	20.1	1.0	0.8	0.8	21.9
Water Tanks	369.0	5.8	0.8	0.6	0.6	7.2
Hydrogen Tanks	615.0	7.6	1.1	0.8	0.8	9.6
Oxygen Tanks	2624.9	17.0	2.6	2.0	2.0	21.6
Power System (solar)	256.0	2.7	5.3	4.1	4.1	12.2
Ancillary Equipment	619.0	15.9	6.6	5.1	5.1	27.6
SYSTEM INTEGRATION		288.8		36.7	36.7	362.3
SYSTEM 3: Lunar Lander	7747.8	446.8\|	83.5	105.4	105.4	635.7
HARDWARE TOTAL	7747.8	208.1	83.5	64.2	64.2	355.9
Propulsion System	2180.0	56.4	24.9	19.2	19.2	100.5
Water Tanks	239.0	4.5	0.6	0.5	0.5	5.7
CC8DH	13.0	1.6	1.5	1.1	1.1	4.2
Structure	3481.9	68.8	42.4	32.6	32.6	43.8
Power	15.0	7.2	0.2	0.1	0.1	7.5
Landing System	1819.0	69.6	14.0	10.8	10.8	94.4
SYSTEM INTEGRATION		238.6		41.2	41.2	321.0
SYSTEM 4: OTV (LEO-GEO-L1)	$8934.8 \mid$	405.2	109.8	138.2	138.2	653.2
HARDWARE TOTAL	8934.8	173.2	109.8	84.5	84.5	367.5
Propulsion System	2088.0	55.1	24.3	18.7	18.7	98.0
CC8DH	13.0	1.6	1.5	1.1	1.1	4.2
Structure	3314.9	67.0	40.9	31.5	31.5	139.4
Power	15.0	7.2	0.2	0.1	0.1	7.5
Aerobrake	3503.9	42.4	43.0	33.1	33.1	118.4
SYSTEM INTEGRATION		232.0		53.7	53.7	339.5

Cost Buildup \& Production Rates

Annual Cost Buildup (Arch 1c Version 5)

Economic Model Integration

Market Breakdown Structure

Market Breakdown Structure		Orbit Utilization (Note:Bold X indicates potential location for fuel or materials demand)								
		LEO	MEO	GTO	GEO	Polar	L1	Moon	Mars	Asteroid
1	Communications Market (commercial)									
1	Fixed Satellite Service	X		X	X					
2	Direct Broadcast Service	X		X	X					
2	Space Manufacturing (potential)									
1	Space Manufacturing	X								
2	Space Processing	X								
3	Government Missions									
1	Existing Government Missions									
1	NASA Missions (Excluding Station)	X	X	X	X	X	X	X	X	X
2	DOD Missions	X	X	X	X	X				X
2	Increased Space Station Missions									
1	Station Deployment	X	X							
2	Station Resupply	X	X							
3	Station Reboost	X	X							
3	Human Planetary Exploration									
1	Lunar Base Program	X		X				X		
2	Mars Design Reference Missions	X		X			X		X	
3	Asteroid Exploration	X		X			X			X
4	Asteroid Detection/Negation	X		X			X			X
5	Technology Development Testbed	X		X	X					
4	Transportation									
1	Space Servicing and Transfer	X	X	X	X		X			
2	Hazardous Waste Disposal	X		X			X	X		
3	Space Tourism	X		X			X	X	X	
5	New Missions									
1	Space Debris Management	X	X	X	X	X	X			
2	Multiuse LEO Business Park	X								
3	Space Settlements	X			X		X	X	X	X
6	Space Utilities									
1	GEO Solar Power Satellites	X		X	X					
2	Lunar Based Power Station	X		X			X	X		
3	Space to Space Power Beaming	X	X		X	X	X			

MBS Timeframe \& Description

OLORA

Revenue Model

- Baseline Market Model
- Commercial GEO payload delivery (Note: this is an existing market)
- Modeled quantity $=150$ tons/yr of GEO Satellite delivery mass 2010-2016 (Based on FAA/OCST 1999 and 2002 forecasts)
- Market capture function starts at 10% in 2010 and ends at 100% in 2016
- Modeled price $=\$ 20,000 /$ kilogram of Satellite delivered to GEO
- Other near-term cryogenic fuel / $\mathrm{H}_{2} \mathrm{O}$ markets
- Not included in current version of model
- Satellite servicing (Orbital Express bus)
- ISS / Commercial business park (fuel + consumables)
- DOD Missions (Orbital Express bus)
- Orbital debris management
- Human exploration missions (fuel + consumables)
- Space materials processing/manufacturing (fuel, metals, ceramics, etc.)
- Asteroid detection/negation
- Solar powered satellites

FY02 Feasibility Modeling

1874

Feasibility Process Summary:
Version $0=$ Baseline (most conservative)
Versions 1-3: Relax assumptions...
Version 4 shows a positive rate of return for private investment (6\%)
Version 4 Assumes:
Zero non-recurring costs (DDT\&E)
30% Production cost reduction
2% Ice concentration
$2 x$ Demand level (i.e., $300 \mathrm{~T} / \mathrm{yr}$)

Version	Summary	Description
1.1 c .0 1.2 .0	Baseline	Baseline Version -all assumptions the same as previously except for demand and architecture changes
1.1 cc .1 1.2 .1	No Non-Rec. Investments	Assumes the public sector pays for the Non-Recurring Investments (design, development and first unit cost)
$1.1 c .2$ 1.2 .2	No Non-Rec. Investments, 30\% Production Cost Reduction	Assumes the above, and Reduces the First unit production cost of all elements by 30\%
1.1 c .3 1.2 .3	No Non-Rec. Investments, 30\% Production Cost, 2x Lunar Water Concentration Reduction	Assumes all the above, and a Concentration of Water in Lunar Regolith twice higher than the current best estimate.
$1.1 c .4$ 1.2 .4	No Dev. Cost, 30\% Production Cost Reduction, 2x More Water on Moon, 2x Demand	Same as above, and Double the Demand

FY02 Commercial Model Results

CSP Financial Summary (Architecture 2, Version 4)

INCOME STATEMENT		2007		2008		2009		2010		2011		2012		2013		2014		2015		2016		mulative
Revenues	\$	0	\$	\$ 0	\$	0	\$	600	\$	1,200	\$	1,800	\$	2,400	\$	3,600	\$	4,800	\$	6,000	\$	20,401
Gross Profit	\$	0	\$	\$ 0	\$	0	\$	539	\$	1,078	\$	1,617	-	2,155	\$	3,233	\$	4,311	\$	5,388	\$	18,321
EBITDA	\$	(4)	\$	\$ (9)	\$	(10)	\$	527	\$	1,065	\$	1,604	\$	2,142	\$	3,219	\$	4,296	\$	5,373	\$	18,205
EBIT	\$	(4)	\$	\$ (9)	\$	(10)	\$	373	\$	610	\$	910	\$	1,257	\$	1,970	\$	2,195	\$	3,272	\$	10,565
Net Income	\$	(4)	\$	\$ (9)	\$	(10)	\$	184	\$	225	\$	337	S	510	\$	924	\$	1,058	\$	1,708	\$	4,924
CASH FLOW		2007		2008		2009		2010		2011		2012		2013		2014		2015		2016		mulative
Net Cash From Operations	\$	5 (4)		\$ (9)	\$	(10)	\$	338	\$	680	\$	1,031	\$	1,395	\$	2,173	\$	3,159	\$	3,809	\$	12,563
Net Changes in Working Capital	\$	0	\$	\$ 0	\$	0	\$	(45)	\$	(45)	\$	(45)	-	(45)	\$	(90)	\$	(90)	\$	(90)		(448)
CAPEXINRE	\$	0	\$	\$ 0	\$	1,548	\$	3,018	\$	3,013	\$	2,384	\$	1,910	\$	3,649	\$	4,105	\$	4,410	\$	24,039
Taxes		- -	\$	\$	\$	-	\$	107	\$	150	\$	225	\$	340	\$	616	\$	706	\$	1,138	\$	3,282
Annual Cash (Shortfall) Surplus		(4)	\$	\$ (8)	\$	$(1,557)$	\$	(2,725)	\$	$(2,378)$	\$	$(1,399)$	S	(560)	\$	$(2,928)$	\$	$(2,224)$	\$	$(1,391)$	\$	(15,174)
Equity Financing		104		\$ 8	\$	1,557	\$	1,363	\$	1,189	\$	699	\$	280	\$	1,464	\$	1,112	\$	695	\$	8,472
Debt Financing		- -	\$	\$	\$	-	S	1,363	S	1,189	\$	699	\$	280	\$	1,464	\$	1,112	\$	695	\$	6,802
Principal and Interest Payments	\$	-	\$	\$	\$	-	\$	82	\$	235	\$	348	\$	407	-	1,792	\$	1,620	\$	1,126	\$	5,610
BALANCE SHEET		2007		2008		2009		2010		2011		2012		2013		2014		2015		2016		
Total Assets		100	\$	\$ 100	\$	1,648	\$	4,562	\$	7,170	\$	8,911	\$	9,987	\$	12,486	\$	14,590	\$	16,999		
Short and Long Term Liabilities		0	\$	\$	\$	1	\$	1,369	\$	2,563	\$	3,267	\$	3,552	\$	3,664	5	3,597	5	3,603		
Shareholder Equity		104	\$	\$ 112	\$	1,670	\$	3,032	\$	4,221	\$	4,921	\$	5,200	\$	6,665	\$	7,777	-	8,472		
Retained Earnings	\$	(4)	\$	\$ (13)	\$	(23)	\$	161	\$	386	\$	724	\$	1,234	\$	2,158	\$	3,216	\$	4,924		

Production and delivery rates for water at Lunar cold trap and L1 (Architecture 2, Version 4)

Year	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
Total Market Demand [MT]	300	300	300	300	300	300	300	300	300	300
Market Share and Growth	0\%	0\%	0\%	10\%	20\%	30\%	40\%	60\%	80\%	100\%
Actual Demand [MT]	0	0	0	30	60	90	120	180	240	300
Number of deployed production units	0	0	0	2	4	6	8	12	16	20
Non-Recurring Investments (Development) [\$M]	\$4,378	\$2,368	\$ 550	\$			\$	\$	\$	\$
Recurring CAPital EXpenditures (Production \& Launch) [\$M]	\$ -	\$ -	\$	\$1,533	\$3,013	\$2,384	\$1,910	\$3,649	\$4,105	\$4,410
Tons Produced - Moon (MT)	0	0	0	491	981	1472	1963	2944	3925	4907
Tons Delivered - L1 (MT)	0	0	0	225	451	676	902	1353	1804	2255
Annualized cost/ton - Moon (\$M/t)				\$ 3.12	\$ 3.07	\$ 1.62	\$ 0.97	\$ 1.24	\$ 1.05	\$ 0.90
Annualized cost/ton - L1 (\$M/t)				\$ 6.80	\$ 6.68	\$ 3.53	\$ 2.12	\$ 2.70	\$ 2.28	\$ 1.96

SRD Model Results

OLORAD

- Results provide an Upper Bound on Propellant Unit Costs

SRD Model Sensitivity to \% Ice

NPV vs. Amount of Water in Regolith

Case Study

Unit Costs for a Lunar Sample Return Mission ($\mathbf{\$} / \mathrm{kg}$)

Case Study
 Unit Costs for LSRM assuming refueling ($\$ / \mathbf{k g}$)

Unit Cost / kg	ELV		Fuel Depot	
LEO	$\$$	10,000	$\$$	4,890
L1	$\$$	30,000	$\$$	3,030
Moon	$\$$	70,000	$\$$	1,390

Cost estimates based on 2002 NASA/CSM study of commercial lunar propellant production

Note: Reusable vehicle must refuel 4 times with 5 engine restarts

2003 DARPA Study

- "Lunar Manufacturing" fresh start in Spring 2003
- Partnership between CSM and MDA (U.S. - Canada collaboration)
- Refined architectural assumptions including ISRU and transportation system models
- Expanded propellant market models to include DoD payloads

Executive Summary

- Project Title: Space Transportation Architecture Based On ISRU Supplied Resources Study
- Purpose
- Identify ISRU-based space transportation scenarios and compare them to Earth supplied scenarios to provide architecture trade crossover points for cost, mass, and schedule
- Identify architecture sensitivities and drivers
- Identify key technology needs/drivers to help prioritize ISRU technology development
- Scope
- Develop \& model ISRU production and product transportation and storage architecture options
- Define \& model elements for space transportation architecture options
- Define \& evaluate emplacement and buildup scenarios
- Model \& evaluate architecture option operations, costs, and business/commericial potential
- Perform technology driver and cost analysis sensitivity studies
- Study Summary: Preliminary Findings \mathcal{E} Conclusions
- Development of ISRU and transportation elements still in work (study end date 6/04)
- Earth-Moon L1 point is most optimal position for propellant depot for Earth orbit satellite servicing and satellite delivery tugs from Low Earth Orbit (LEO) to Geostationary Orbit (GEO)
- Commercial potential of combined ISRU propellant/L1 Depot could significantly influence architecture and reduce cost to NASA
- Application to NASA Future Mission Needs
- ISRU and transportation element concepts, models, and databases developed in this study can be applied to future Design Reference Missions (DRMs)
- In-situ production of mission critical consumables (propellants, life support, fuel cell reagents, science gases) provides early mission benefits with minimal infrastructure requirements

Acknowledgements

- Johnson Space Center (JSC)
- Study Lead
- Verification/validation of architecture
- Vehicle sizing and consumables requirements
- Scott Baird
- Kris Romig
- Gerald Sanders
- Colorado School of Mines (CSM)
- Economic modeling
- Architecture development
- Excavating (lunar focus)
- Product integration
- Final Report
- Brad Blair
- Begonia Diaz
- Javier Diaz
- Mike Duke
- Kennedy Space Center (KSC)
- Lunar Processing Plants development
- Mars Processing Plants development
- Chemical processing methodology
- Dale Lueck
- Clyde Parrish
- Florida Institute of Technology
- Assist KSC with processing plant development
- Jonathan Whitlow

Architecture Elements

- Earth suface-to-LEO transportation
- Existing Capabilities: Shuttle, Delta IV Heavy, Atlas V
- New "Magnum" class heavy lift expendable
- LEO Station
- ISS
- Near-Earth Neighborhood and Earth-Mars Transfer Vehicles
- Hybrid Propulsion Module (HPM)
- Chemical Transfer Module (CTM)
- Nuclear Electric Propulsion (NEP)

- Solar-Electric Rocket
- Crew Transport Vehicle
- Crew Exploration Vehicle (CEV)
- Lagrange Point Stations [E-ML1,2, S-EL1,2, S-ML1,2]
- Earth-Moon Ll will act as a staging point for Mars bo und missions
- Propellant and other consumables supplied from humar surface
- Fuel Depots at Earth-Moon L1, Mars-Sun Ll
- Gateway Station (L1)
- Lumar Suface Base
- Manned habitats and surface excursion ve hicles
- Surface production plants
- Lunar suface-to-Lumar Orbit transportation
- Single Use
- Reusable
- Mars Suface Base
- Manned habitats and surface excursion ve hicles
- Surface production plants
- Mars suface-to-Mars Orbit transportation
- Single Use
- Reusable

- Mission Destinations \& Staging Points

ISRU Supportable Missions

ISRU Supplied Resources Architecture - Resupply Nodes

- Mission Velocity Requirements ($\Delta \mathrm{V}$)

FROM	ES	LEO	GEO HE O	E-ML	S-EL	LS	S-ML	MO	MS
ES		$\mathbf{1 2 , 0 0 0}$	$\mathbf{1 5 , 0 0 0}$	-	-	-	-	-	-
LEO	$\mathbf{1 1 4}$		$\mathbf{2 , 7 0 0}$	$\mathbf{4 , 0 4 0}$	$\mathbf{3 , 1 5 0}$	$\mathbf{5 , 9 3 0}$	TBD	$\mathbf{5 , 6 0 0}$	$\mathbf{4 , 8 0 0}$
GEOHEO	-	$\mathbf{2 , 7 0 0}$		TBD	-	-	-	-	-
E-ML	-	$\mathbf{4 , 0 4 0}$	TBD		TBD	$\mathbf{2 , 6 2 0}$	$\mathbf{7 , 4 5 0}$	TBD	TBD
S-EL	-	TBD	TBD	TBD		TBD	TBD	TBD	TBD
LS	-	$\mathbf{2 , 7 4 0}$	-	$\mathbf{2 , 7 0 0}$	TBD		-	-	-
S-ML	-	TBD	-	$\mathbf{7 , 4 5 0}$	TBD	-		TBD	$\mathbf{6 , 0 0 0}$
MO	-	$\mathbf{1 , 8 0 0}$	-	TBD	TBD	$\mathbf{3 , 2 0 0}$	TBD		$\mathbf{8 5 0}$
MS	-	$\mathbf{5 , 8 0 0}$	-	TBD	TBD	-	TBD	$\mathbf{4 , 0 0 0}$	

Lunar ISRU Architecture

Mars ISRU Architecture

- Model Structure
- Architecture
- Parametric sizing
- Demand models
- Cost model
- Feasibility
- Goals of Modeling
- Determine feasible conditions (Go / No Go)
- Insight into critical assumptions
- Insight into systems dynamics (sensitivity)
- Identification of critical risk factors
- Technology sensitivity analysis (investment prioritization)

Cost Modeling Flowsheet

A Bold Vision for Space Exploration

- Complete the International Space Station
- Safely fly the Space Shuttle until 2010
- Develop and fly the Crew Exploration Vehicle no later than 2014 (goal of 2012)
- Return to the Moon no later than 2020
- Extend human presence across the solar system and beyond
- Implement a sustained and affordable human and robotic program
- Develop supporting innovative technologies, knowledge, and infrastructures
- Promote international and commercial participation in exploration

"It is time for America to take the next steps.

Today I announce a new plan to explore space and extend a human presence across our solar system. We will begin the effort quickly, using existing programs and personnel. We'Il make steady progress - one mission, one voyage, one landing at a time"

President George W. Bush January 14, 2004

Cost/Benefit Modeling

- Cost Model includes
- DDT\&E, Production \& Integration costs from NAFCOM
- Operations cost of $\$ 57 \mathrm{M}$ per element per mission
- Launch costs, including options for Saturn V, Delta 4, Atlas 3
- Discounting of out-year costs at 8\%
- Comparison of ISRU to Baseline
- Baseline assumes Apollo-style expendable systems
- Choice of Saturn, Delta, Atlas for cargo missions
- Benefit Model includes
- Rate of return, comparing relative benefit of ISRU model to Baseline

Cost/Benefit Results for Lunar ISRU RASC:

- Discounted Rate of Return (ROR) vs. Baseline $=49.4 \%$
- ISRU 10-yr mission cost = \$40.1 Billion
- Baseline 10-yr mission cost $=\$ 59.9$ Billion
- Suggested Model Improvements Include
- Add/improve links for sensitivity analysis
- Preliminary technology improvements modeling
- Review \& update launch cost roll-ups

Lunar ISRU cost crossover point

10 Year ISRU Scenario Cost Summary	Date	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
Development Cost		\$1,927	\$ 5,935	\$ 7,472	\$ 4,593	\$ 1,370	\$ 530	\$ 814	\$ 641	\$ 149	\$	\$	\$	\$	\$
Production Cost		\$	5	\$	\$ 1,309	\$ 3,917	\$ 4,625	\$ 2,712	\$ 2,708	\$ 3,320	\$ 2,843	\$ 3,033	\$ 3,119	\$ 3,247	\$ 2,250
Launch Cost		\$	5	5	\$ 1,281	\$ 2,722	\$ 3,807	\$ 2,510	\$ 3,294	\$ 3,623	\$ 2,720	\$ 2,697	\$ 2,770	\$ 2,168	\$ 1,193
Operations Cost		\$	5		\$ 192	\$ 696	\$ 1,200	\$ 1,368	\$ 1,584	\$ 1,992	\$ 2,352	\$ 2,712	\$ 3,144	\$ 3,648	\$ 3,936
Replacement Cost		\$	5		\$ 120	\$ 431	\$ 823	\$ 1,010	\$ 1,173	\$ 1,393	\$ 1,563	\$ 1,725	\$ 1,855	\$ 1,987	\$ 2,029
10-Year Scenario Total Cost per Year		\$1,927	\$ 5,935	\$ 7,472	\$ 7,495	\$ 9,135	\$10,985	\$ 8,414	\$ 9,401	\$10,477	\$ 9,478	\$10,167	\$10,888	\$11,051	\$ 9,408
Discounted Annual Cost (2004=base year)		\$ 558	\$ 1,563	\$ 1,789	\$ 1,631	\$ 1,807	\$ 1,976	\$ 1,376	\$ 1,397	\$ 1,416	\$ 1,164	\$ 1,135	\$ 1,105	\$ 1,020	\$ 789
Undiscounted Total Cost (\$M)	\$	122,234													
Net Present Cost (\$M)	\$	18,727													
10-Year Mon-ISRU (all expendable) Baselin															
10-Year Non-ISRU Total Cost per Year		\$1,568	\$ 4,850	\$ 6,149	\$ 6,324	\$ 9,493	\$16,153	\$14,394	\$17,895	\$20,213	\$22,525	\$24,689	\$27,001	\$30,530	\$32,832
Discourted Annual Cost (2004=base year)		\$ 454	\$ 1,277	\$ 1,472	\$ 1,376	\$ 1,878	\$ 2,905	\$ 2,354	\$ 2,660	\$ 2,731	\$ 2,767	\$ 2,757	\$ 2,741	\$ 2,818	\$ 2,755
- Crossover point		0	0	0	0	0	1	1	1	1	1	1	1	1	1
Breakeven		\$ (359)	§(1,443)	\$(2,766)	\$(3,868)	\$(4,328)	\$(1,846)	\$ 3,149	\$ 9,593	\$17,264	\$26,461	\$37,001	\$49,051	\$61,990	\$77,430
Undiscourted Total Cost (\$M)		234,616													
Net Present Cost (\$M)	\$	30,946													
Rate of Return of ISRU vs. Expendable		39.5\%													

The Current (Expendable) Paradigm

One-way missions with no transportation system reuse

Mars

ISRU-Enabled Transportation Nodes

Libration-based Fuel Depots

Libration Fuel Depots enable
Solar System Access

Conclusions

- ISRU is an up-front Investment that could generate long-term returns, but it depends on developing a sustainable market for lunar-derived products
- Return on investment (ROI) can be quantitatively demonstrated for lunar propellant under certain conditions
- NASA has the ability to help create or enhance those conditions

Necessary v. Sufficient Conditions

- Is space commercialization a necessary condition for human space exploration?
- Yes. It is a necessary element of a rational cost reduction plan.
- Leveraged capabilities and cost effectiveness could dramatically increase.
- Is space commercialization a sufficient condition for space colonization?
- No. There is still a dependence on NASA to lead the way, reduce risks and build infrastructure that can be later privatized.
- Technologies with space and terrestrial applications are a potential offsetting factor and are currently attracting industry investment.

Lunar Commercialization Could Enable Budget for Mars

--- Amounts (Billions)--Limit Current		
Total $\$ 12,798.14$ \$4,169.71		
Federal Reserve Total	\$7,765.64	\$1,678.71
Primary Credit Discount	\$110.74	\$61.31
Secondary Credit	\$0.19	\$1.00
Primary dealer and others	\$147.00	\$20.18
ABCP Liquidity	\$152.11	\$6.85
AIG Credit	\$60.00	\$43.19
Net Portfolio CP Funding	\$1,800.00	\$241.31
Maiden Lane (Bear Stearns)	\$29.50	\$28.82
Maiden Lane II (AIG)	\$22.50	\$18.54
Maiden Lane III (AIG)	\$30.00	\$24.04
Term Securities Lending	\$250.00	\$88.55
Term Auction Facility	\$900.00	\$468.59
Securities lending overnight	\$10.00	\$4.41
Term Asset-Backed Loan Facility	\$900.00	\$4.71
Currency Swaps/Other Assets	\$606.00	\$377.87
MMIFF	\$540.00	\$0.00
GSE Debt Purchases	\$600.00	\$50.39
GSE Mortgage-Backed Securities	\$1,000.00	\$236.16
Citigroup Bailout Fed Portion	\$220.40	\$0.00
Bank of America Bailout	\$87.20	\$0.00
Commitment to Buy Treasuries	\$300.00	\$7.50
FDIC Total	\$2,038.50	\$357.50
Public-Private Investment*	\$500.00	0.00
FDIC Liquidity Guarantees	\$1,400.00	\$316.50
GE	\$126.00	\$41.00
Citigroup Bailout FDIC	\$10.00	\$0.00
Bank of America Bailout FDIC	\$2.50	\$0.00
Treasury Total	\$2,694.00	\$1,833.50
TARP	\$700.00	\$599.50
Tax Break for Banks	\$29.00	\$29.00
Stimulus Package (Bush)	\$168.00	\$168.00
Stimulus II (Obama)	\$787.00	\$787.00
Treasury Exchange Stabilization	\$50.00	\$50.00
Student Loan Purchases	\$60.00	\$0.00
Support for Fannie/Freddie	\$400.00	\$200.00
Line of Credit for FDIC*	\$500.00	\$0.00
HUD Total	\$300.00	\$300.00
Hope for Homeowners FHA	\$300.00	\$300.00

he FDIC's commitment to guarantee lending under the
Legacy Loan Program and the Legacy Asset Program includes a $\$ 500$ billion line of credit from the U.S. Treasury.

Recommendations for NASA

- Continue development of ISRU technology
- Conduct focused research and modeling related to In-Space Markets for ISRU products
- Support and nurture small-scale robotic ISRU demonstration missions (commercial and international partnerships)
- Nurture entrepreneurial enterprise through prizes, competitions and outsourcing

