

Robotic prospecting, exploration & science

- Why prospect and explore with lunar robots?
- What can robots do?
- How can robots enable

Science?

Prospecting?

Exploration?

- Appreciable robot capability
- Sustained robot mission duration viz human only
- Immense map coverage and data volume
- Extensive mission range

Lunar- Relevant prospecting

Surface Mobility Challenges

Exploration Challenges

Mobility innovation for prospecting

Scarab Specifications

Mass (w/o payload): 280 kg

Weight: 460 N D 2750 N ⊕

Power (driving): 200 W (peak) ⊕

Power (posing): 380 W (peak) ⊕

Power (idle): 78 W

Speed: 5.0 cm/s (6.0 cm/s max)

Height (with drill tower): 2.2 m high stance, 1.6 m low stance

Width (wheelbase): 1.4 m

Length (wheelbase): 0.8 - 1.4 m

Aspect (track/wheelbase): 1:1 low, 1:1.2 nom, 1:1.7 high

Wheel diameter: 60 cm

Straddle: 57 cm max, 0 cm min

Height (Center of Mass): 0.64m, 0.60m low, 0.72m high

Scarab Dimensions

ISRU/RESOLVE Integration

ISRU/RESOLVE Support

- •Steep Slope Ascent, 20 ° ash •Crater access for assay

TWeel

Robotic Capability

What can robots do?

- Drive
- Extricate
- Navigate
- Determine position
- Perform procedural tasks
- Power, thermal and comm services
- Work, not just watch
- Take risks
- Tolerate physical exposures
- Operate early without extensive infrastructure

Long-Range Traverse

Autonomous Traverse

Experiments: 573

Total Distance: 257 km

Single-command Traverse:

Over 2000m: 26

Over 1000m: 75

Over 100m: 343

Note: Some traverses were intentionally limited in length.

Dark Navigation

How do Robot Prospectors enable science and exploration?

- Deploy tools, not toys
- Generate power
- Deliver vast coverage
- Automate repetitive tasks
- Deploy instruments and sensors
- Capture context and televise scene awareness
- Sustain prospecting/exploration & science
- Undertake initiatives beyond human risk threshold
- Reason, classify, plan, react

Ultralight prospectors

60kg

120W Solar

273Wh Battery

HD Stereo

HD Telephoto

1.0 Mbps

Skid Steering

10 cm/s

Motorized Actuators:

2 drive

2 mast pan/tilt

3 Zoom Camera

Continuous Daytime Operation

Overnight Survival

Fulfillment of Robotic Lunar Prospecting

- Thermal management
- Longevity
- High Performance
- High Payload ratio
- Productivity
- Generality for diverse prospecting

Robotic Prospecting in Lava Tubes

Polar Solar Robotic Prospecting

Material handling for ISRU and sitework

