

Damn it Jim, I'm a Geologist not an Engineer

Defense, Space & Security

http://www.who2.com/blog/2011/09/who-was-the-horta-on-star-trek

Defense, Space & Security Space Exploration

Outline

- Introduction
- Assumptions
- Cislunar Development
 - Strategic Missions
 - Standalone Missions
- The 2107 Test Flight and Payload Opportunities
- What Could be Next
- Closing Thoughts

Introduction

- ISS industry partners working on concepts to develop an **Exploration Platform in the Earth-Moon Libration System**
 - Use ISS development methods
 - Use ISS residual assets
 - ISS not just a spacecraft but the expression of what great nations can accomplish working together
- Technology developed for ISS can be evolved and adapted to new exploration challenges
- Concepts have matured along with Space Launch System (SLS) and Multi-Purpose Crew Vehicle (MPCV – Orion)
- Exploration Platform provides
 - Flexible basis for future exploration
 - Reduces cost through re-use of expensive vehicles
 - Reduces number of launches needed to accomplish missions

Defense, Space & Security Space Exploratio.

Assumptions

- The SLS/MPCV will be built and launched per schedule
- A Human Tended Habitat at an Earth-Moon Lagrange Point will be the next human space flight target
- There will be an un-crewed test flight of the SLS/MPCV with an Apollo 8 like free return trajectory in 2017
- There is sufficient mass margin and volume on that launch for 1 or 2 small science/exploration payloads
- There are at least 2 approaches for exploration
 - Strategic
 - Stand Alone
- There are at least 3 approaches for the next step for human exploration (Global Exploration Roadmap uses the first 2)
 - Near Earth Object (NEO) First
 - Moon First
 - Cislunar First
- Whatever we take ought to be refuelable and reusable.

Cislunar First (Strategic Approach)

- Vedda Space Review Sept/Oct 2012
 - Proposes adding Cislunar-Next to Global Exploration roadmap in addition to evaluating Moon-Next and/or Asteroid-Next
 - On-orbit Servicing
 - Standardization
 - Fuel Storage
 - Materials processing
 - Energy collection and distribution
 - Other in-space utilities
- Spudis-Lavoie AIAA Space 2011
 - Teleoperations
 - Prospect, Test, Demonstrate and Produce water from Lunar Resources
 - Architecture and Mission Sequence

Science Missions (Stand Alone Examples)

- South Pole Aitken Basin Sample Return
 - MoonRise
 - Human/Robotic/Telerobotic Alkalai, et.al. this session
 - New Frontiers Jolliff et.al.
- Schrödinger Telerobotic Burns, et.al. GLEX 2012
 - Geologic Exploration
 - Low frequency radio astronomy
- Aristarchus Plateau Jolliff et.al. LEAG 2001
 - Strategic/Stand Alone
- Landed Geophysical Package
 - Also strategic/stand alone
 - International Lunar Network (ILN)
 - Lunette Discovery Class

WHAT NEXT?

- Lunar Reconnaissance Orbiter (LRO) data enables detailed exploration planning, landing site selection, and safe operations

 Polar Volatile Explorer
 - Ascertain physical state, composition, and properties of polar volatile OH deposits
 - **Lunar Roving Prospector**
 - Long-duration instrumented rover
 - Arizona State University (ASU) Intrepid Mission
 - Possible L2 role
 - Provide critical ground truth to remote sensing datasets
 - **Automated Sample Returns**
 - South Pole Aitken Early Solar System History
 L2 outpost role there, too?
 - Recent lunar basalts history of lunar interior
 - In-situ Resource Utilization (ISRU)
 Demonstration

THE NEXT LUNAR LANDING SITES

- Lunar poles
 - Sunlight + Volatiles
- Aristarchus plateau
 - Major ore deposit
 - Young basalts

South Pole-Aitken Basin

Defense, Space & Security

- Oldest lunar basin?
- Sample of lunar mantle

Cislunar Development Meets National Needs

- Fuel Depots + dry launch
- L1/L2 Gateway
- Lunar ISRU is cornerstone
- Maximizes commercial opportunities
- Reduces cost of asteroid and Mars system expeditions

What are we trying to do?

The Vision

Expand human reach* to cislunar and beyond

The Mission

Establish a robotic and human presence on the Moon (as the closest planetary body) to learn how to use local resources of material and energy in order to live affordably off-planet and, in so doing, create new space faring capabilities

*Reach = the ability to send people and machines to any point within a given volume of space to perform whatever tasks are envisioned

From Spudis, Lavoie – AIAA 2012

Initial Steps

1. Communication/navigation satellites

Polar areas out of constant Earth LOS; need comm, positional knowledge

2. Polar prospecting rovers

Study and characterize water deposits, other substances, environment

3. ISRU demo

Heat icy regolith to extract water; purify and store as ice in cold traps

4. Digger/Hauler rovers

Excavate regolith, transport feedstock to fixed stations for water extraction

5. Water tankers

Purify and store extracted water

Strategic

- Resource Prospecting
- -ISRU Production testing
- -ISRU Production
- Propellant storage and transportation (reusable landers)

Standalone

- -South Pole Aitken (SPA) Sample return
- –Lunar Network
- Low Frequency Radio observation

Forward compartment

- -Cubesats
- -Static Lander
 - Geophysical network package
- Aft compartment
 - Lander with prospecting rover
 - Discovery class
 - Google Lunar X Prize (GLXP) Class

Proposed Future Robotic Lunar Missions 2013-2019

COUNTRY	NAME	TYPE	YEAR
China	Chang'e 3	Lander	2013
USA	LADEE	Orbiter	2013
India	Chandrayaan-2	Lander	2014?
Russia	Lunar Glob	Lander	2014?
Private	GLXP	Landers	2014
China	Chang'e 4	Lander	2015
Russia	Lunar Grunt	Orbiter/Lander	2015
Japan	SELENE-2	Lander	2016
China	Chang'e 5	Lander	2017
Europe	MoonNext	Lander	2015-2018

Defense, Space & Security Space Exploration

MSFC/APL

http://www.nasa.gov/mission_pages/lunarquest/robotic/12-085.html

Cohen et.al - LEAG 2010

Cohen et.al - LEAG 2010

Lunette – A Discovery class mission concept

Fig. 5. Conceptual flight system in cruise configuration.

Defense, Space & Security

Lunette as an ESPA ring class payload

Fig. 7. Lander configuration.

Chandrayaan-2 - Russian - Lander/India - Rover

Defense, Space & Security

http://www.russianspaceweb.com/luna_resurs.html

Defense, Space & Security Space Exploration

Luna Glob - Russia

Defense, Space & Security Space Exploration

Chang'e 3 - China

http://forum.nasaspaceflight.com/index.php?topic=26848

Chang'e 4 - China

http://enterspace.typepad.com/blog/2012/03/more-details-on-chinas-chang-e-lunar-sample-return-mission-plans.html

Defense, Space & Security Space Exploration

Luna Grunt - Russia

http://www.russianspaceweb.com/luna_grunt.html

Selene 2 - Japan

Defense, Space & Security

http://moon-lore.com/web/mapping_missions.html

ESA - MoonNext

http://www.lpi.usra.edu/meetings/leagilewg2008/presentations/oct30am/Carpenter4037.pdf

Defense, Space & Security

Google Lunar X Prize

http://www.googlelunarxprize.org

Three optional payload locations

Notional Payloads

Aft Compartment Detail

Forward Compartment Detail

Selected Breakout Session Findings: Science [From Teleoperations Symposium outbrief - 2012]

- <u>Examples</u> of problems where low-latency telepresence may be enabling can be described further and quantitatively assessed:
 - Volatiles on the Moon (and their access, encapsulation) particularly within Permanently Shadowed Regions
 - Lunar farside astrophysical observatory (meter-wave radio) and surface geophysical/interior network
 - Mars surface biogeochemical sampling (and related issues) as part of the search for signs of ancient life
- and many others, including those on outer planet satellites, Venus, small bodies
- New science can be enabled via telepresence at places that are
 - Distant (e.g., Mars, Titan)
 - Hostile to any reasonable form of human presence (25 K lunar polar regions, surface of Venus at 450 C, surface of Titan, surface of Mercury, meters underground on Mars or Europa, etc.)
- Scientists must be engaged in technology development of required capabilities (i.e., science pull)
 - The more science is involved <u>early</u> the better the tools for science will be integrated into useful capabilities
 - Related to <u>field science as an immersive process</u> here on Earth (where there is a large experience base)
- Learn from MER and MSL surface-rover experience what increased telepresence is germane to in high-priority planetary field science
 - Take advance of lessons learned from high-latency telepresence (MER, MSL)
- Contemporary commercial and defense telepresence activities are highly instructive, and even learning from Lunokhod may be of value.
- As latency is reduced is there a natural breakpoint where increase in complexity of tasks gives clear increase in value of science?
 - For Moon: if it is seconds, do from Earth;
 but if fractional seconds, do from orbit or Earth-Moon L2?

Voyages

Charting the Course for Sustainable Human Space Exploration

http://www.nasa.gov/exploration/whyweexplore/voyages-report.html

From NASA's Voyages

- Capability driven approach
 - Core evolving capabilities
 - Leveraged and reused instead of specialized, destination specific
- Cislunar space will teach us about how humans live and work in space
 - Build capabilities for future in-space activities and deep space exploration
 - Economic growth
 - Pave the way for future expeditions
 - Commercial and International collaboration
- Precursor robotics
- Human-robotic interfaces
 - Risk mitigation through telerobotics
- Destination systems
 - ISRU
 - Sustain human life off Earth with in-situ resources
 - Sustained presence
 - Long duration habitats

Copyright © 2010 Boeing. All rights reserved.

Summary

Defense, Space & Space Explora

- Cislunar Next provides best opportunities for a sustainable Space Exploration Architecture
- •2017 offers us an opportunity
 - •Similar to LRO Science Mission Directorate (SMD)/Human Exploration and Operations Mission Directorate (HEOMD) Joint Mission
- Exploration Platform provides flexibility for many different types of missions
- •ISS not just a spacecraft but the expression of what great nations can accomplish working together

Copyright © 2010 Boeing. All rights reserved.

Defense, Space & Security
Space Exploration

Copyright © 2010 Boeing. All rights reserved.

ISS011E09825