

Solar Thermal Power System for Oxygen Production from Lunar Regolith: Engineering System Development

Takashi Nakamura¹, Benjamin K. Smith¹, and Robert J. Gustafson²

¹Physical Sciences Inc. ²Orbital Technologies Corporation

Prepared for:

Joint Annual Meeting of LEAG, ICEUM, and SRR

28-31 October 2008 Cape Canaveral, Florida

Multi-use Solar Thermal System: Schematic

Optical Waveguide Cable Oxygen
Thermochemical Processing

H:3796a

- Transmission of high solar flux via flexible optical waveguide
- Scale up by incremental increase of concentrator units
- Transportable and deployable on the lunar surface
- Multi-use for a variety of oxygen production processes

Solar Energy for Lunar Material Processing: Previous Concept

VG08-206-2

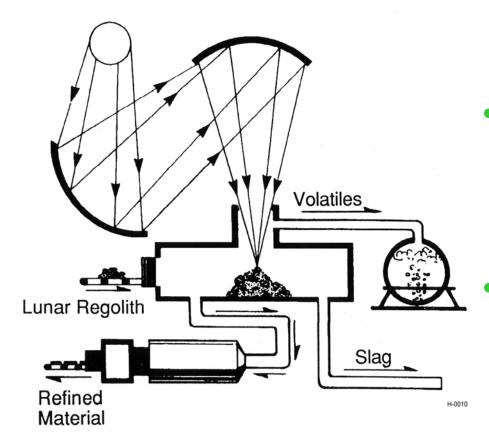
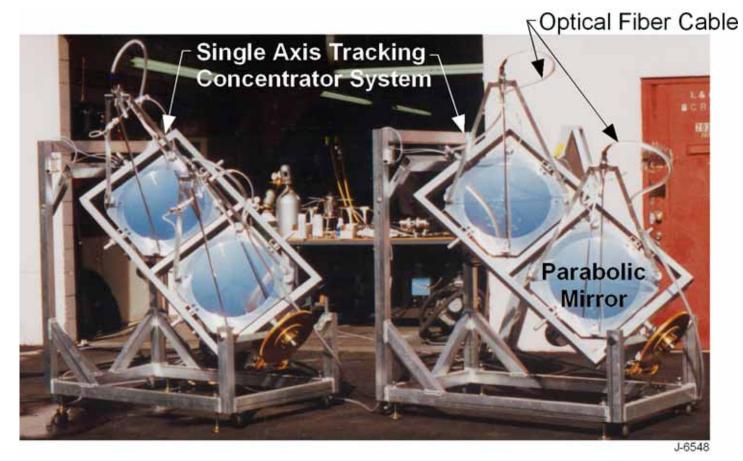


Figure by NASA/JSC (ca. 1992)

Difficult to achieve ideal heating of process materials

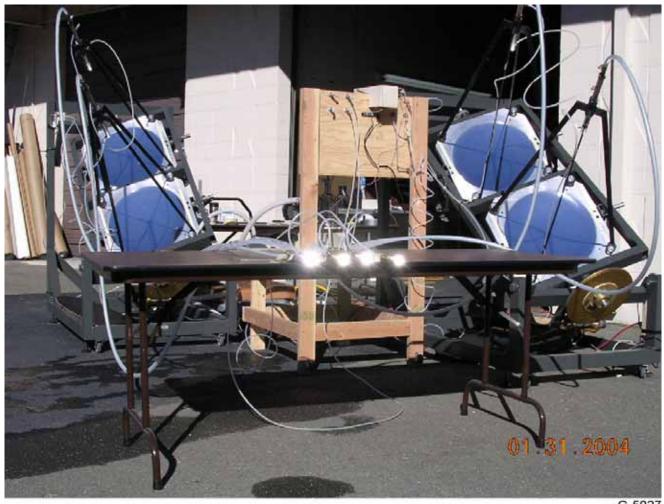
- uneven heating
- uncontrolled heat flux


Difficult to modularize

- limited scaling
- non-ideal process configuration

The Optical Waveguide Solar Energy System Used for Hydrogen Reduction of JSC-1 and Ilmenite (1996)

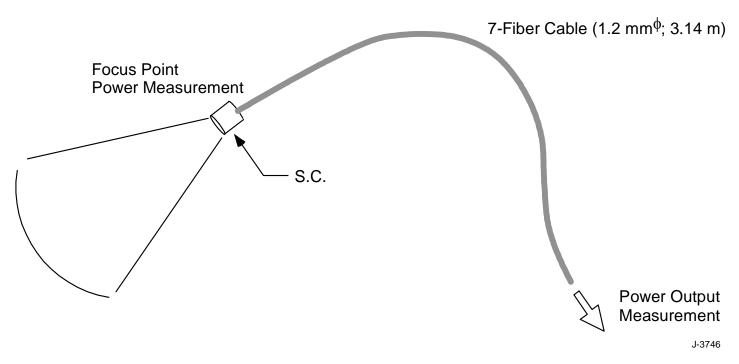
VG08-206-3



SBIR Phases I and II supported by NASA/JSC: Dr. Carlton Allen; Dr. David McKay; Dr. Wendell Mendell (COTR)

The OW Solar System Used for Recent Solar Power Experiment

VG08-206-4


G-5027

Testing of Cable with New Inlet Optics (5/7/07)

VG08-206-5

PHYSICAL SCIENCES INC

Focus Flux Intensity: 167 ~182 W/cm²

Power Input to S.C.: 31.40 W

Power Output: 21.70 W

• Transmission Efficiency: 69.10% including Fresnel Loss

(previous 52 ~ 55%)

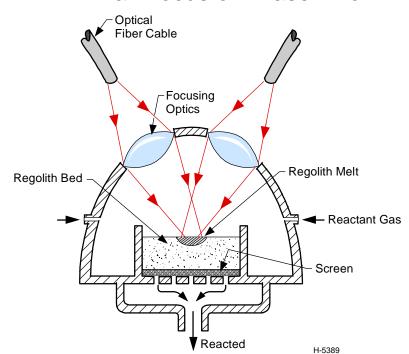
Solar Test of Cable with New Inlet Optics

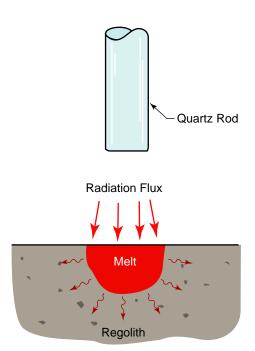
VG08-206-6

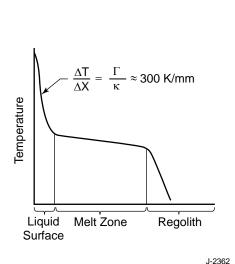
Cable Test with PSI Concentrate
Cable Transmission (3.14 m): 69%

Pathway for Component Efficiency Improvement

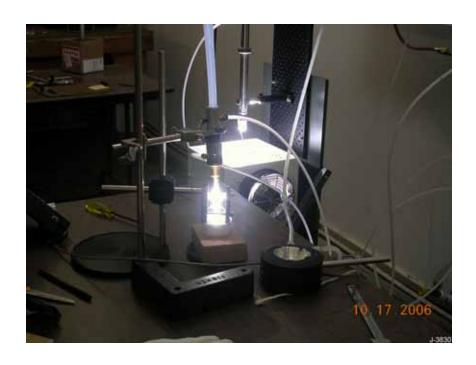
Component	1996-2005	May 2007	Space-Based Operational System	Improvement Measures
Concentrator	0.722	0.858*	0.936	
Reflectivity	0.82	0.975	0.975	Protected silver coating
Intercept factor	0.88	0.88	0.96	High slope accuracy and in the absence of atmospheric scattering
Optical Fiber Cable	0.526	0.69	0.812	
Front Fresnel ref	0.965	0.965	0.983	• AR coating (650~1100 m)
Fiber fill factor	0.734	1.0	1.0	
Integral fiber transmission	0.77	0.74	0.84	 Improved inlet optics and high purity fiber
Back Fresnel ref	0.965	0.965	0.983	• AR Coating (650~1100 m)
System Efficiency	0.38	0.592	0.760	


^{*} Plating silver coating on the PSI concentrator surface is assumed


Receiver Interface with Oxygen Production Process

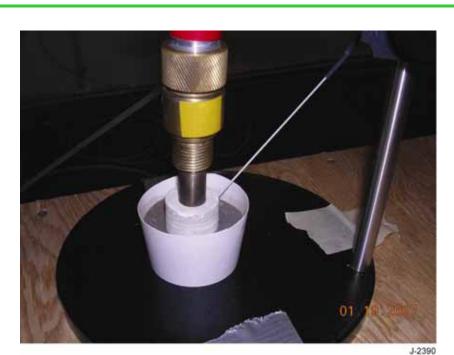

VG08-206-8

- Hydrogen reduction of lunar regolith (850-1000C)
 - Temperature easily attained
 - Thermochemical process demonstrated
- Carbothermal lunar regolith processing (CLRP; 1600-1800C)
 - High temperature requirement
 - Main focus of Phase I work



Non-imaging Optics

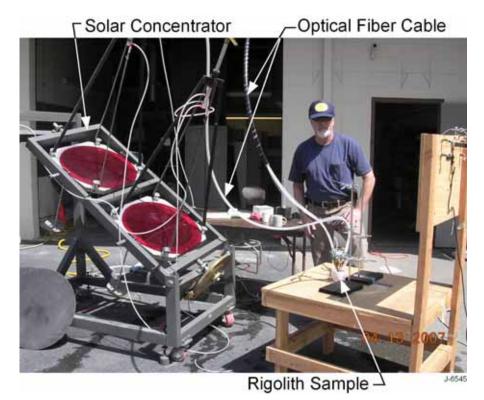
Melting JSC-1 with Xe-Arc Light Source


Imaging Optics

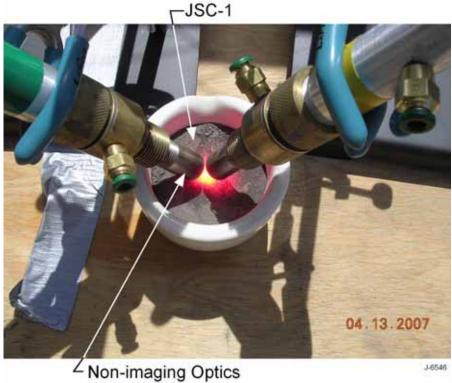
Non-imaging Optics

Melting JSC-1 with Xe-Arc Light Source: II

Optical Fiber Cable
Heating JSC-1 with 60W of Power
(T = 1450 C)


Vitrified JSC-1 Melt (dia. = 14mm; depth = 6mm)

Source: PSI/Orbitec project, "Solar Thermal System for Carbothermal Lunar Regolith Processing System (CLRPS)"

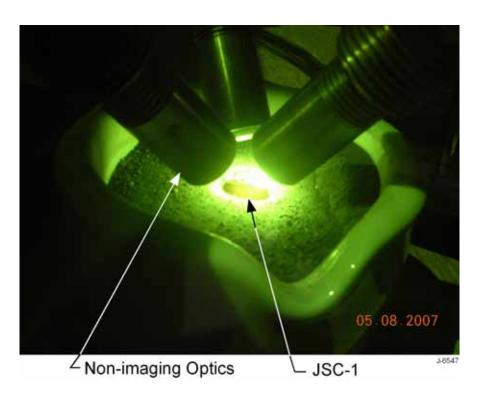


Melting JSC-1 with Solar Heat: I

VG08-206-11

Two Cables Focused On a Single Point

Power: 104 W


Peak Flux: 84.4 W/cm²

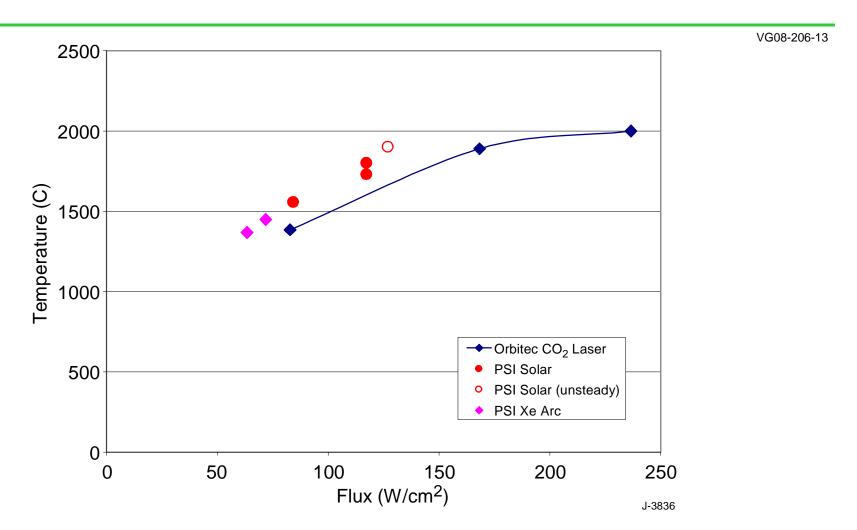
Temperature: 1556 C

Melting JSC-1 with Solar Heat: II

VG08-206-12

Three Cables Focused On a Single Point

Power = 145 W

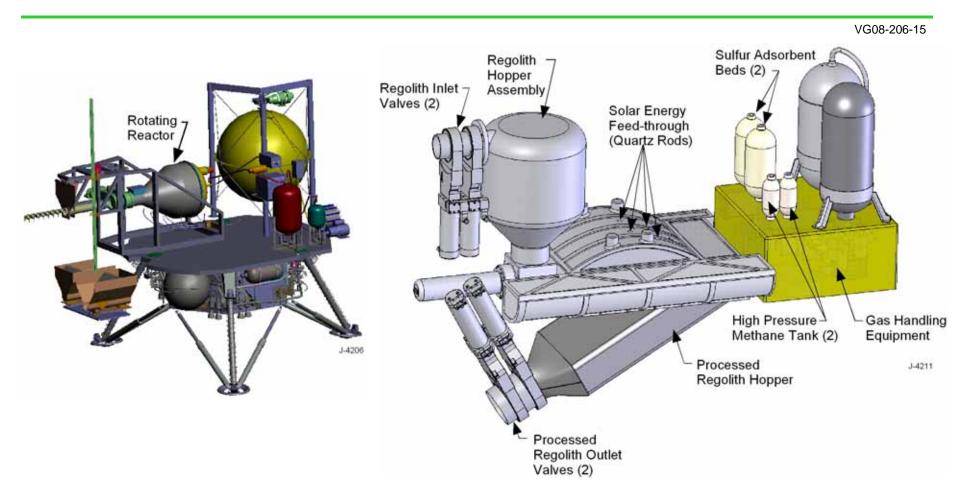

Peak Flux = 117.4 W/cm^2

Temperature = 1728~1800 C

Vitrified JSC-1 Melt: 14 mm dia

Surface Temperature of JSC-1 Melt

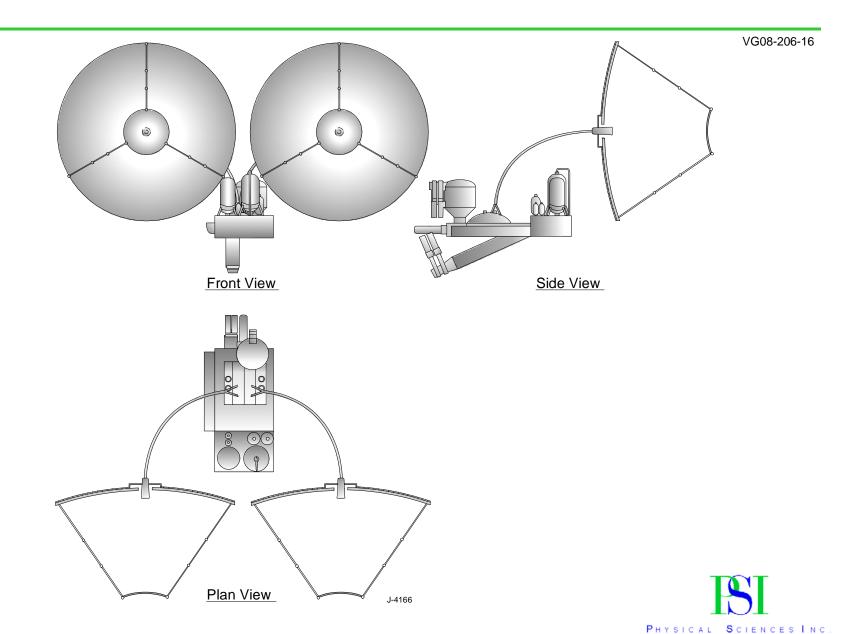
Temperature measured by Type C (W 5% Re - W 26% Re) thermocouples



Conceptual Design Basics

- 1 MT of oxygen/year at a lunar polar region
- Two oxygen production processes
 - Hydrogen reduction process (5.6 kW)
 - Carbothermal reduction process (5.6 kW)
- PILOT (Precursor In-Situ Lunar Oxygen Testbed) platform as the basis

Oxygen Production Process



Hydrogen Reduction Process (LMSSC)

Carbothermal Reduction Process (ORBITEC)

Carbothermal Reduction Process

Summary of the System Component Weight

١,	\sim	· ^	\sim	~	• -
v	(JI	JK.	-70	16-1	1/

Concentrator System				
Concentrator	Cassegrain (parabolic primary + hyperbolic secondary)			
Diameter	Primary Concentrator = 2 m, Secondary Reflector = 0.5 m			
Crosific Weight	3.567 kg/m ² (RCAT: Rigid Concentrator and Tracking System,			
Specific Weight	AFRL solar thermal propulsion data)			
Weight per Concentrator	11.2 kg including support and tracking mechanisms			
Number of Unit	2			
Conc. System Weight	22.4 kg			
Optical Waveguide (OW) Sys	tem			
Optical Fiber	Fused Silica Core (2 mm dia.), Fluorine Doped Silica Clad			
Optical Pibel	(2.2 mm dia.), Polyimide Jacket (2.5 mm dia.),			
Fiber Weight per meter	9.95 gram/m			
Number of Fiber per Cable	169			
Cable Diameter	3.8 cm (1.5 inch)			
Cable Weight per meter	1.68 kg/m			
Cable Length	3.5 meter			
Cable Weight	5.88 kg			
Number of Cable	2			
OW System Weight	11.76 kg			
System Weight Summary				
Concentrator System weight	22.4 kg			
OW System Weight	11.76 kg			
Total System Weight	34.16 kg			
Total Supplied Power	5.905 kW			
Weight per kW	5.785 kg/kW			

Summary and Conclusions

- Solar thermal system based on the optical waveguide (OW) technology is viable and effective for oxygen production from lunar regolith
- In this Phase I program we demonstrated a significant and dramatic increase in system efficiency
- We conclusively demonstrated that solar thermal power is capable of heating the lunar regolith to the temperatures necessary for oxygen production
- The system will be light-weight and efficient when deployed on the lunar surface

Acknowledgement

VG08-206-19

This work is supported by NASA through Contracts NNJ07JB26C (NASA/JSC) and NNC08CA59C (NASA/GRC).

