a EUROPEAN SPACE EXPLORATION PROGRAMM

AURORA

The MoonNEXT Mission

Bérengère Houdou, James Carpenter & the ESA MoonNEXT Team ESA/ESTEC, The Netherlands LEAG - ILEWG - SRR, October 30th 2008

Introduction

 Potential long-term term perspective for European participation into international Human Lunar Exploration: high capacity cargo lander, using a full Ariane 5

• Different approaches to meet this goal are currently being considered by ESA:

3 Consortia, for a study duration of 12 months

MoonNEXT Objectives

- MoonNEXT technological objective:
 - 1. Autonomous soft precision landing
 - 2. With hazard avoidance

at the lunar South Pole

• MoonNEXT **payload** objectives:

·eesa

IRORA

1. Exploration-enabling science (e.g. environmental monitoring) and technology demonstration (e.g. life sciences)

2. Lunar science (e.g. geophysics)

with the possible deployment and operations of a rover (if mission mass budget allows)

- MoonNEXT studied configurations (Soyuz-based):
 - 1. Lander-only (baseline, detailed design)
 - 2. Lander + Rover (feasibility study)

MoonNEXT Mission Sequence

- Launch with Soyuz 2.1-b from Kourou in the timeframe 2015-2018
- Earth-to-Moon transfer (a few days)
- Low circular Lunar orbit
- Soft precision landing (200 m, tbc) with hazard avoidance at the South Pole (favourable illumination conditions)

- Coast phase
- Braking phase
- Approach phase:
 - hazard mapping and safe site identification

eesa

EXPLORATION PROGRAMM

AURORA

- retargeting, steering to the selected safe site
- Terminal descent and touchdown on legs
- Fully autonomous (~1h30)
- Deployment of the surface payload
- 1-year operations, with direct communication to Earth (no orbiter assumed)

MoonNEXT Main Design Features

- Main mission architecture trade-offs:
 - transfer orbit: LTO / HEO / GTO
 - staging (separated in LLO before landing) or no
- Landed mass: between 650 kg and 800 kg
- Payload capability: a few 10s of kg
- Main mass drivers: propulsion and structure subsystems
- Complex propulsion subsystem but no new engine development

Main engines: 500N EAM in continuous mode

Assist engines: 220N ATV thruster, in pulse-mode

- Thermal control: RHUs
- Power: batteries (no RTG), size driven by payload operations during darkness
- Touchdown: 4 deployable legs with crushable

·eesa

AURORA

Soft Precision Landing with Hazard Avoidance

ecesa EUROPEAN SPACE

AURORA

- Achieved by augmenting lander GNC system with new-generation sensors and algorithms
- Significant technology development effort on-going in Europe

• Key design drivers and constraints:

 To meet the 200m precision requirement: use of a specific terrain-relative navigation technique based on matching real-time images with reference maps stored onboard

Core Payload Objectives

Preparation for Human Exploration:

- Demonstrate technologies for future human exploration
- Characterise potential hazards and challenges (e.g. dust, radiation, impacts)
- Characterise a potential human outpost location

Lunar Geophysics:

- Internal structure and composition
- Formation history and evolution
- Compatible with the International Lunar Network

eesa

AURORA

Core Payload Instruments on Lander

EUROPEAN SPACE eesa EXPLORATION PROGRAMM

AURORA

Instrumented Mole

Internal structure of the Moon

Lunar radiation environment

Lunar meteoroid environment

Lunar dust

Technology demonstration in preparation of human exploration,

Strawman Instruments	Topics Addressed
Site Imaging System	
Instrumented Mole	
Lunar Radiation Monitor	
Lunar Dust Camera	$\bigcirc \bigcirc$
Seismometer	$\bigcirc \bigcirc$
Langmuir Probe	\bigcirc
Magnetometer	\bigcirc
Laser Reflector	\bigcirc
First Extraterrestrial Man Made Ecosystem	\bigcirc
Reversible Solid Oxide Fuel Cell	\bigcirc

ExoMars PanCam from which the Site Imaging System is derived

Complementary Instruments on Lander

Strawman Instruments	Topics Addressed
X-ray Diffractometer	
Gas Analysis Package	$\bigcirc \bigcirc \bigcirc \bigcirc$
Sample Preparation and Distribution System	\bigcirc
Lunar Radio Environment	
IR Spectrometer	
Lunar Meteoroid Environment	\bigcirc
Remote Raman-LIBS	

Beagle 2 Gas Analysis Package

EUROPEAN SPACE

AURORA

EXPLORATION PROGRAMM

eesa

Conclusions

- MoonNEXT (Soyuz-based) offers a unique opportunity by combining cutting-edge landing technology, preparation for human exploration and ILN-compatible science
- The detailed design of the **Lander-only** configuration has just started and is planned to be completed mid-2009
- In discussion for approval at the coming ESA Ministerial Council (end Nov.): Phase A studies of A5-class Lunar Landers
- Final decision on class of lander foreseen end-2010 (To Be Confirmed)

