

ESA's Lunar Robotics Challenge

Gianfranco Visentin
Bernard Foing, Scott Hovland
Roger Walker

Andres Galvez

European Space Agency

Contents

- Introduction
 - Solving the problem of water
 - The general Studies Programm
- LRC Objectives
 - Technical Objectives
 - Educational Objectives
- The Challenge
 - Hypotetical Mission
 - The LRC Venue
 - The challengers

Cesasolving the Problem of Water... the robotics way

- There is compelling scientific evidence that there is hydrogen rich ore into the cold dark craters located at the poles of the Moon.
- The question whether this ore contains water or not, still waits for a more

Cesa solving the Problem of Water... the robotics way

• To this purpose, engineers have postulated the use of a wide variety of robotics means (e.g. walking/hopping/rolling rovers cable ways, tethered tumbleweeds, harpoons) which despite their basic different working principles have in common one characteristic: lack of experimental proof of the

ESA General Studies Programme

The objectives of ESA's general studies programme are:

- Contribute to the formulation of the overall ESA strategy;
- Study feasibility for selection of new mission concepts;
- Prepare/demonstrate the case for approval and funding of new optional projects/programmes;
- Support the evolution of ESA by analysing and testing new working methodologies.

From 2005 the GSP includes (among others)

The main technical goals of the challenge are:

- to conceptually define a number of sufficiently diverse robotics means to accomplish a hypothetical mission to acquire samples in a lunar crater
- to design, manufacture, integrate and ready for test such robotics means
 against realistic resource requirements
 (i.e. mass, volume, power) and crater
 characteristics

- For what regards outreach, the challenge has 2 goals
- Motivational: Establishing an high visibility event to which the "community" of space engineering students can associate with and be proud of
- Inspirational: Establish an example of "cool stuff" being done by elder students that can inspire younger

Hypotetical Mission

The challenge assumed the following hypo

A Lunar lander touches down in proximity of the rim of the target Lunar crater. The Lunar Lander is equipped with:

- Some sort of robotics means that allows collection of soil samples from the crater bottom
- A Lunar ascent vehicle that allows

2. The robotics means

- deploy out of the lander,
- overcome the crater rein,
- reach the bottom of the crater
- search for and collect soil samples
- return the samples to the lunar lander
- 3. Some sort of return to Earth The challenge focussed

- The selection of a venue was performed following the main criteria:
- 1. Similarity to a lunar crater
- 2. Size and trafficability of crater compatible with the capabilities of robotics system that can be realised and demonstrated in the challenge
- 3. Proximity to transportation means and ease of logistics
- 4. Affordable accessibility from Europe
- 5. Ease to achieve administrative clearance
- 6. Scenery suitable for PR event

LRC Venue

beacon

Participants

University of Bremen (Germany) 1 robot "CESAR" equipped with wheel-legs (front) paddlewhel (back), a sampling device and a releasable communication

Participants

ETH Zurich (Zwitzerland)

- a 6-wheels robot
 "CRABLY" to
 provide
 communication
 relay
- a 4-legs tethered walking robot

This team did not manage to conclude the challenge. CRABLY stopped working after management box crater rim, due to "SPACHETTI BOX" charging of the batteries.

Jacobs University of Bremen (Germany)

- 2 almost identical robots "Lunatics 1" and "Lunatics 2" equipped with tracks
- Lunatics 1 worked as a relay system
- Lunatics 2 which had a sampling device

Participants

University of Oulu (Finland)

 1 Robot con tracks and an arm like sampling device

The Oulu robot went very rapidly into the crater. Unfortunately as it did not have a communication relay on the rim it lost communication with the "ground station" while climbing

Participants

(Italy)

- One wheeled robot "DAVID" with 6 wheels (not articulated)
- DAVID was equipped with a sling launching a sampling device (SD)
- The SD once landed into the sampling zone would be drawn scraping away some

tered successfully the crater, found and into a ampled an unmeasured amount of

Scuola di Studi Superiori Santa Anna (Italy)

- 1 Robot
 "pESApod"with 6
 legs each with 3
 degrees of freedom
- One leg has in its foot a sampling

presentobotthenLRC. Its fairly slow speed madeast anhikely to win. However its good chamuescabioetchlake sample were spoiled

University of Surrey (UK)

- 1 Rover
 "SELENE" moving
 on 4 articulated
 tracks
- SELENE had a 5

SELENE did not manage to freedom robot arm locomotion drives turned out to be undersized

Universidad Politécnica de Madrid (Spain)

- 1 Rover "MoonHound" equipped with 4 big cylindrical wheels and a sampling arm
- The 2 axis on which the weels are mounted have a passive

Conclusions

- The LRC was a total success in all fronts
- From the technical point of view:
 we have found promising solutions
 for a difficult technical problem
- From the educational point of view: over 70 European students have had the chance to realise sophisticated robots and test them in a tough but exciting event
- From the ingniration point of